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A NEW APPROACH FOR MERGING GENE EXPRESSION DATASETS

Marie-Christine Roubaud and Bruno Torrésani
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ABSTRACT

We propose a new approach for merging gene expression data originating from independent microarray experi-

ments. The proposed approach is based upon a model assuming dataset-independent gene expression distribution,

and dataset-dependent observation noise and nonlinear observation functions. The estimation algorithm combines

smoothing spline estimation for the observation functions with an iterative method for gene expression estimation.

The approach is illustrated by numerical results on simulation studies and real data originating from prostate cancer

datasets.

Index Terms— Gene expression, Microarray data, Smoothing spline regression, Empirical Bayes estimation

1. INTRODUCTION

Microarray experiments provide indirect measurements (generally through radioactivity or fluorescence intensities)

of the quantity of RNA produced by large sets of genes in controlled conditions. As such, they are expected to allow

deeper understanding of gene regulation, as well as important prognostic tools in a number of pathologies.

Unfortunately, microarray expression measurements turn out to be highly sensitive to experimental conditions,

and important reproducibility problems have been encountered. For example, it is very difficult to aggregate datasets

originating from different experiments, even in situations where the biological objective and experimental setup are

similar. For these reasons, it has been argued by several authors that better results are obtained by merging the

results of several studies, rather than performing similar studies on aggregated datasets. The main shortcoming of

such approaches is that they do not completely exploit the variability present in the aggregated dataset. For example

in differential analysis, several approaches are based on combining adjusted p-values. Statistical tests to detect

differentially expressed genes are performed on each dataset independently and the problem of small groups is not

resolved. There is cooperation between the different experiments only at the final stage and relevant information is

likely to be lost.

We consider here the dataset aggregation problem, and propose a pre-processing aiming at reducing the between-

study variability, in the spirit of standard microarray normalization methods. The pre-processing is based on an

explicit modeling of both the gene expression values and the transformations induced by different experiments.

Such a modeling allows us to propose estimation methods for the former and the latter, which we illustrate on both

simulated and real data. This work builds on prior work by the same authors, in which a similar, though simpler

modeling was proposed for estimating so-called rectification functions (i.e. reciprocal functions of the observation

functions).

This contribution is organized as follows. The model is presented in section 2 and an estimation algorithm is

developed in 3. Numerical results are discussed in section 4.



2. MODEL DEFINITION AND ESTIMATION

2.1. The model

We assume we are given several datasets, corresponding to different studies k = 1, . . .K. Each dataset k consists

in Nk
c arrays, hereafter termed conditions. After suitable pre-processing if necessary, we are led to a set of common

genes g = 1, . . . Ng; for each experiment, we denote by c = 1, . . . Nk
c the corresponding conditions.

The observations therefore take the form y = ykg,c, denoting the measured expression level of gene g in condition

c of experiment k. The main assumption of the model is that measured expression values from the various datasets

are realizations of random variables (the “true” expression values”), which differ by

- experiment-dependent observation noise

- experiment-dependent observation function, assumed to be non-linear and smooth.

The observed values are then modeled as follows:

• Observations: y = {ykgc}, of the form

ykgc = fk(x
k
gc) + ukgc , uk ∼ N (0, τ2k ) ,

where the observation noise variances τ2k are unknown, and the underlying gene expressions x and observation

functions f are described below.

• “True” gene expressions: x = {xkgc}, of the form

xkgc = µg + δkgc , δg ∼ N (0, σ2
g)

where the gene average expressions µg and variances σ2
g are unknown.

• Observation functions: the observation functions are supposed to be smooth functions f = {fk, k =
1, . . .K}, modeled as spline functions fk, with smoothness enforcing prior probability ln p(fk) ∼ −λk‖f

′′

k ‖
2
2,

controlled by some parameter λk.

Given these assumptions, the log posterior probability reads

L(x,f |y) = L(1) + L(2) + L(3) , with
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2.2. Observation functions estimation

Assume the “true expression values” are known, the problem of estimating the observation function reduces to the

minimization with respect to f = {fk ∈ H2(R), k = 1, . . .K} of the quantity Γ[f ] =
∑

k

[(

∑

g L
(1);k
g

)

+ L(3);k
]

and decouples as K optimisation problems: for k = 1, . . .K,

min
fk

{

1

τ2k

∑

g

[

ykgc − fk(x
k
gc)

]2
+ λk

∫

|f ′′

k (x)|
2 dx

}

.

The latter are actually smoothing spline estimation problems, for which efficient algorithms are available. Notice

that once the spline has been estimated, its derivative is readily available. These estimations are performed on a set

of genes with small variance across samples in each experiment, termed below invariant gene set .



2.3. Means and variances estimation.

The average gene expressions µg are re-estimated at each step of the algorithm as sample averages of the estimated

gene expressions.

The estimation of variance components is a difficult task, as many gene variances σ2
g are to be estimated. An

iterated MINQUE [4] (i.e. REML) approach restricted to the invariant gene set (see Remark 1 below) is used,

that turns out to yield sensible estimates for the observation noise variances τ2k . Unfortunately, the corresponding

estimates for gene variances σ2
g we resort to the MINQUE approach,

The gene variances σ2
g are estimated using sample estimates from the initialization (see Remark 1 below).

2.4. Adjustment: intrinsic gene expression values estimation.

Given the observation functions fk, the genes are decoupled, and the estimation reduces to minimizing for each g

Φg(x) =
∑

k,c

{

1
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[
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k
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]2
+
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2σ2
g
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}

.

Due to the non-linearity of the observation functions fk, no closed-form expression exist for the solution, and we

resort to an iterative algorithm. We assume that the mean µg and variances σ2
g and τ2k are known, as well as the

observation functions fk. Suppose that we already have a first estimate, say xkgc(t − 1) of the gene expression

values. A linearization of the observation functions fk in the neighborhood yields the first order approximations

xkgc(t) = xkgc(t− 1) + ǫkgc, and

fk(x
k
gc(t)) ≈ fk(x

k
gc(t− 1)) + ǫkgcf

′

k(x
k
gc(t− 1)) ,

from which we deduce
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The update of xkgc can therefore be obtained by optimizing the above expression, which yields
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Then 0 ≤ αk
gc ≤ 1, the limits being attained in the extreme cases (no noise, or constant fk). This yields the update

rule xkgc(t) = xkgc(t− 1) + ǫkgc, i.e.

xkgc(t) = αk
gcµg + (1− αk

gc)

[

xkgc(t− 1) +
1

f ′

k(x
k
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(

ykgc − fk(x
k
gc(t− 1))

)

]

.

i.e. a weighted average of the mean µg and the contribution of observations. This is similar to empirical Bayes

type update rules, the difference being that the weights depend upon the observations, due to the nonlinearity of

observation functions.



3. ALGORITHM AND IMPLEMENTATION

The proposed approach can be summarized as follows:

• Initialization: Start from a first estimate for the “true” expression values xkgc(0). Estimate the gene means µg

and variances σ2
g as in 2.3, and the observation functions as in 2.2.

• Iteration t: estimates xkgc(t− 1) are available.

- Re-estimate the gene expressions xkgc(t) as in 2.4.

- Update the mean gene expressions µg as in 2.3.

The output of the algorithm consists in estimates x̂ = {x̂kgc} for the expression datasets x = {xkgc}, to be exploited

for further analyses, together with estimates for the means µg, variances σ2
g and τ2k , and the observation functions

fk.

Remark 1: For the initialization, since only y is available, we need a first estimate of the reciprocal of the observation

functions. We use the estimate provided by the approach described in [5], which estimates rectification functions

ϕ = {ϕk} (i.e. reciprocal functions of the observation functions, ϕk = fk
−1). The estimation leads to another

smoothing spline problem : optimize, with respect to the mean gene expressions µg and the rectification functions

ϕk the quantity

K
∑

k=1

Ng
∑
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1

Nk
c

Nk
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[

ϕk(x
k
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]2
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∑
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∫

|ϕ′′

k(x)|
2 dx .

The problem is solved by an iterative algorithm, in the same spirit as the approach described here.

The algorithm was implemented using the R statistical environment, from which we used the smoothing spline

function smooth.spline. Bioinformatics related functions from the Bioconductor package [8] were also

used, as well as the multtest package for multiple comparisons used below.

4. NUMERICAL RESULTS

We limit the above discussion to the case of K = 2 datasets to be merged. The approach was first validated using

a simulated dataset, according to the model, using explicitly defined observation functions. Several choices for the

variances and observation functions were tested. The corresponding numerical results (which we won’t discuss

further here due to the lack of space) allowed us to validate the approach.

4.1. Real data with artificial distortions

A test was performed using artificial observation functions, applied to real data. Namely, we chose a dataset with

well understood biological outcome, splitted it into two well balanced subgroups (see below for details) and applied

to the two subsets two different observation functions, before adding Gaussian observation noise. The goal was to

study the impact of the deformation induced by the observation functions and the noise (which were chosen so as to

hide the biological effects), and the ability of the algorithm to perform a sensible correction.

E. Coli expression data from the Covert et al study [1] were used. The data include expressions of 7295 genes

under two different situations (20 aerobic and 22 anaerobic), and are particularly interesting in that they exhibit a

clear variability between the two biological situations. Two subsets were created with both 10 aerobic and 11 anaer-

obic conditions, randomly chosen. Different non-linear transformations f1(x) = x0.7 and f2(x) = x1.4 were applied

to the two so-created subsets (after standardization), and observation noise with variances τ21 = var(f1(x1))/100
and τ22 = 9var(f2(x2))/100 was added. A standard PCA (see Fig. 1) shows that in the new artificial dataset the

biological variability is far dominated by the introduced distortions.



Fig. 1. Projections on the first principal plane. Top: original data (left) and distorted data (right). Bottom: rectified

data: initialization (left) and processed data (right). O: aerobic; N: anaerobic. Green: dataset 1; red: dataset 2



Fig. 2. Prostate datasets: observation functions (left), initial data (top right) and processed data (bottom right).

Running the proposed procedure on the distorted data, the output data x̂kgc turn out to reproduce fairly accurately

the original data xkgc (before distortion). The PCA performed on distorted data ykgc, data after initialization and

processed data x̂kgc shows that the processing has permitted to recover the biological features as the first source of

variability (see Fig. 1).

4.2. Real data

The algorithm was tested on two datasets of prostate cancer expression data, namely Singh et al [6] and Stuart et

al [7]. After pre-processing (reduction of the Singh dataset to a subset of arrays whose correlations to the median

array exceed 90%, and reduction to common genes), the two-datasets consist in respectively 61 (32 tumor and 29

normal) and 86 (37 tumor and 49 normal) conditions, with 12625 genes. The proposed algorithm was run on these

two datasets. The result of the processing is shown in Fig. 2, where we display the estimated observation functions,

together with the initial and processed data.

Differential analysis was performed on the real dataset, and the processed dataset. After filtering out the 30%

least variable genes, we used t-test, with FDR correction for multiple testing (α = 5%, 2000 bootstrap samples).

Differentially expressed genes were seeked for the real dataset and the processed dataset, as well as the individual

subsets y1 (Singh) and y2 (Stuart), and the processed subsets.

The individual datasets yield poorly compatible results, as the number of common differential genes is quite

small (see Table 1 for details). The processing barely improves the results in this respect, the two processed subsets



Singh Stuart Inter. Merged

+ - + - + - + -

Real data 17 80 57 123 12 11 108 311

Processed 20 47 87 123 14 13 134 327

Table 1. Differential analysis on Prostate datasets. Numbers of differential genes for the individual datasets (Singh

and Stuart), numbers of common differential genes (Inter) and Numbers of differential genes for the merged datasets.

yielding 4 more differentially expressed genes than the real data. On the other hand, the number of differentially

expressed genes found on the merged processed datasets is significantly higher than the number of differential genes

in the merged real data. A closer analysis shows that dataset 1 (Singh) has experienced bigger corrections than

dataset 2 (Stuart). This is not surprising, since the Singh data are far less correlated than the Stuart data, and the

algorithm has to correct for it.

5. CONCLUSIONS

We have described in this paper a new approach for merging gene expression datasets originating from different

studies. Our results show that the proposed approach is able to correct, to some extent, for study-dependent non-

linear distortions and observation noise.

A key question in this procedure is actually the estimation of gene expression variances σ2
g . This is known to be

a difficult problem, given the generally low number of conditions, and the strategy used for this estimation turns out

to strongly influence the final results. Several approaches have been proposed in the literature, and inclusion of these

into our model will be the goal of further developments.
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