
HAL Id: hal-00684223
https://hal.science/hal-00684223v1

Preprint submitted on 30 Mar 2012 (v1), last revised 15 Feb 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Games over Tree Architectures
Blaise Genest, Hugo Gimbert, Anca Muscholl, Igor Walukiewicz

To cite this version:
Blaise Genest, Hugo Gimbert, Anca Muscholl, Igor Walukiewicz. Asynchronous Games over Tree
Architectures. 2012. �hal-00684223v1�

https://hal.science/hal-00684223v1
https://hal.archives-ouvertes.fr

Asynchronous Games over Tree Architectures
Blaise Genest

CNRS, IPAL UMI, Singapore
Hugo Gimbert Anca Muscholl Igor Walukiewicz

LaBRI, CNRS/Université Bordeaux, France

Abstract—We consider the task of controlling in a distributed
way a Zielonka asynchronous automaton. Every process of a
controller has access to its causal past to determine the next
set of actions it proposes to play. An action can be played only
if every process controlling this action proposes to play it. We
consider reachability objectives: every process should reach its set
of final states. We show that this control problem is decidable for
tree architectures, where every process can communicate with its
parent, its children, and with the environment. The complexity
of our algorithm is l-fold exponential with l being the height
of the tree representing the architecture. We show that this is
unavoidable by showing that even for three processes the problem
is EXPTIME-complete, and that it is non-elementary in general.

I. INTRODUCTION

Constructing as well as verifying distributed systems is
often a very demanding task. Distributed synthesis and control
aim at providing a systematic way for constructing such
systems from specifications. Although the challenge of full
synthesis of distributed systems from a given specification is
far too ambitious, there is a continuous effort in finding more
powerful methods that address this challenge in more realistic
settings.

We study in this paper a by now well-established model
of distributed computation based on synchronization, namely
Zielonka’s asynchronous automata. Such an automaton is
an asynchronous product of finite automata synchronizing
on common actions. This simple yet rich model has solid
theoretical foundations rooted in the theory of Mazurkiewicz
traces. We consider the control problem for such automata:
given a Zielonka automaton, a plant, find another Zielonka
automaton, a controller, such that the product of the two
satisfies a given specification. We show that this problem is
decidable for reachability objectives on tree architectures. We
also show that the complexity of this problem is bounded from
below by a function that is a tower of exponentials of height
proportional to the diameter of the communication graph.

Our problem can be seen as a variation of Church’s problem.
More than half a century ago, Church asked for an algorithm
to construct devices transforming (infinite) sequences of input
bits to (infinite) sequence of output bits in a way required by
a specification [4]. Later Ramadge and Wonham proposed a
different formulation where we are given a plant together with
a specification and we are required to construct a controller
such that the product of the controller with the plant satisfies
the specification [21]. So control means restricting the behav-
ior of the plant and synthesis is the particular case where the
plant allows for every possible behavior.

In the setting of Ramadge and Wonham both the plant and
the specification are finite automata. Pnueli and Rosner have
proposed an extension of Church’s setting by considering a
set of processes working fully synchronously and exchanging
messages through one slot communication channels [19]. The
control version has also been extended to the distributed case
by asking to construct several controllers, each with a different
partial view of the plant [23], [22], [25], [1], [2]. In the
problem we consider here we ask for just one controller, but
both the plant and the controller are themselves distributed de-
vices. In Figure 1 we have represented schematically different
settings of synthesis and control problems.

Church

Pnueli & Rosner

Ramadge & Wonham

Our setting

input

output

??

??

?? ??

??

P

P P

??

?? ??

X

XP

Fig. 1. Different formulations of synthesis/control problems

In short our control problem is as follows. We are given
a Zielonka automaton over a fixed set of processes with
fixed communication structure. Processes have local actions,
that can be uncontrollable, as well as actions that are shared
with some other process (binary synchronization actions), that
are always controllable. Uncontrollable local actions repre-
sent inputs from the environment, controllable ones represent
outputs of the system. Synchronization actions are used to
gather information about the global state of the system. The
synchronization actions define a communication graph, where
nodes are processes and edges represent pairs of processes
that can share some action. For a given set of final states the
objective is to find a controller, that is a Zielonka automaton
over the same set of processes and actions, such that every
execution of the product of the plant and the controller brings
eventually each process into a final state.

We show that our control problem is decidable when the
communication graph is acyclic. The idea is simple. If the
graph is acyclic and not totally disconnected then there is a leaf
process r that communicates only with one other process q. We

then make q simulate r thus reducing the number of processes.
Repeating this argument we reduce the problem to a situation
when the communication graph is totally disconnected, and
this is easily solvable. Because the reduction uses a powerset
construction, we obtain an algorithm whose complexity is a
function that is a tower of exponentials of size proportional
to the diameter of the graph. We show that this is essentially
the best one can do. We prove that already for 3 processes
the problem is EXPTIME-complete. We also give a family of
control problems whose complexity is bounded from below by
a tower of exponentials of height proportional to the diameter
of the communication graph.

Our decidability result includes for example a client-server
architecture where we have one server communicating with
clients, and at the same time server and clients have their
own interactions with the environment (cf. Figure 2). Our
reduction method gives an EXPTIME algorithm solving the
control problem for this architecture. Notice that since we have
inputs at each process this architecture is very different from
decidable architectures in the Pnueli & Rosner setting. This
positive result is possible due to two factors. First, our model
is asynchronous: between two successive synchronizations a
client and the server can do a different number of actions. The
second reason, that is probably even more important, concerns
information flow. We explain this below.

Server
input output

input outputinput output Client kClient 1

. . .

Fig. 2. Server/client architecture

The research effort put into Pnueli & Rosner setting of
the distributed synthesis problem justifies the quest for other
formulations. By now we understand that suitably using the
interplay between specifications and an architecture, one can
get undecidability results for most architectures rather easily.
Yet the kinds of specifications that lead to undecidability are
artificial, like: putting a constraint linking two disconnected
parts of the system, or using an output channel to single out
one input of unbounded length. Unfortunately, till now we
do not know how to eliminate these artificial situations in an
elegant way.

One important attempt to get a decidable framework of
distributed synthesis is to change the way information is
distributed in the system [7], [14]. This is the setting we
consider here as well. In the framework of Pnueli and Rosner,
every controller sees only its inputs and its outputs. In order
to deduce some information about the global state of the
system a controller can use only his knowledge about the
architecture and the initial state of the system. In particular,
controllers are not allowed to exchange additional information

during communication. It is clear though that when we allow
some transfer of information during communication, we give
more power to controllers. Pushing the idea of information
exchange to the limit, we obtain a model where two processes
involved in a communication share all the information they
have about the global state of the system. This point of view
is not as unrealistic as it may seem at the first glance. It
is rooted in the theory of Mazurkiewicz traces that studies
Zielonka asynchronous automata with this kind of information
transfer. A fundamental result of Zielonka [26] (see also [16],
[9] for algorithmic improvements) implies a bound on the
size of additional information that needs to be transferred
during synchronization. In our terms, the theory of traces
considers the case of synthesis for closed systems, i.e., systems
without uncontrollable actions. Distributed synthesis with en-
vironment brings us to the setting we consider here. Similarly
to Zielonka’s Theorem, we give a bound on additional infor-
mation that needs to be transferred. In case of the architecture
from Figure 1 with each transfer between a client and the
server we will need to add at most polynomially many bits
with respect to the state space of the client.

Related work. The setting proposed by Pnueli and Rosner
has been thoroughly investigated in past years. Results on
multi-player games [18], [19] tell us that synthesis in this
framework is undecidable, and [20] shows that synthesis
w.r.t. properties expressed in LTL is decidable when the
communication graph is a (directed) pipeline, with inputs
allowed only at the first node. The paper [12] gives an
automata-theoretic approach to solving pipeline architectures
and at the same time extends the decidability results to CTL∗

specifications and variations of the pipeline architecture, like
one-way ring architectures. The control setting of Ramadge
and Wonham is investigated in [13] for local specifications,
meaning that each process has its own, linear-time specifica-
tion. The control problem for local specifications is decidable
for pipelines with inputs at both endpoints. The result of [13]
is complete in the sense that it shows that an architecture
has a decidable control problem if and only if it is a sub-
architecture of a clean pipeline. For instance, the 3 process
pipeline with inputs on the first two processes is undecidable.
The paper [6] proposes the notion of information fork as a
uniform notion describing the existing (un)decidability results
on distributed synthesis. The paper [8] goes beyond and
considers the notion of well-connected architecture, attempting
to characterize decidable external specifications.

The setting considered here has been proposed by Gastin,
Lerman and Zeitoun [7]. Their model is action-based, mean-
ing that actions decide if they are enabled or not. Here
we prefer the process-based formulation, as it corresponds
in a direct way to control in the sense of Ramadge and
Wonham. Process-based formulation has been introduced by
Madhusudan, Thiagarajan, Yang [14]. In [17] we analyze the
relationship between the two versions of distributed control.

Compared with the setting of Pnueli and Rosner, our un-
derstanding of distributed synthesis with information exchange

2

between controllers is still quite rudimentary: no undecidable
case has been found, so it is possible that the problem is
decidable in its full generality. Only two decidability results
are known, both very different from our case. The first one [7]
is based on a restriction on the alphabet of actions: games with
reachability condition are decidable for co-graph alphabets.
This restriction is not satisfied as soon as we have local actions
for each process, and a process that can communicate with
two other ones (a case for which we show here that the
control problem is decidable). The second result [14] obtains
decidability of the control problem by restricting the plant:
roughly speaking, the restriction requires that if two processes
do not synchronize during a fixed amount of time, then they
will never synchronize again. The proof of [14] goes beyond
the controller synthesis problem, by coding it into monadic
second-order theory of event structures and showing that this
theory is decidable when the criterion on the plant holds. The
restriction on the form of the plant is crucial there since there
are many very simple plants with decidable control problem
but undecidable MSO-theory of the associated even structure.

Another approach to distributed synthesis is to distribute
a centralized controller. This has been already proposed by
Clarke and Emerson in their paper introducing CTL. In two
recent papers [3], [10] some variants of asynchronous models
are considered. In both papers, the setting is such that it is
possible to distribute every centralized controller, sometimes
by adding new synchronizations. This is impossible in our
formulation.

Due to space constraints most proofs are ommitted. The
appendix contains the full version of the paper.

II. BASIC DEFINITIONS AND OBSERVATIONS

Our control problem can be formulated in the same way as
the Ramadge and Wonham control problem but using Zielonka
automata instead of standard ones. We start by presenting
Zielonka automata and an associated notion of concurrency.
Then we briefly recall the Ramadge and Wonham formulation
and our variant of it. Finally, we give a more convenient game
based formulation of the problem.

A. Zielonka automata

Zielonka automata are simple parallel devices. Such an
automaton is a parallel composition of several finite automata,
denoted as processes, synchronizing on common actions.
There is no global clock, so between two synchronizations,
two processes can do a different number of actions. Because of
this Zielonka automata are also called asynchronous automata.

A distributed action alphabet on a finite set P of processes
is a pair (Σ, dom), where Σ is a finite set of actions and
dom : Σ → (2P \ ∅) is a location function. The location
dom(a) of action a ∈ Σ comprises all processes that need to
synchronize in order to perform this action.

A (deterministic) Zielonka automaton A =
〈{Sp}p∈P, sin, {δa}a∈Σ〉 is given by
• for every process p a finite set Sp of (local) states,
• the initial state sin ∈

∏
p∈P Sp,

• for every action a ∈ Σ a partial transition function δa :∏
p∈dom(a) Sp

·→
∏
p∈dom(a) Sp on tuples of states of

processes in dom(a).
For convenience, we abbreviate a tuple (sp)p∈P of local

states by sP , where P ⊆ P. We also talk about Sp as the set
of p-states and of

∏
p∈P Sp as global states.

A Zielonka automaton can be seen as a sequential automa-
ton with the state set S =

∏
p∈P Sp and transitions s a−→ s′

if (sdom(a), s
′
dom(a)) ∈ δa, and sP\dom(a) = s′P\dom(a).

By L(A) we denote the set of words labeling runs of this
sequential automaton that start from the initial state.

This definition has an important consequence. The location
mapping dom defines in a natural way an independence
relation I: two actions a, b ∈ Σ are independent (written
as (a, b) ∈ I) if they involve different processes, that is, if
dom(a) ∩ dom(b) = ∅. Notice that the order of execution of
two independent actions (a, b) ∈ I in a Zielonka automaton
is irrelevant, they can be executed as a, b, or b, a - or even
concurrently. More generally, we can consider the congruence
∼I on Σ∗ generated by I , and observe that whenever u ∼I v
and u ∈ L(A) then v ∈ L(A), too.

The idea of describing concurrency by an independence
relation on actions goes back to the late seventies, to
Mazurkiewicz [15] and Keller [11] (see also [5]). An equiv-
alence class [w]I of ∼I is called a Mazurkiewicz trace, it
can be also viewed as labeled pomset of a special kind. Here,
we will often refer to a trace using just a word w instead of
writing [w]I . As we have observed L(A) is a sum of such
equivalence classes. In other words it is trace-closed.

Example 2.1: Consider the following, very simple, example
with processes 1, 2, 3 in Figure 3. Process 1 has local actions
a0, a1 and synchronization actions ci,j (i, j = 0, 1) shared
with process 2. Similarly, process 3 has local actions b0, b1 and
synchronization actions di,j (i, j = 0, 1) shared with process 2.
Each process is a finite automaton and the Zielonka automaton
is the product to the three components synchronizing on
common actions (cf. Figure 3, where the symbol ∗ denotes
both values, 0 and 1, and i, j, k, l each take both values).
We have for instance (ai, bj) ∈ I and (ci,j , dk,l) /∈ I . The

Fig. 3. An example of asynchronous automaton

3

final states are the rightmost states of each automaton. The
automaton accepts traces of the form aibjci,kdj,l with i = l
or j = k.

Since the notion of a trace can be formulated without a
reference to an accepting device, it is natural to ask if the
model of Zielonka automata is powerful enough. Zielonka’s
theorem says that this is indeed the case, hence these automata
are a right model for the simple view of concurrency captured
by Mazurkiewicz traces.

Theorem 2.2: [26] Let dom : Σ → (2P \ {∅}) be a
distribution of letters. If a language L ⊆ Σ∗ is regular and
trace-closed then there is a deterministic Zielonka automaton
accepting L (of size exponential in the number of processes
and polynomial in the size of the minimal automaton for L,
see [9]).

One could try to use Zielonka’s theorem directly to solve a
distributed control problem. For example, one can start with
the Ramadge and Wonham control problem, solve it, and if a
solution happened to respect the required independence, then
distribute it. Unfortunately, there is no reason for the solution
to respect the independence. Even worse, the following, rela-
tively simple, result says that it is algorithmically impossible
to approximate a regular language by a language respecting a
given independence relation.

Theorem 2.3: [24] It is not decidable if, given a distributed
alphabet and a regular language L ⊆ Σ∗, there is a trace-
closed language K ⊆ L such that every letter from Σ appears
in some word of K.

The condition on appearance of letters above is not crucial
for the above undecidability result. Observe that we need some
condition in order to make the problem nontrivial, since by
definition the empty language is trace-closed.

B. The control problem

We can now formulate our control problem as a variant of
the Ramadge and Wonham formulation. We will then provide
an equivalent description of the problem in terms of games.
While more complicated to state, this description is easier to
work with.

Recall that in Ramadge and Wonham’s control problem [21]
we are given an alphabet Σ of actions partitioned into system
and environment actions: Σsys ∪ Σenv = Σ. Given a plant
P we are asked to find a controller C such that the product
P ×C satisfies a given specification. Here both the plant and
the controller are finite deterministic automata over Σ. Addi-
tionally, the controller is required not to block environment
actions, which in technical terms means that from every state
of the controller there should be a transition on every action
from Σenv .

The definition of our problem will be the same with
the difference that we will take Zielonka automata instead
of standard finite automata. Consider a distributed alphabet
〈P, dom : Σ → (2P \ ∅)〉. We impose two simplifying
assumptions. The first one is that all actions are at most

binary: |dom(a)| ≤ 2, for every a ∈ Σ. The second requires
that all uncontrollable actions are local: |dom(a)| = 1, for
every a ∈ Σenv . So the first restriction says that we allow
only binary synchronizations. It makes the technical reasoning
much simpler. The second restriction reflects the fact that each
process is modeled with its own, local environment.

Our control problem can be formulated as follows: Given a
distributed alphabet (P, dom) as above and a Zielonka automa-
ton Ap, find a Zielonka automaton Ac over the same alphabet
such that Ap×Ac satisfies a given specification. Additionally
the controller is required not to block uncontrollable actions:
from every state of Ac every uncontrollable action should be
possible.

As in the original formulation, the role of the controller
is to restrict the set of possible behaviours of the plant, but
it is not allowed to restrict actions of the environment. The
important point is that the controller should have the same
distributed structure as the environment. The product of the
two automata, that is just the standard product, means that
plant and controller are totally synchronized, in particular
communications between processes happen at the same time.
Hence concurrency in the controlled system is the same as in
the plant. The major difference between the controlled system
and the plant is that the states carry the additional information
computed by the controller.

Example 2.4: Reconsider the automaton in Figure 3 and
assume that ai, bj ∈ Σenv are uncontrollable. So the controller
needs to propose controllable actions ci,k and dj,l, resp.,
in such a way that all processes reach their final state. In
particular, process 2 should not block. At first sight this may
seem impossible to guarantee, as it looks like process 1 needs
to know what bj process 3 has received, or process 3 needs
to know about the ai received by process 1. Nevertheless, a
winning strategy exists. It consists of choosing k = i and
l = 1− j: if i = j then k = j, else i = l.

It will be more convenient to work with a game formulation
of this problem. Instead of talking about controller we will
talk about distributed strategy in a game between system
and environment. A plant defines a game arena, with plays
corresponding to initial runs of A. Since A is deterministic,
we can view a play as a word from L(A) - or a trace, since
L(A) is trace-closed. Let Plays(A) denote the set of traces
associated with words from L(A).

A strategy for the system will be a collection of individual
strategies for each process. The important notion here is
the view each process has about the global state of the
system. Intuitively this is the part of the current play that the
process could see or learn about from other processes during
a communication with them. Formally, the p-view of a play u,
denoted viewp(u), is the smallest trace [v]I such that u ∼I vy
and y contains no action from Σp. We write Playsp(A) for
the set of plays that are p-views:

Playsp(A) = {viewp(u) | u ∈ Plays(A)} .
A strategy for a process p is a function σp : Playsp(A)→

2Σp , where Σp = {a ∈ Σ | a ∈ Σsys, p ∈ dom(a)}. We

4

require in addition, for every u ∈ Playsp(A), that σp(u) is a
subset of the actions that are possible in the p-state reached on
u. A strategy is a family of strategies {σp}p∈P, one for each
process.

The set of plays respecting a strategy σ = {σp}p∈P, denoted
Plays(A, σ), is the smallest set containing the empty play ε,
and such that for every u ∈ Plays(A, σ):

1) if a ∈ Σenv and ua ∈ Plays(A) then ua is in
Plays(A, σ).

2) if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, σ)
provided that a ∈ σp(viewp(u)) for all p ∈ dom(a).

Intuitively, the definition says that actions of the environment
are always possible, whereas actions of the system are possible
only if they are allowed by the strategies of all involved pro-
cesses. Notice that in the distributed setting a process by itself
cannot impose controllable actions (unless they are local): a
controllable, shared action a can be chosen, if proposed by all
owners. If some other action b is chosen instead, some owner
of a can change his mind, and then a is not eligible anymore.

Before defining winning strategies, we need to introduce
infinite plays that are consistent with a given strategy σ. Such
plays can be seen as (infinite) traces associated with infinite,
initial runs of A satisfying the two conditions of the definition
of Plays(A, σ). We write Plays∞(A, σ) for the set of finite or
infinite such plays. A play from Plays∞(A, σ) is also denoted
as a σ-play.

A play u ∈ Plays∞(A, σ) is called maximal, if there is
no action c such that uc ∈ Plays∞(A, σ). In particular u is
maximal if viewp(u) is infinite for every process p. Otherwise,
if viewp(u) is finite then p cannot have enabled local action
(either controllable or uncontrollable). Moreover there should
be no communication possible between any two processes with
finite views in u.

In this paper we consider local reachability winning con-
ditions. For this, every process has a set of target states
Fp ⊆ Sp. We assume that states in Fp are blocking, that
is they have no outgoing transitions. This means that if
(sdom(a), s

′
dom(a)) ∈ δa then sp /∈ Fp for all p ∈ dom(a).

Definition 2.5: The control problem for a plant A and a
local reachability condition (Fp)p∈P is to determine if there
is a strategy σ = (σp)p∈P such that every maximal trace
u ∈ Plays∞(A, σ) ends in

∏
p∈P Fp (and is thus finite). Such

traces and strategies are called winning.

This formulation of the problem is almost equivalent to the
formulation with a plant and controller we have given in the
beginning of this subsection. It is obvious that a controller
defines a strategy. It is also true that a strategy defines a
controller, but this controller may be infinite. We will show
that for our control problem, if there is a strategy then there
is one that can be translated to a finite controller.

As mentioned in the introduction, an interesting aspect of
our formulation concerns the information exchanged between
processes. In the setting of Pnueli and Rosner each process
sees only its input and its output channels. For example, if
the specification says that a channel should always contain

the same letter then no information can be transmitted over
this channel. In other words, the information exchanged can
be totally controlled by specification. Once we adopt the
Ramadge and Wonham formulation with Zielonka automata,
the amount and type of exchanged information is determined
by the controller. In our game formulation we use views that
amount to maximal possible information a process can have.
So in our model after a synchronization the two processes
have the same (partial) knowledge about the global state of
the system.

We do not know if this control problem is decidable in
general. In this paper we put one restriction on possible
communications between processes expressed in terms of
communication graph defined below.

Definition 2.6: A distributed alphabet (Σ, dom) with unary
and binary actions defines an undirected graph CG with node
set P and edges {p, q} if there exists a ∈ Σ with dom(a) =
{p, q}, p 6= q. Such a graph is called communication graph.

To sum up: in this paper we consider the Ramadge and Won-
ham formulation of the control problem but using Zielonka
automata instead of standard ones. As specifications we con-
sider reachability properties. We show that this problem is
decidable for acyclic communication graphs (Theorem 3.11).
We also provide a tight complexity bound (Theorem 4.4).

III. THE UPPER BOUND FOR CONTROL PROBLEM FOR
ACYCLIC GRAPHS

Let us fix in this section a distributed alphabet (Σ, dom).
According to Definition 2.6 the alphabet determines a com-
munication graph CG. We assume that CG is acyclic and has
at least one edge. This allows us to choose a leaf r ∈ P in CG,
with {q, r} an edge in CG. Starting from a control problem
with input A, (Fp)p∈P we define below a control problem over
the smaller (acyclic) graph CG′ = CGP\{r}. The construction
will be an exponential-time reduction from the control problem
over CG to a control problem over CG′. If we represent CG as
a tree of depth l then applying this construction iteratively we
will get an l-fold exponential algorithm to solve the control
problem for CG architecture.

The main idea of the reduction is simple: process q simu-
lates the behavior of process r. The reason why a simulation
can work is that after each synchronization between q and
r, the views of both processes are identical, and between two
such synchronizations r evolves locally. But the construction is
more delicate than this simple description suggests, and needs
some preliminary considerations about winning strategies.

Some preparatory lemmas: We start with some lemmas show-
ing how to restrict the winning strategies. The first one holds
for arbitrary communication graphs, whereas the second one
relies on the fact the r is a leaf in CG. For p, q ∈ P let
Σp,q = {a ∈ Σ | dom(a) = {p, q}}. So Σp,q is the set
of synchronization actions between p and q. Moreover Σp,p is
just the set of local actions of p. We write Σlocp instead of Σp,p
and Σcomp = Σp \ Σlocp . The first lemma says that a winning

5

strategy can be assumed to propose either a local action, or
some communication actions.

Lemma 3.1: If there exists some winning strategy for A,
then there is one, say σ, such that for every process p and
every σ-play u ∈ Playsp(A) with X = σp(u), we have one
of the following: X = {a} for some a ∈ Σlocp or X ⊆ Σcomp .

The following definition captures all the possible evolutions
of the leaf process r without communication with its parent
process q. For an initial run u of A we denote by statep(u)
the p-state reached by A on u.

Definition 3.2: Given a strategy σ and a play u, the set
of all possible outcomes of a local play on r before its next
communication is:

Syncσr (u) = {(sr, A) | ∃x ∈ (Σlocr)∗ . ux is a σ-play,
stater(ux) = sr,

σr(viewr(ux)) = A ⊆ Σq,r} .

Observe that if σ allows r to reach a final state sr from u
without communication, then (sr, ∅) ∈ Syncσr (u). This is so,
since final states are assumed to be blocking.

The lemma below talks about the strategy of process q,
the parent of the leaf process r. It says that when the strategy
offers communication, then it does so either with r exclusively,
or only with other processes.

Lemma 3.3: If there exists some winning strategy for A,
then there is one, say σ, such that for every σ-play u ∈
Playsq(A) with X = σq(u), we have one of the following:
X = {a} for some a ∈ Σlocq , or X ⊆ Σq,r or X ⊆ Σcomq \Σq,r.

For the game reduction we need to precalculate all possible
sets Syncσr . These sets will be actually of the special form
described below.

Definition 3.4: Let sr be a state of r. We say that T ⊆
Sr × P(Σqr) is an admissible plan in sr if there is a play u
with stater(u) = sr, and a (not necessarily winning) strategy
σ such that T = Syncσr (u), and one of the following holds:
• A 6= ∅ for every (tr, A) ∈ T , or
• tr ∈ Fr and A = ∅ for every (tr, A) ∈ T .

In the second case T is called a final plan.

It is not difficult to see that we can compute the set of all
admissible plans, since this just amounts to solve a reachability
game on process r.

Lemma 3.5 below allows to deduce that the sets Syncσr are
admissible plans whenever σ is winning.

Lemma 3.5: If σ is a winning strategy satisfying
Lemma 3.3 then for every σ-play u in A we have:

1) if there is some σ-play uy with y ∈ (Σ \ Σr)
∗ and

stateq(uy) ∈ Fq then Syncσr (u) is a final plan;
2) if there is some σ-play uy with y ∈ (Σ\Σr)∗, σq(uy) =

B ⊆ Σq,r, and B 6= ∅ then for every (tr, A) ∈ Syncσr (u)
we have B ∩A 6= ∅.

In particular, Syncσr (u) is always an admissible plan.

The new plant A′. We are now ready to define the reduced
plant A′ that is the result of eliminating process r. Let P′ =
P \ {r}. We have A′ = 〈{S′p}p∈P′ , s′in, {δ′a}a∈Σ′〉 where the
components will be defined below.

The states of process q in A′ are of one of the following
types:

〈sq, sr〉 , 〈sq, T 〉 , 〈sq, T, B〉 ,

where sq ∈ Sq, sr ∈ Sr, T ⊆ Sr × P(Σq,r) is an admissible
plan, B ⊆ Σq,r. The new initial state for q is 〈(sin)q, (sin)r〉.

For every p 6= q, we let S′p = Sp and F ′p = Fp. The local
winning condition for q becomes

F ′q = Fq × Fr ∪ {〈sq, T 〉 | sq ∈ Fq, and T is a final plan}.

The set of actions Σ′ is Σ\Σr, plus additional local q-actions
that we introduce below. All transitions δa with dom(a) ∩
{q, r} = ∅ are as in A. Regarding q we have the following
transitions:

1) If not in a final state then process q chooses an admis-
sible plan:

〈sq, sr〉
ch(T)−→ 〈sq, T 〉,

where T is an admissible plan in sr, and 〈sq, sr〉 /∈
Fq × Fr.

2) Local action of q:

〈sq, T 〉
a−→ 〈s′q, T 〉, if sq

a−→ s′q in A .

3) Synchronization between q and p 6= r:

(〈sq, T 〉, sp)
b−→ (〈s′q, T 〉, s′p), if (sq, sp)

b−→ (s′q, s
′
p)

4) Synchronization between q and r. Process q declares the
communication actions with r:

〈sq, T 〉
ch(B)−→ 〈sq, T, B〉, if B ⊆ Σq,r

when sq is not final, T not a final plan, and for every
(tr, A) ∈ T we have A ∩B 6= ∅.
Then the environment can choose the target state of r
and a synchronization action a ∈ Σq,r:

〈sq, T, B〉
(a,tr)−→ 〈s′q, s′r〉 if (sq, tr)

a−→ (s′q, s
′
r) in A

for every (a, tr) such that (tr, A) ∈ T for some A, and
a ∈ A ∩ B. Notice that the complicated name of the
action (a, tr) is needed to ensure that the transition is
deterministic.

To summarize the new actions of process q in plant A′ are:
• ch(T) ∈ Σsys, for every admissible plan T ,
• ch(B) ∈ Σsys, for each B ⊆ Σq,r,
• (a, tr) ∈ Σenv for each a ∈ Σq,r, tr ∈ Sr.
Before showing that this construction is correct we will

provide a translation from plays in A to plays in A′. A (finite
or infinite) play u in A is a trace that will be convenient to
view as a word of the form

u = y0x0a1 · · · aiyixi ai+1 . . .

6

where for i ∈ N we have that: ai ∈ Σq,r is communication
between q and r; xi ∈ (Σlocr)∗ is a sequence of local actions
of r; and yi ∈ (Σ \ Σr)

∗ is a sequence of actions of other
processes than r. Note that xi, yi are concurrent, for each i.
We will write u|ai for the prefix of u ending in ai. Similarly
u|yi for the prefix ending with yi; analogously for xi.

With a word u as above we will associate the word

χ(u) = ch(T0)y0 ch(B0)(a1, t
1
r) . . .

(ai, t
i
r) ch(Ti) yi ch(Bi)(ai+1, t

i+1
r) . . .

where for every i = 0, 1, . . . :
• Ti = Syncσr (u|ai) and T0 = Syncσr (ε);
• Bi = σq(viewq(u|yi));
• tir = stater(u|xi

).
In Figure 4 we have pictorially represented which parts of u
determine which parts of χ(u).

The next lemma follows directly from the definition of the
reduction.

Lemma 3.6: If u ends in a letter from Σq,r then we have
the following
• stateq(χ(u)) = 〈stateq(u), stater(u)〉.
• statep(χ(u)y) = statep(uy) for every p 6= q and y ∈

(Σ \ Σq,r)
∗.

• stateq(χ(u) ch(T)y) = 〈stateq(uy), T 〉 for every y ∈
(Σ \ Σq,r)

∗.
• stateq(χ(u) ch(T)y ch(B)) = 〈stateq(uy), T, B〉 for ev-

ery y ∈ (Σ \ Σq,r)
∗.

From σ in A to σ′ in A′. We are now ready to define σ′ from
a winning strategy σ. We assume that σ satisfies the property
stated in Lemma 3.3. We will define σ′ only for certain plays
and then show that this is sufficient.

Consider u′ such that u′ = χ(u) for some σ-play u ending
in a letter from Σq,r. We have:
• If stateq(u′) /∈ Fq then σ′q(viewq(u

′)) = {ch(T)} where
T = Syncσr (u).

• For every process p 6= q we put σ′p(viewp(u
′ ch(T)y)) =

σp(viewp(uy)) for y ∈ (Σ \ Σq,r)
∗.

• For y ∈ (Σ \ Σq,r)
∗ and B = σq(viewq(uy)) we define

σ′q(viewq(u
′ ch(T)y)) =

{
B if B ∩ Σq,r = ∅
{ch(B)} if B ⊆ Σq,r

• σ′q(viewq(u
′ ch(T)y ch(B))) = ∅.

Observe that in the last case the strategy proposes no move
as there are only moves of the environment from a position
reached on a play of this form.

Lemma 3.7: If σ is a winning strategy for A, (Fp)p∈P then
σ′ is a winning strategy for A′, (F ′p)p∈P′ .

From σ′ in A′ to σ in A. From a strategy σ′ = (σ′p)p∈P′ for
A′ we define a strategy σ = (σp)p∈P for A. We assume that
σ′ satisfies Lemma 3.3. We consider u ending in an action

from Σq,r such that χ(u) is a σ′-play. First, for every p 6= q, r
and every y ∈ (Σ \ Σr)

∗ we set

σp(viewp(uy)) = σ′p(viewp(χ(u)y)).

If stateq(χ(u)) is not final then σ′(χ(u)) = {ch(T)} for some
admissible plan T in state stater(χ(u)). This means that T =
Syncρr(u) for some strategy ρ. In this case:
• for every x ∈ (Σlocr)∗ we set σr(ux) = ρr(ux);
• for every y ∈ (Σ \ Σr)

∗ we consider X =
σ′q(viewq(χ(u) ch(T)y)) and set

σq(viewq(uy)) =

{
B if X = {ch(B)}
X otherwise

Lemma 3.8: If σ′ is a winning strategy for A′, (F ′p)p∈P′

then σ is a winning strategy for A, (Fp)p∈P.

Together the lemmas 3.7 and 3.8 show the correctness of
our reduction:

Theorem 3.9: Let r be the chosen leaf process with P′ =
P \ {r} and q its neighbor process. Then the system has a
winning strategy for A, (Fp)p∈P iff it has one for A′, (F ′p)p∈P′ .
All the components of A′ are identical to those of A, apart
that for the process q. The size of q in A′ is O(Mq2

Mr2|Σqr|
),

where Mq and Mr are the sizes of processes q and r in A,
respectively.

Remark 3.10: The bound of the size of the plant A′ can be
improved to O(Mq2

Mr|Σqr|) by observing that we can restrict
the notion of admissible plans to (partial) functions from Sr
into P(Σq,r). That is, one does not need to consider different
sets of communication actions for the same state in Sr.

Coming back to the example from Figure 2 of a server
with k clients. Applying our reduction k times we reduce
out all the clients and obtain the single process plant whose
size is Ms2

(M1+···+Mk)2c

where Ms is the size of the server,
Mi is the size of client i, and c is the maximal number of
communication actions between a client and the server.

Theorem 3.11: The control problem for distributed alpha-
bets whose communication graph is acyclic, is decidable.
There is an algorithm for solving the problem whose working
time is bounded by a tower of exponentials of height equal to
the diameter of the graph.

Our reduction algorithm can be actually used to compute a
(finite-state) controller, as shown below.

Corollary 3.12: There is an algorithm which solves the
control problem for distributed alphabets whose communica-
tion graph is acyclic and if the answer is positive, the algorithm
outputs a controller satisfying the following property: For
every process p and every state s of the controller Ac, the
set of actions allowed for process p in state s is the set of all
uncontrollable local actions plus:
• either a unique controllable local actions,
• or a set of controllable actions shared with a unique

neighbour q of p.

7

u = y0 x0 a1 y1 x1 a2

χ(u) = ch(T0) y0 ch(B0) (a1, t
1
r) ch(T1) y1 ch(A1) (a2, t

2
r) ch(T2)

Fig. 4. Definition of χ(u)

IV. THE LOWER BOUND

In this section we show that the complexity of the distributed
control problem grows as a tower of exponentials function with
respect to the size of the diameter of the communication graph.
Before presenting the general construction we illustrate the
proof idea on the simplest non-trivial acyclic communication
graph, consisting of a line of three processes. We show that
the control problem here is EXPTIME-complete.

Proposition 4.1: For fixed distributed alphabet, the control
problem for the communication graph 1 −−−−− 2 −−−−− 3 is
EXPTIME-complete.

Proof: The upper bound follows from Theorem 3.9. We
apply twice the reduction with process 2 first simulating
process 1, then process 3. This yields a control problem on one
process of exponential size (since the action set is fixed). So
this amounts just to solve a reachability game, and therefore
we get the EXPTIME upper bound.

For the lower bound we simulate an alternating polynomial
space Turing machine M on input w. We assume that M has a
unique accepting, blocking configuration (say with blank tape,
head leftmost). The goal now is to let processes 1, 3 guess
an accepting computation tree of M on w. The environment
will be able to choose a branch in this tree and challenge each
proposed configuration. Process 2 will be used to validate tests
initiated by the environment. If a test reveals an inconsistency,
process 2 blocks and the environment wins. To summarize the
idea of the construction, processes 1 and 3 generate sequences
of configurations (encoded by local actions), separated by
action $ and $, respectively, shared with process 2. Both start
with the initial configuration of M on w. Transitions from
existential states are chosen by the plant, and those from
universal ones by the environment. At a given time, process
1 has generated the same number or one more configuration
than process 3. In the first case, the environment can check
that it is the same configuration; and in the second, it can
check that it is the successor configuration. In this way, 1 and
3 need to generate the same branch of the run tree.

A computation of M with space bound n is a sequence C0 `
C1 ` · · · ` CN , where each configuration Ci is encoded as a
word from Γ∗(Q×Γ)Γ∗ of length n. Since M is alternating, its
acceptance is expressed by the existence of a tree of accepting
computations.

Processes 1 starts by generating the initial configuration on
w, followed by a synchronization symbol $ with process 2.
After this, process 1 generates a sequence of configurations
separated by $. When generating a configuration, process 1
remembers M ’s state q and the symbol A under the head. All
transitions so far are controllable. After generating $ process

1 goes into a state where the outgoing transitions are labeled
by M ’s transitions on (q,A) (if the configuration was not
blocking). These transitions are controllable if q is existential,
and uncontrollable if q is universal. The transition chosen,
either by the plant or the environment, is stored in the state
up to the next synchronization symbol. Finally, if the current
configuration is final then process 1 synchronizes with 2 on
$F (instead of $) and goes into an accepting state.

The description is similar for process 3, with Γ, Q, $, $F
instead of Γ, Q, $, $F . Finally, process 2 has two main states,

eq and succ, with transitions eq
$−→ succ and succ

$−→ eq .
From state eq it can go to an accepting state after reading $F
followed by $F .

C0

C0

C1

C1

C2

C2

(i, α)

(j, β)
$

$

$

$
1

3

2

Fig. 5. Environment chooses positions i, j in CP , CP with P = 2. System
wins iff α = β or i 6= j.

The environment can initiate 2 kinds of tests: equality and
successor test. The equality test checks that CP = CP and
the successor test checks that CP ` CP+1.

For the equality test, the environment can choose a position
i within CP and a position j in CP . Formally, for each
(controllable) outgoing transition s

α−→ of process 1 with
α ∈ Γ ∪ (Q × Γ) there is a transition s

(↓,α)−→ (↓, i, α)
with (↓, α) uncontrollable. The target state (↓, i, α) records
the tape position i (known from s) and the tape symbol α.
In state (↓, i, α) process 1 synchronizes with 2 on action
(↓, i, α), and then stops (accepting). The same for process 3
with uncontrollable actions (↓, β), and synchronization action
(↓, j, β).

From state eq process 2 can perform a synchronization
(↓, j, β) with process 3 and then one with process 1 on any
(↓, i, α), provided i 6= j or α = β, and then accept. This is
the case where the environment has chosen positions on both
lines 1 and 3 (see Figure 5). If the environment has chosen a
test transition in CP but not in CP (or vice-versa), process 2
will accept (and stop), too.

The successor test is similar, it consists in choosing a
position within CP and one within CP+1. The information
checked by process 2 includes the symbols α−, α, α+ of CP
at positions i−1, i, i+1 resp., so process 1 goes on transition
(↘, α) into a state of the form (i, α, α−, α+). In state t

8

process 2 can perform a synchronization on (↘, i, α, α−, α+)
with process 1, and then one with process 3 on (↘, j, β),
provided i 6= j or the symbols α−, α, α+ are inconsistent
with the new middle symbol β according to M ’s transition
relation.

The reader may notice that we need to guarantee that the
universal transitions chosen by the environment are the same,
for processes 1 and 3. This can be enforced by communicating
the transitions with actions $, $ to process 2, who is in charge
of checking. Moreover, note that the action alphabet above is
not constant, in particular it depends on n. This can be fixed by
replacing each action of type (↓, i, α) (or alike) by a sequence
of synchronization actions where i is transmitted bitwise. By
alternating the bits transmitted by 1 and 3, respectively, process
2 can still compare indices i, j.

Note also that configurations CP , CP are generated in
parallel, and so are CP and CP+1. This is crucial for the
correctness, as we show in the lemma below.

Lemma 4.2: The control problem defined in Proposition 4.1
has a winning strategy if and only if M accepts w.

A. Lower bound: general construction

Our main objective now is to show how using a communi-
cation architecture of diameter l one can code a counter able
to represent numbers of size Tower(2, l) (with Tower(n, l) =
2Tower(n,l−1) and Tower(n, 1) = n). Then an easy adaptation
of the construction will allow to code computations of Turing
machines with the same space bound as the capabilities of
counters.

We fix n and will be first interested to define n-counters.
Let Σi = {ai, bi} for i = 1, . . . , n. We will think of ai as
0 and bi as 1, mnemonically: 0 is round and 1 is tall. Let
Σ#
i = Σi∪{#i} be the alphabet extended with an end marker.
A 1-counter is just a letter from Σ1 followed by #1. The

value of a1 is 0, and the one of b1 is 1. Following this intuition
we write (1− c) to denote b if c = a and vice versa.

An (l + 1)-counter is a word

x0u0x1u1 · · ·xk−1uk−1#l+1 (1)

where k = Tower(2, l) and for every i, letter xi ∈ Σl+1

and ui is an l-counter with value i. The value of the above
(l + 1)-counter is

∑
i=0,...,k xi2

i. The end marker #l+1 will
be convenient in the construction that follows. An iterated
(l + 1)-counter is a nonempty sequence of (l + 1)-counters.

For every l we will define a plant Cl such that the winning
strategy for the system in Cl will need to produce an iterated
l-counter.

The case l = 1 is easy. Suppose that we have already
constructed Cl. We want now to define Cl+1, a plant producing
an iterated (l+ 1)-counter, i.e., a sequence of l-counters with
values 0, 1, . . . , (Tower(2, l)−1), 0, 1, We assume that the
communication graph of Cl has the distinguished root process
rl. Process rl is in charge of generating an iterated l-counter.
From Cl we will construct two plants Dl and Dl, over disjoint

sets of processes. The plant Dl is obtained by adding a new
root process rl+1 that communicates with rl, similarly for
the plant Dl with root process rl+1. The plant Cl+1 will be
the composition of Dl and Dl with a new verifier process
that we name Vl+1. The root process of the communication
graph of Cl+1 will be rl+1. The schema of the construction
is presented in Figure 6. Process rl+1, as well as rl+1, are
in charge of generating an iterated (l + 1)-counter. That they
behave indeed this way is guaranteed by a construction similar
to the one of Proposition 4.1, with the help of the verifier
Vl+1: the environment gets a chance of challenging each
l-counter of the sequence of rl+1 (and similarly for rl+1).
These challenges correspond to two types of tests, equality and
successor. If there is an error in one of these sequences then
the environment can place a challenge and win. Conversely,
if there is no error no challenge of the environment can be
successful; this means then that the sequences of l-counters
have correct values 0, 1, . . . , (Tower(2, l) − 1), 0, 1, The
detailed construction can be found in the appendix.

... ...

...

Fig. 6. Architecture of the plant Cl+1

Proposition 4.3: For every l, the system has a winning strat-
egy in Cl. For every such winning strategy σ, if we consider
the unique σ-play without questions then its projection on⋃
i=1,...,l Σ

#
i is an iterated l-counter.

Theorem 4.4: Let l > 0. There is an acyclic architecture
of diameter 4l + 1 and with (2l+2 − 3) processes such
that the space complexity of the control problem for it is
Ω(Tower(n, l))-complete.

Proof: First observe that the plant Cl has (2l+1 − 3)
processes and diameter 4l − 3. It is straightforward to make
the l-counter count till Tower(n, l) and not to Tower(2, l) as
we have done in the above construction. For this it is enough
to make the 1-counter count to n instead of just to 2.

We will simulate space bounded Turing machines. Take a
machine M and a word w of length n. We want to reduce the
problem of deciding if w is accepted by M to the problem
of deciding if the system has a winning strategy for a plant
C(M,w) of size polynomial in the sizes of M and w.

A Tower(n, l) size configuration can be encoded by an
(l + 1)-counter. In an iterated (l + 1)-counter we can en-
code a sequence of such configurations. The plant C(M,w)
is obtained by a rather straightforward modification of the
construction of Cl+1. Instead of ensuring that the value of
the first counter is 0, it needs to ensure that it represents the
initial configuration. Instead of ensuring that the two succes-
sive counters represent two successive numbers, it needs to

9

ensure that they represent two successive configurations. Using
Proposition 4.3, the problem of deciding if a Tower(n, l)-
space bounded Turing machine M accepts w is polynomially
reducible to the problem of deciding if the system has a
winning strategy in the so obtained C(M,w). The size of
C(M,w) is exponential in l and polynomial in M,w, n. The
game can be constructed in the time proportional to its size.

V. CONCLUSIONS

The distributed synthesis problem is a very difficult and at
the same time promising problem, since distributed systems
are intrinsically complex to construct. Among many possible
settings we have looked at the one that is at the same time
pure and realistic: we have taken a simple and well established
model for concurrent systems and put it into a classical
framework of control. We could have done the same in the
Church setting but then we would need to talk about logics for
trace closed properties. The setting of Ramadge and Wonham
allows to avoid this, since parts of the specification are hidden
in the plant. In our opinion Zielonka asynchronous automata
are at least as interesting as the fully synchronous model of
Pnueli and Rosner. Of course, in the long run it would be
desirable to consider even richer models, say 1-safe Petri nets
and beyond, but even asynchronous automata are challenging
enough at present.

In our model we have insisted that control does not intro-
duce new synchronizations: it does not reduce parallelism of
the controlled system. It seems undesirable to have a solution
that removes completely parallelism from the system. Even if
one accepts to limit parallelism, it is not clear how to measure
how much of it is left afterwards.

The choice of transmitting additional information with
communication is a consequence of the definitions we have
adopted. We think that it is interesting from a practical point
of view. It is also interesting theoretically since it allows to
avoid simple, and unrealistic, reasons for undecidability.

Our lower bound result is somehow surprising. Since we
have perfect information sharing, all the complexity has to be
hidden in the uncertainty of what other processes are doing in
parallel. The proof shows that even with three processes this
uncertainty can be used to encode complex problems.

Of course the general case, the one without restriction to
acyclic communication graphs, is an important open problem.
A more immediate task is to examine other conditions than
reachability. The reduction we have used to obtain decidability
is rather delicate and cannot be easily extended to, say, Büchi
conditions.

REFERENCES

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theor. Comput. Sci., 303(1):7–34,
2003.

[2] A. Arnold and I. Walukiewicz. Nondeterministic controllers of non-
deterministic processes. In Logic and Automata, volume 2 of Texts in
Logic and Games, pages 29–52. Amsterdam University Press, 2007.

[3] T. Chatain, P. Gastin, and N. Sznajder. Natural specifications yield
decidability for distributed synthesis of asynchronous systems. In
Proceedings of SOFSEM’09, volume 5404 of LNCS, pages 141–152.
Springer, 2009.

[4] A. Church. Logic, arithmetics, and automata. In Proceedings of the
International Congress of Mathematicians, pages 23–35, 1962.

[5] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[6] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In
Proceedings of LICS’05, pages 321–330. IEEE, 2005.

[7] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In FSTTCS, volume
3328 of LNCS, pages 275–286. Springer, 2004.

[8] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-
connected architectures. Formal Methods in System Design, 34(3):215–
237, 2009.

[9] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Optimal
Zielonka-type construction of deterministic asynchronous automata. In
Proceedings ICALP’10, volume 6199 of LNCS. Springer, 2010.

[10] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control
through knowledge accumulation. In Proceedings of CAV’11, volume
6806 of LNCS, pages 510–525. Springer, 2011.

[11] R. M. Keller. Parallel program schemata and maximal parallelism I.
Fundamental results. Journal of the Association of Computing Machin-
ery, 20(3):514–537, 1973.

[12] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc.
16th IEEE Symp. on Logic in Computer Science, 2001.

[13] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis
for local specifications. In ICALP’01, volume 2076 of LNCS, pages
396–407. Springer, 2001.

[14] P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of
connectedly communicating processes. In Proceedings of FSTTCS’05,
volume 3821 of LNCS, pages 201–212. Springer, 2005.

[15] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[16] M. Mukund and M. A. Sohoni. Keeping Track of the Latest Gossip in
a Distributed System. Distributed Computing, 10(3):137–148, 1997.

[17] A. Muscholl, I. Walukiewicz, and M. Zeitoun. A look at the control of
asynchronous automata. In Perspectives in Concurrency Theory, IARCS-
Universities. Universities Press, 2009.

[18] G. L. Peterson and J. H. Reif. Multi-person alternation. In Proc. IEEE
FOCS, pages 348–363, 1979.

[19] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. ACM POPL, pages 179–190, 1989.

[20] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In 31th IEEE Symposium Foundations of Computer Science
(FOCS 1990), pages 746–757, 1990.

[21] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(2):81–98, 1989.

[22] S. Ricker and K. Rudie. Know means no: Incorporating knowledge
into discrete-event control systems. IEEE Transactions on Automatic
Control, 45(9), 2000.

[23] K. Rudie and W. Wonham. Think globally, act locally: Decentralized
supervisory control. IEEE Trans. on Automat. Control, 37(11):1692–
1708, 1992.

[24] A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed
algorithms using asynchronous automata. In CONCUR, number 2761
in LNCS, pages 27–41, 2003.

[25] T. Yoo and S. Lafortune. A general architecture for decentralized
supervisory control of discrete-event systems. Discrete Event Dynamic
Systems: Theory and Applications, 12(3):335–377, 2002.

[26] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. —
Informatique Théorique et Applications, 21:99–135, 1987.

10

	Introduction
	Basic definitions and observations
	Zielonka automata
	The control problem

	The upper bound for control problem for acyclic graphs
	The lower bound
	Lower bound: general construction

	Conclusions
	References

