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Abstract A methodology for analyzing the large static de-
formations of geometrically nonlinear structural systemsin
presence of both system parameters uncertainties and model
uncertainties is presented. It is carried out in the contextof
the identification of stochastic nonlinear reduced-order com-
putational models using simulated experiments. This metho-
dology requires the knowledge of a reference calculation is-
sued from the mean nonlinear computational model in or-
der to determine the POD basis used for the mean nonlin-
ear reduced-order computational model. The construction
of such mean reduced-order nonlinear computational model
is explicitly carried out in the context of three-dimensional
solid finite elements. It allows the stochastic nonlinear redu-
ced-order computational model to be constructed in any gen-
eral case with the nonparametric probabilistic approach. A
numerical example is then presented for a curved beam in
which the various steps are presented in details.
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1 Introduction

A recent challenge in structural mechanics is to have ad-
vanced numerical methodologies for the construction of ro-
bust computational models in order to efficiently predict the
mechanical behavior of structures. In numerous industrial
applications, the effects of geometrical nonlinearities indu-
ced by large strains and by large displacements have to be
taken into account in the numerical modeling. For instance,
such nonlinear mechanical behavior is exhibited in aero-
nautics for the case of helicopter rotating blades [12,21] or
in automotive or aerospace applications involving slender
beams or thin shells [4,8,6]. In the context of complex struc-
tures, large finite element computational models are how-
ever needed. Then, given the numerical difficulties inher-
ent to the complexity of such computational models, some
recent investigations have focused on the construction of
reduced order models in this nonlinear context [13,5]. In
particular, the STEP procedure [11,9] has been developed
in order to explicitly construct all linear, quadratic and cu-
bic stiffness terms related to reduced nonlinear models. The
methodology is based on the smart use of a standard com-
mercial finite element code for which no further numerical
development is needed. It only requires a series of straight-
forward nonlinear numerical calculations with judicious pre-
scribed displacements taken as a linear combination of given
basis vectors.

Moreover, deterministic nonlinear computational mod-
els are in general not sufficient to accurately predict the me-
chanical response of such complex structures. Uncertainties
have then to be taken into account in the computational mod-
els by using probabilistic models as soon as the probability
theory can be used. Let us recall that there are two classes
of uncertainties: (1) the system-parameter uncertaintiesare
due to the variability of the parameters of the computational
model, (2) the model uncertainties, induced by modeling er-
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rors, are the features of the mechanical system not captured
by the computational model, e.g. the introduction of reduced
kinematics in the numerical modeling. The parametric prob-
abilistic approach is particularly adapted to take into ac-
count system-parameter uncertainties as shown in [14,15] in
the context of post-buckling of cylindrical shells. This last
decade, the nonparametric probabilistic approach has been
developed to allow the consideration of both model uncer-
tainties and system-parameter uncertainties. It has been in-
troduced in [17,19] for the linear case and has been extended
more recently in [9,10] for linearly elastic but geometrically
nonlinear problems. In the present paper, a direct proce-
dure is proposed for the explicit construction of stochastic
reduced-order models of uncertain geometrically nonlinear
structures. It is applicable to any type of structure modeled
with three-dimensional solid finite elements and with a lin-
ear constitutive equation.

The paper is organized as follows. In section 2, the equa-
tions of the geometrical nonlinear problem are written in the
context of a total Lagrangian formulation. The third Sec-
tion is devoted to the construction of the mean nonlinear
reduced-ordercomputational model required by the nonpara-
metric probabilistic approach. This mean nonlinear reduced-
order model is obtained using the Proper Orthogonal De-
composition (POD) method known to be particularly effi-
cient in nonlinear static cases [13]. The POD basis is con-
structed with the deterministic nominal three-dimensional
computational model of the structure. The mean nonlinear
reduced-order model results from the projection of the weak
formulation related to the nonlinear boundary value prob-
lem, on the subspace spanned by the POD basis. It is then
explicitly constructed discretizing the problem using three-
dimensional solid finite elements. The fourth Section is de-
voted to the construction of the stochastic nonlinear redu-
ced-order computational model using the nonparametric
probabilistic approach, which will introduce a random ma-
trix [K] adapted to the problem. Such a nonparametric prob-
abilistic approach is based on the construction of a probabil-
ity model for the random matrix[K] with values in the set
of symmetric positive-definite matrices whose mean value is
deduced from the mean nonlinear reduced-order model. The
mean value of[K] involves the linear, quadratic, and cubic
stiffness terms of the mean nonlinear reduced order model
and must be symmetric and positive definite. An explicit ap-
proach is proposed here, instead of the STEP formulation, to
maintain these properties. Note that the explicit construction
of each contribution is required. In the fifth Section, a pro-
cedure is given for identifying the stochastic reduced-order
nonlinear computational model with respect to simulated ex-
perimental responses [20,1,2]. Finally, the last Section deals
with an application involving a curved structure in order to
demonstrate the efficiency of the proposed methodology.

2 Weak formulation of the geometric nonlinear
boundary value problem

This Section is devoted to the weak formulation of the bound-
ary value problem in the context of linear elasticity with ge-
ometrical nonlinearities.

2.1 Description of the geometric nonlinear boundary value
problem

The structure under consideration is constructed of a lin-
ear elastic material and is assumed to undergo large defor-
mations inducing geometrical nonlinearities. LetΩ be the
three-dimensional bounded domain of the physical spaceR3

corresponding to the reference configuration taken as a nat-
ural state without prestresses. The boundary∂Ω is such that
∂Ω = Γ ∪Σ with Γ ∩Σ = ∅ and the external unit normal
to boundary∂Ω is denoted byn (see Fig. 1). The boundary
partΓ corresponds to the fixed part of the structure whereas
the boundary partΣ is submitted to an external surface force
field. A total Lagrangian formulation is chosen. Consequen-
tly, the mechanical equations are written with respect to the
reference configuration. Letx be the position of a point be-
longing to domainΩ. The displacement field expressed with
respect to the reference configuration is denoted asu(x). It
should be noted that the surface force fieldG(x) acting on
boundaryΣ and that the body force fieldg(x) acting on do-
mainΩ correspond to the Lagrangian transport into the ref-
erence configuration of the physical surface force field and
to the physical body force field applied on the deformed con-
figuration.

Ω

=0

n

u  

g

G

Σ

Γ

Fig. 1 Reference configuration

2.2 Weak formulation

The admissible spaceC defined by

C = {v ∈ Ω , v sufficiently regular, v = 0 onΓ} , (1)
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is introduced in order to construct the weak formulation re-
lated to the geometric nonlinear boundary value problem. It
then consists in finding the unknown displacement fieldu in
admissible spaceC such that, for any admissible displace-
ment fieldv in C∫

Ω

vi,k Fij Sjk dx =

∫

Ω

vi gi dx +

∫

Σ

vi Gi ds . (2)

In this equation, the convention of summation over repeated

latin indices is used. In additionvi,k denotes
∂vi
∂xk

. In Eq. (2),F = {Fij}ij is the deformation gradient tensor whose com-
ponentsFij are defined by

Fij = ui,j + δij , (3)

in which δij is the Kronecker symbol such thatδij = 1 if
i = j andδij = 0 otherwise.S = {Sij}ij is the second
Piola-Kirchoff symmetric stress tensor which is written for
a linear elastic material as

Sij = aijkℓ Ekℓ . (4)

In Eq. (4), the fourth order elasticity tensora = {aijkℓ}ijkℓ
satisfies the usual symmetry and positive-definiteness prop-
erties. The Green strain tensorE = {Eij}ij is then written
as the sum of linear and nonlinear terms such that

Eij = εij + ηij , (5)

in which

εij =
1

2

(
ui,j + uj,i

)
and ηij =

1

2
us,i us,j . (6)

2.3 Definition of the multi-linear forms

The weak formulation defined by Eq. (2) is then rewritten
in order to distinguish the linear part from both non-linear
quadratic and cubic parts of the equation. The following
multi-linear forms are then introduced by writing Eq. (2)
such that

k(1)(u, v) + k(2)(u, u, v) + k(3)(u, u, u, v) = f(v) , (7)

in which the linear formf(v) and the multi-linear forms
k(1)(u, v), k(2)(u, u, v) andk(3)(u, u, u, v) are defined for
all u and allv in C by

f(v) =
∫

Ω

vi gi dx +

∫

Σ

vi Gi ds , (8)

k(1)(u, v) =
∫

Ω

ajkℓm εℓm(u) εjk(v) dx , (9)

k(2)(u, u, v) =
∫

Ω

ajkℓmηℓm(u)εjk(v)dx +

∫

Ω

ajkℓmus,jvs,kεℓm(u)dx (10)

k(3)(u, u, u, v) =

∫

Ω

ajkℓm us,j vs,k ηℓm(u) dx . (11)

3 Construction of the mean nonlinear reduced-order
computational model

This Section focuses on the construction of the mean nonlin-
ear reduced-order computational model. First, the equation
yielding the mean nonlinear reduced-order model is written
for any given projection basis. In such equation, it should
be noted that the linear, quadratic and cubic stiffness contri-
butions have particular symmetry properties which can di-
rectly be related to the elasticity tensor properties. The con-
struction of the mean nonlinear reduced-order model is then
carried out in two main steps : the numerical construction of
an adapted projection basis and the explicit construction of
each linear, quadratic and cubic stiffness contribution. The
second paragraph is devoted to the construction of the pro-
jection basis using the Proper Orthogonal Decomposition
method (POD method). The choice of such POD basis is
known to be particularly adapted in the context of large fi-
nite elements systems [16,13]. Its construction requires the
knowledge of the nonlinear static response, which is calcu-
lated from the mean nonlinear model using a finite element
code. The POD basis is then defined as the eigenvectors of
the spatial correlation matrix associated with the nonlinear
static response. Its numerical construction is briefly recalled
in the context of a large finite element model [13]. Finally,
the mean nonlinear reduced-order model is explicitly deter-
mined in the context of three-dimensional solid finite el-
ements. In particular, the integrals describing each linear,
quadratic and cubic stiffness contribution are explicitlycal-
culated using the POD basis and using the symmetry prop-
erties of the elasticity tensor.

3.1 Equations for the mean nonlinear reduced-order
computational model

Let �α(x) , α = {1, . . . , N}, be a given set of basis func-
tions such that

u(x) =
N∑

β=1

�β(x) qβ , (12)

in which q = (q1, . . . , qN ) is theRN -vector of the general-
ized coordinates. Letv(x) be a test function such that

v(x) = �α(x) qα (13)

Substituting Eq.(13) into Eq.(7) yields the following nonlin-
ear equations

K(1)
αβ qβ + K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ = Fα , (14)

in which

K(1)
αβ =

∫

Ω

ajkℓm ϕα
j,k ϕ

β
ℓ,m dx , (15)
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K(2)
αβγ =

1

2

(
K̂(2)

αβγ + K̂(2)

βγα + K̂(2)

γαβ

)
, (16)

K̂(2)

αβγ =

∫

Ω

ajkℓm ϕα
j,k ϕ

β
s,ℓ ϕ

γ
s,m dx , (17)

K(3)
αβγδ =

∫

Ω

ajkℓm ϕα
r,j ϕ

β
r,k ϕ

γ
s,ℓ ϕ

δ
s,m dx , (18)

Fα =

∫

Ω

giϕ
α
i dx +

∫

Σ

Giϕ
α
i ds . (19)

It can easily be seen that the symmetry properties of the
fourth-order elasticity tensor yield the following properties

K(1)
αβ = K(1)

βα , (20)

K̂(2)

αβγ = K̂(2)

αγβ , (21)

K(2)
αβγ = K(2)

βγα = K(2)
γαβ , (22)

K(3)
αβγδ = K(3)

αβδγ = K(3)
βαγδ = K(3)

γδαβ . (23)

Moreover, using the positive-definite property of the fourth-
order elasticity tensor, it can be shown that tensorsK(1)

αβ and

K(3)
αβδγ are positive definite.

3.2 Numerical construction of the basis using Proper
Orthogonal Decomposition

The set of basis vectors used for constructing the mean redu-
ced-order nonlinear computational model is obtained with
the Proper Orthogonal Decomposition (POD) method which
is known to be efficient for nonlinear static cases. The con-
struction of such a basis requires a set of displacement fields
solutions of the mean nonlinear computational model. In-
deed such basis is defined by the eigenvalue problem of the
spatial correlation operator related to this displacementfield.
It should be noted that the POD basis does not only de-
pend on the operators of the computational model but also
strongly depends on the external loads applied to the struc-
ture. Below, the numerical construction of the POD basis is
summarized in the context of the finite element method. The
finite element discretization of Eq. (7) can be written as

[K(1)]u + fNL(u) = f , (24)

in which theRn-vectoru is the vector of the unknown dis-
placements. In Eq. (24), the(n × n) symmetric positive-
definite matrix[K(1)] is the linear finite element stiffness
matrix, theRn-vector fNL(u) is the vector of the restor-
ing forces induced by the geometrical nonlinear effects and
theRn-vectorf is the vector of the external applied loads.
It should be noted that there are specific numerical algo-
rithms for solving this nonlinear equation (see for instance
[7]) which are particularly efficient as the curvature of the
nonlinear response changes (see for instance [3] for algo-
rithms based on arc-length methods or [22] for algorithms
based on asymptotic methods).

Let sj ∈ [0, 1], j ∈ {1, . . . , p} with sj < sj+1 be the
scalar denoting the incremental weight numberj of the ex-
ternal load vectorf. The(n × p) real matrix[V ] is then in-
troduced as

[V ]ij = ui(sj)√∆sj , ∆sj = sj − sj−1 ,

with s0 = 0 . (25)

The spatial correlation matrix related to the nonlinear re-
sponseu(sj) is the symmetric positive(n × n) real matrix
[A] such that

[A] = [V ] [V ]T . (26)

The POD basis is then obtained by solving the following
eigenvalue problem

[A] [Φ] = [Φ] [Λ] , (27)

in which [Λ] is the diagonal matrix whose components are
the eigenvalues ordered by decreasing values and where[Φ]

is the eigenvector matrix whose columns are the POD basis
vectors. It should be noted that this numerical construction
cannot be carried out if the dimensionn is large. The fol-
lowing methodology introduced by [16,13] is used instead
for large computational models. The singular value decom-
position of the matrix[V ] is written as

[V ] = [B] [S] [C] , (28)

in which [S] = [Λ]1/2 and where the columns of the(n×n)

and(p × p) real matrices[B] and[C] are the left and right
singular vectors related to the corresponding singular val-
ues. Let[BN ] be the(n × N) matrix issued from the col-
umn truncation of matrix[B] with respect to theN largest
singular values. The matrix[BN ] can be easily computed.
The(N ×N) symmetric positive-definite real matrix[AN ]

is then introduced as

[AN ] = [WN ] [WN ]T , with [WN ] = [BN ]T [V ] . (29)

Denoting as[ΦN ] the (n × N) real matrix defined by the
column truncation of matrix[Φ] with respect to theN largest
singular values, we then have

[ΦN ] = [BN ] [ΨN ] . (30)

In this equation,[ΨN ] is the eigenvector matrix solution of
the eigenvalue problem

[AN ] [ΨN ] = [ΨN ] [ΛN ] , (31)

where[ΛN ] is the(N ×N) real diagonal matrix defined as
the truncation of matrix[Λ] with respect to theN largest
singular values.
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3.3 Construction of the mean nonlinear reduced-order
computational model

The mean nonlinear reduced-order computational model is
explicitly constructed from the knowledge of the POD basis.
The construction is carried out in the context of the three-
dimensional finite element method. The finite elements used
here are isoparametric solid finite elements with8 nodes and
the numerical integration is carried out withr Gauss integra-
tion points.

Let [D] be the(6 × 6) real matrix which represents the
usual Hooke matrix related to the fourth-order elasticity ten-
sor. For a given isoparametric finite element, the displace-
ment fieldũ(y) with y ∈ [−1, 1]3, is defined by

ũ(y) = [N(y)] ũ , (32)

in which the(3 × 24) real matrix[N(y)] defines the inter-
polation functions and where theR24-vectorũ is made up of
the degrees-of-freedom of the finite element. LetI be the set
of indices defined byI = {(i, j) ∈ {(11), (22), (33), (12),
(13), (23)}} and corresponding with the setJ = {1, 2, 3, 4,
5, 6}. From Eq. (32), it can be deduced that

εij(ũ) (1 − δij) + εji(ũ) = [B(y)]Jk ũk ,

(i, j) ∈ I , J ∈ J , k = {1, . . . , 24} , (33)

in which [B(y)] is the(6 × 24) real matrix whose compo-
nents are obtained by the calculation of partial derivatives of
the interpolation functions contained in the matrix[N(y)].

The first step consists in calculating, for each finite el-
ement, the elementary contributions of the linear, quadratic
and cubic internal forces projected on the POD basis. Then,
for a given finite element, theR24-vector, constituted of the
internal forces induced by the POD basis vector�β and re-
lated to the linear stiffness term, is written asf̃(1)(�̃β) =

r∑

i=1

[B(yi)]
T [D] [B(yi)] �̃β (det J)wi , (34)

in which�̃β is the spatial restriction of POD basis vector�β

to the considered finite element. Further,yi, i = {1, . . . , r}
are the locations of ther Gauss integration points related to
the isoparametric finite element withwi the corresponding
weights. Finally,(detJ) is the Jacobian of the transforma-
tion. Let [Ck(y)] be the(3× 24) real matrix defined by

ũs,l(y) ũs,m(y) = ũT [Cl(y)]T [Cm(y)] ũ . (35)

We then introduce the real(6 × 24) matrix [Eβ(y)] whose
row numberJ ∈ J is defined by�̃β,T

(
[Ci(y)]T [Cj(y)] (1−δij)+[Cj(y)]T [Ci(y)]

)
. (36)

Then, for a given finite element, theR24-vector constituted
of the internal forces induced by the POD basis vectors�β

and�γ , related to the first contribution of the quadratic stiff-
ness term, is written as

̂̃f(2)(�̃β , �̃γ) =
r∑

i=1

[B(yi)]
T [D] [Eβ(yi)] �̃γ (detJ)wi . (37)

In the same way, theR24-vector, constituted of the internal
forces induced by the POD basis vectors�β ,�γ and�δ and
related to the cubic stiffness term, is written asf̃(3)(�̃β , �̃γ , �̃δ) =

r∑

i=1

[Eβ(yi)]
T [D] [Eγ(yi)] �̃δ (det J)wi . (38)

In a second step, for each type of stiffness, we proceed with
the assembly of each of these elementary contributions. We

then denote byf(1)(�β), f̂(2)(�β,�γ) andf(3)(�β ,�γ ,�δ)

theRn-vectors of these internal loads. The mean nonlinear
reduced-order computational model is then described by

K(1)
αβ = �α,T f(1)(�β) , (39)

K̂(2)

αβγ = �α,T f̂(2)(�β ,�γ) , (40)

K(3)
αβγδ = �α,T f(3)(�β ,�γ ,�δ) . (41)

The quadratic stiffness tensorK(2)
αβγ of the mean reduced

nonlinear computational model is then build from Eq. (16).

It should be noted that theK(1)
αβ , K̂(2)

αβγ andK(3)
αβγδ contribu-

tions have to be explicitly known for constructing the sto-
chastic nonlinear reduced-order computational model in the
general case of complex structures.

4 Nonparametric stochastic modeling of uncertainties

This Section concerns the construction of the stochastic non-
linear computational model. It is assumed that the mean com-
putational model contains both system parameter uncertain-
ties and model uncertainties which will be represented by
the nonparametric probabilistic approach. The nonparamet-
ric probabilistic approach is necessarily implemented from
a mean reduced computational model, which is chosen to
be the mean reduced-order nonlinear model described in the
above Section.

4.1 Definition of a reshaped stiffness matrix

The main idea of the nonparametric probabilistic approach
is to replace each of the matrices of a given mean reduced
computational model by a random matrix whose probabil-
ity model is constructed from the maximum entropy prin-
ciple using the available information [17,19]. In the usual
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linear case, the random matrices issued from the mechanical
system are with values in the set of the symmetric positive-
definite matrices. In the present geometrical nonlinear con-
text, the nonlinear equations involve nonlinear operators. In
this case, we then introduce [9] the(P×P ),P = N(N+1)
matrix [K] as the real defined by

[K] =

[
[K(1)] [K̂(2)

]

[K̂(2)
]T 2 [K(3)]

]
. (42)

In Eq. (42),[K̂(2)
] and[K(3)] are respectively the(N ×N2)

and(N2 × N2) real matrices resulting from the following
reshaping operation

[K̂(2)
]αJ = K̂(2)

αβγ , with J = (β− 1)N +γ , (43)

[K(3)]I J = K(3)
αβγδ ,

with I = (α− 1)N + β andJ = (γ − 1)N + δ . (44)

The key point consists in showing that the matrix[K] is
a symmetric and positive-definite matrix [9]. Consequently,
the nonparametric probabilistic approach initially introduced
in the linear context can easily be extended to the geometri-
cally nonlinear context.

4.2 Construction of the random matrix model

The mean reduced matrix[K] is then replaced by the random
matrix [K] such thatE{[K]} = [K] in whichE is the math-
ematical expectation. The random matrix[K] is then written
as [K] = [LK ]T [GK ] [LK ] in which [LK ] is a (P × P )

real upper matrix such that[K] = [LK ]T [LK ]. Further,
[GK ] is a full random matrix with value in the set of all the
positive-definite symmetric(P × P ) matrices. The proba-
bility model of the random matrix[GK ] is constructed from
the maximum entropy principle with the available informa-
tion. All details concerning the construction of this proba-
bility model can be found in [17,18]. The dispersion of the
random matrix[GK ] is controlled by one real positive pa-
rameterδ ∈ D called the dispersion parameter. In addition,
there exists an algebraic representation of this random ma-
trix useful to the Monte Carlo numerical simulation. From
the random matrix[K] the random linear, quadratic and cu-

bic stiffness termsK(1)
αβ , K̂

(2)

αβγ andK(3)
αβγδ can easily be de-

duced from Eqs. (42)-(44). The random matrix model is then
defined by

U = [ΦN ]Q , (45)

in whichQ = (Q1, . . . ,QN ) is theRN -valued random sat-
isfying forα = {1, . . . , N} the equations

K
(1)
αβ Qβ +K

(2)
αβγQβ Qγ +K

(3)
αβγδQβ Qγ Qδ = Fα , (46)

with

K
(2)
αβγ =

1

2

(
K̂

(2)

αβγ + K̂
(2)

βγα + K̂
(2)

γαβ

)
. (47)

It should be noted that the nonlinear dependency of the
random linear, quadratic and cubic stiffness terms with re-
spect to dispersion parameterδ has been omitted in Eq.(46)
for clarity of presentation.

5 Identification of the stochastic nonlinear
reduced-order computational model

This Section is devoted to the identification of the parameter
δ in D of the stochastic nonlinear reduced-order computa-
tional model using simulated experiments.

It is assumed that a collection ofnexp simulated ex-
periments are available atnobs spatial locations. Denote by
Uexp
j (s, θk) thekth simulated experiment at DOF numberj

as a function of the load increments. The corresponding ob-
servation calculated with the stochastic nonlinear reduced-
order computational model is denoted byUj(δ, s) and is a
function of the parameterδ which has to be identified. Let
U+
j (δ, s) (resp.U−

j (δ, s)) andUexp,+
j (s) (resp.Uexp,−

j (s))
be the upper- (resp. lower-) envelope of the confidence re-
gion of observationUj(δ, s) obtained with a probability
level 0.98 and the upper- (resp. lower-) envelope of experi-
mentsUexp

j (s).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Uexp,+
j

(s)

Uexp,−
j

(s)

U+
j
(δ,s)

U−
j
(δ,s)

incremental load s

Fig. 2 Definition of the cost function

Then, a cost functionj(δ) is introduced to quantify the
departure of the simulated experiments from the confidence
region constructed with the stochastic reduced-order nonlin-
ear computational model. Penalty terms are introduced only
in the regions for which the simulated experiments are not
within the confidence region constructed with the stochastic
nonlinear reduced-order computational model (see Fig. 2).
The cost function is then a positive decreasing function of
parameterδ. Indeed, the cost function is equal to zero as
soon as the simulated experiments belong to the confidence
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region of the random observation. Specifically, it is proposed
here to define the cost functionj(δ) to be minimized as

j(δ) = ||D+(δ, ·)||2B + ||D−(δ, ·)||2B . (48)

In this equation,|| · ||B is theL2 norm over the load incre-
mental bandB = [0, 1] and whereD+(δ, s) andD−(δ, s)

are theRnobs -vectors whose componentj is defined by

∆+
j (δ, s) = {U+

j (δ, s)− Uexp,+
j (s)} ×

{1−H(U+
j (δ, s)− Uexp,+

j (s))} , (49)

∆−

j (δ, s) = {U−

j (δ, s)− Uexp,−
j (s)} ×

{H(U−

j (δ, s)− Uexp,+
j (s)))} . (50)

Finally, x 7→ H(x) is the Heaviside function. The identifi-
cation ofδ consists in solving the optimization problem

δopt = argmin
δ∈D

j(δ) . (51)

6 Numerical application

The objective of this application is to show the efficiency
of the presented methodology. The application is a three-
dimensional linear elastostatic problem in the geometrically
nonlinear context. The material is chosen to be homoge-
neous and isotropic. The extension to the nonhomogeneous
case and to the anisotropic case is straightforward. A pre-
liminary calculation is carried out with MD NASTRAN in
order to get the reference solution from which the POD basis
is calculated. The stochastic nonlinear reduced-order com-
putational model is then constructed as a function of identi-
fication parameterδ.

Note that the simulated experiments have been obtained
by numerical simulations for a family of structures around
the mean structure. Specifically, the geometrical character-
istics of each structure of the family are modified with re-
spect to those of the mean structure. Moreover, the mate-
rial characteristics of these structures are inhomogenousat
the contrary of the mean structure. Consequently, the mean
computational model can never reproduce the simulated ex-
periments which justifies the use of a stochastic nonlinear
reduced-order computational model.

6.1 Mean finite element model

The three-dimensional bounded domainΩ, called the cur-
ved structure, results from the geometrical transformation
of a slender rectangular domainΩ′ into a curved domain
Ω. The slender domainΩ′ is defined in a Cartesian system
(0, e1, e2, e3) such thatΩ′ = {]0, l[×]0, b[×]0, h[} with
l = 10m, b = 1m, h = 1.5m. The curved structure
Ω is then defined as a part of a cylindrical domain such that

Ω = {]ri , re[×]0, α[× ]0, h[} in a local cylindrical sys-

tem defined as(0, er, eθ, e3) with α =
35π

18
, ri =

l− bα

α

and re =
l

α
. Let Γ0 ⊂ ∂Ω be the boundary described

as{r ∈ [ri, re] , θ = −π

2
, x3 ∈ [0, h] }. The structure

is assumed to be fixed on this boundary so that we have a
Dirichlet condition onΓ0. The structure is free on boundary
∂Ω \Γ0. The structure is subjected to external surface loads
applied along both directionse1 ande2 in the end section de-

fined by{r ∈ [ri, re] , θ =
13π

9
, x3 ∈ [0, h] }. The Young

modulus and the Poisson coefficient of the homogeneous
and isotropic linear elastic material areE = 1010N.m−2

andν = 0.15. The finite element model is a regular mesh of
102 425 nodes and240× 16× 24 = 92 160 finite elements
constituted of8-nodes solid elements withr = 8 Gauss in-
tegration points. Therefore, the mean computational model
hasn = 306 123 degrees of freedom (see Fig. 3).

Fig. 3 Finite element model

The discretization of the external loads yields point loads
applied to the nodes of the end section along the direction
e2 with intensity 1, 333, 333N and yields point loads ap-
plied to the nodes of the end section along the directione1
with intensity−166, 666N . An initial imperfection with a
maximum amplitude of200µm is added to the initial struc-
ture in order to construct the mean nonlinear computational
model. This initial imperfection is defined by the first lin-
ear elastic buckling mode of the curved structureΩ whose
shape is zoomed and shown in Fig. 4. In the present case,
the first linear elastic buckling mode is a bending mode with
eigenvalueλc = 0.1825 corresponding to a critical load
243, 333N along the directione2 (respectively−30, 415N

along the directione1).

In order to simulate the post-buckling mechanical re-
sponse, the static nonlinear calculations are carried out by
solving Eq. (24) using MD NASTRAN with an algorithm
based on the arc-length method. The displacement field is
calculated usingnt = 110 load increments. Fig. 5 shows
the deformed curved structure.
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Fig. 4 Shape of the first linear elastic buckling mode

Fig. 5 Deformed curved structure

6.2 Construction of the experimental data basis

In this numerical application,nexp = 8 simulated exper-
iments related to the static nonlinear response are calcu-
lated. The simulated experiments are observed atnobs =

2 observation points corresponding to the DOFs located at
the middle of the end section in the directions(0, e1) and
(0, e2). The simulated static nonlinear responses are denoted
by uexp,k

obs (s), for k in {1, . . . , nexp}. The corresponding
quantity defined for the mean nonlinear computational mo-
del is denoted byuobs(s). The simulated experiments are
generated as follows. The geometrical parametersl, b andh
are replaced by the random uniform variablesL, B andH
centered around geometrical parametersl, b andh with sup-
ports [0.95 l , 1.05 l], [0.95 b , 1.05 b] and [0.95 h , 1.05 h].
Moreover, it is assumed that the Young modulus is inho-
mogeneous with10% of variation around its mean value.
This is achieved by replacing the deterministic valueE by a

stochastic fieldE(x) which is defined by

E(x) = E +

J∑

j=1

ξjbj(x) , (52)

in which ξ1, . . . , ξJ are independent uniform random vari-
ables with zero mean and standard deviationσ = 0.1E/

√
3

and where the functionsbj(x) are given smooth functions.
For convenience, these smooth functions are taken as the
spatial average over each element of the eigenvectors asso-
ciated with theJ lowest eigenvalues of the usual generalized
eigenvalue problem related to the linear dynamics.
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Fig. 6 Displacement response at observation DOF1 as a function of
the incremental loads: mean computational model (thick dashed line),
simulated experiments (thin gray lines)
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Fig. 7 Displacement response of observation DOF2 as a function of
the incremental loads: mean computational model (thick dashed line),
simulated experiments (thin gray lines)

Figures 6 and 7 compare the static nonlinear responses
as a function of the incremental loads for both mean nonlin-
ear computational model and simulated experiments. Since
the simulated experiments are scattered around the response
calculated with the mean nonlinear computational model, it
can be deduced that the use of a stochastic nonlinear com-
putational model is justified.
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6.3 Construction of the POD basis

The nonlinear response shown in Fig. 5 is then used for
calculating the POD basis as described in Section 3.2. Let
ConvPOD(N) be the function defined by

ConvPOD(N) = 1− 1

tr([A])

N∑

j=1

Λj , (53)

for which the calculation oftr([A]) does not require the
computation of matrix[A]. Fig. 8 shows the graph of the
functionN 7→ ConvPOD(N) in a logarithmic scale. It can
be seen that a good convergence is obtained forN = 10.
From now on, all numerical calculations are carried out with
N = 12. The mean nonlinear reduced-order computational
model is then constructed and solved using the Crisfield al-
gorithm [3] based on the arc-length method.
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Fig. 8 Convergence analysis : graph ofN 7→ ConvPOD(N).

6.4 Experimental identification of the stochastic nonlinear
reduced-order computational model
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Fig. 9 Convergence analysis : graph ofns 7→ Conv(ns).

The construction of the stochastic nonlinear reduced-
order computational model using the nonparametric prob-
abilistic approach is performed as explained in Section4. A

stochastic convergence analysis is then carried out to define
the numberns of Monte Carlo realizations to be kept in the
numerical simulation. Letns 7→ Conv(ns) be the function
defined by

Conv(ns) =
{ 1

ns

ns∑

j=1

|||U(θj)|||2
}1/2

, (54)

in which |||U(θj)||| = max
s

||U(θj , s))||, ||U(θj , s))||2 =
n∑

k=1

U2
k (θj , s) whereUk(θj , s) is thejth realization of the

random response at DOFk for a given load increments.
Figure 9 displays the graphns 7→ Conv(ns) obtained with a
dispersion parameterδ = 0.6. Convergence is reached for
ns = 1 500. The identification ofδ is then carried out by
constructing the non-differentiable cost functionδ 7→ j(δ)

using the Monte Carlo numerical simulation. The cost func-
tion is a positive decreasing function of parameterδ. As soon
as the simulated experiments belong to the confidence re-
gion of the random observation, the cost function is equal to
zero.
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Fig. 10 Robust identification : graph ofδ 7→ j(δ).
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Fig. 11 Robust identification for observation DOF 1 : graph of the
experimental datas 7→ u

exp,k

obs
(s) (thin dashed lines), graph of the

confidence region of the random responses 7→ Uobs(s) (grey region).
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Fig. 12 Robust identification for observation DOF 2: graph of the ex-
perimental datas 7→ u

exp,k

obs
(s) (thin dashed lines),graph of the con-

fidence region of the random responses 7→ Uobs(s) (grey region).

Figure 10 shows the graph of the cost functionδ 7→ j(δ).
It can be seen that the optimal value is given byδopt =

0.55. Figures 11 and 12 display the graph of the confidence
region of the optimal random responseUobs(δ

opt, s) as a
function of the load increments for both observations. It
then can be seen that there is a good agreement between
the optimal stochastic nonlinear reduced-order computatio-
nal model and the simulated experiments.

7 Conclusion

In the present paper, a methodology has been proposed for
constructing a stochastic nonlinear reduced-order computa-
tional model for any three-dimensional structure with geo-
metric nonlinearities and linear constitutive equation. The
mean nonlinear reduced-order computational model is con-
structed by projection on the POD basis obtained from the
mean nonlinear computational model. All the integrals in-
volved in the weak formulation after projection on the POD
basis are explicitly estimated using three-dimensional solid
finite elements. The direct evaluation of the stiffness param-
eters of the mean nonlinear reduced-order model proposed
and accomplished here guarantees the necessary properties
(e.g. positive definiteness) of the model. It is further achiev-
able for any three-dimensional finite element mean compu-
tational model. An application is presented and a methodol-
ogy to perform the identification of the stochastic nonlinear
reduced-order computational model using simulated experi-
ments is proposed. If experimental data is available, the sim-
ulated experiments are then replaced by such data.
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