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Numerical approximation of bang-bang controls for
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Abstract

This work is concerned with the numerical approximation of null controls of minimal L∞-norm for

the linear heat equation with a bounded potential. Both the cases of internal and boundary controls

are considered. Dual arguments typically allow to reduce the search of controls to the unconstrained

minimization of a conjugate function with respect to the initial condition of a backward heat equation.

However, as a consequence of the regularization property of the heat operator, this condition lives

in a huge space that can not be approximated with robustness. For this reason the minimization is

severally ill-posed. On the other hand, the optimality conditions for this problem show that the unique

control v of minimal L∞-norm has a bang-bang structure as it takes only two values: this allows to

reformulate the problem as an optimal design problem where the new unknowns are the amplitude of

the bang-bang control and the space-time regions where it takes its two possible values. This second

optimization variable is modeled through a characteristic function. Since this new problem is not

convex, we obtain a relaxed formulation of it which, in particular, lets the use of a gradient method

for the numerical resolution. Numerical experiments are described within this new approach.

Keywords: Heat equation, Bang-bang control, Convex relaxation, Numerical approximation.

1 Introduction

We consider both the internal and boundary controllability problem of a linear heat equation with a
bounded potential. Let us describe the problem in the distributed case for which the state equation is{

yt −∆y + a y = v 1ω, (x, t) ∈ QT
y(σ, t) = 0, (σ, t) ∈ ΣT , y(x, 0) = y0(x), x ∈ Ω.

(1)

Here, we denote by Ω an open and bounded set of RN , N ≥ 1, with C2 boundary Γ, QT = Ω× (0, T ),
ΣT = Γ × (0, T ), ω ⊂⊂ Ω is a non-empty open subset of Ω, 1ω is the associated characteristic function,
qT = ω× (0, T ), T > 0, y0 ∈ L2(Ω), a ∈ L∞(QT ), v ∈ L∞(qT ) is the control and y is the associated state.

For any y0 ∈ L2(Ω), T > 0 and v ∈ L∞(qT ), there exists exactly one solution of (1), with y ∈
C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) (see [14, 15]). The null controllability problem for (1) at time T > 0
amounts to find a function v in L∞(qT ), such that the associated solution to (1) satisfies

y(x, T ) = 0, x ∈ Ω. (2)
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1 INTRODUCTION 2

This problem has been solved for the heat equation in the nineties: we mention the seminal contributions
[8], [13] and more recently [1].

In this work, we are interested in the numerical approximation of the following optimization problem:
for any α ≥ 0

(Pα)
{

Minimize Jα(v) = ‖v‖L∞(qT )

subject to v ∈ Cα(y0, T )

where Cα(y0, T ) = {v ∈ L∞(qT ) : y solves (1) and satisfies ‖y(·, T )‖L2(Ω) ≤ α}. Problem (P0) corre-
sponds to the null controllability. For any α > 0, it is shown in [5] that the unique solution of the
extremal constrained problem (Pα) is given by

vα = ‖ϕα‖L1(qT ) sign(ϕα) 1ω, (3)

(a quasi bang-bang control) where ϕα = ϕ solves the backward equation{
− ϕt −∆ϕ+ aϕ = 0, (x, t) ∈ QT ,
ϕ(σ, t) = 0, (σ, t) ∈ ΣT , ϕ(x, T ) = ϕα,T (x), x ∈ Ω

(4)

and with ϕα,T the unique solution of the following extremal problem, dual of (Pα),

(Dα)

 Minimize Jα(ϕα,T ) =
1
2
‖ϕ‖2L1(qT ) + α‖ϕα,T ‖L2(Ω) +

∫
Ω

y0(x)ϕ(x, 0)dx

subject to ϕ ∈ L2(Ω).

In the case where the potential a vanishes and, in general, in space dimension N = 1 (see [2]), the
control (3) is in fact of bang-bang type since the zero set of ϕ has zero Lebesgue measure. Up to best
knowledge of the authors, for a non-vanishing potential a and N > 1 it is unknown if such a result holds.
However, it is known that in this case (a 6= 0 and N > 1) the zero set of ϕ has empty interior (see [5,
Remark 1.1]).

For any α > 0, the minimization of Jα can be performed using a gradient method. Once the minimizer
ϕα,T is determined, ϕα is computed from (4) and the control vα of minimal L∞-norm is then given by
(3). Moreover, as a consequence of the null controllability property, the sequence (vα)α>0 defined by (3)
is uniformly bounded w.r.t. α in L∞(qT ). However, as α goes to zero, the minimizer ϕα,T may be not
uniformly bounded in L2 but in a larger space, say H defined as the completion of D(Ω) with respect to
the norm ‖ϕ‖L1(qT ) (we refer to [23], section 4.6 for more details). Actually, for the control of minimal
L2-norm, it is shown in [16] for N = 1 that the set of initial data y0 for which the corresponding minimizer
of the conjugate function Jα belongs to any negative Sobolev space is dense in L2(Ω). We also refer to
[3, 7, 20, 22] where this phenomenon is fully discussed in the L2-case. In particular, it is seen that the
(so-called HUM) control exhibits a very oscillatory behavior near the controllability time T and that the
numerical minimization of J0 is ill-posed. Since this phenomenon is related to the regularizing property
of the heat kernel, it occurs very likely for the L∞ case as well.

The numerical approximation of bang-bang controls for the heat equation has been addressed in [9] by
a way of a penalty and regularization technique: precisely, for any k ∈ R+ and any s ∈ N+, the extremal
problem

(Pk,s)

 Minimize
1
2

(
‖v‖2Ls(qT ) + k−1‖y(·, T )‖2L2(Ω)

)
subject to v ∈ Ls(qT )

is addressed in [9] for s and k−1 large enough. For s = +∞, notice that for any α, one can find a parameter
k which depend on α and on the data such that the optimal corresponding solution y satisfies exactly
‖y(·, T )‖L2(Ω) = α. In that sense, for s = +∞, problems (Pk,s) and (Pα) are equivalent. Moreover, the use
of the Ls-norm (s large enough) instead of the L∞-norm avoids the problem of the non-differentiability
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of the L∞-norm and of any power of it. Numerical experiments within this approach are described in [9]
(in the inner point-wise case for N = 1 and boundary cases for N = 2) and - as for the L2-case - highlight
a high oscillatory behavior of the bang-bang control near T .

In this work we propose an alternative approach to solve numerically (Pα). Precisely, we take advan-
tage of the bang-bang structure of the control and hence consider from the very beginning the control
system {

yt −∆y + a y = [λ1O + (−λ)(1− 1O)]1ω, (x, t) ∈ QT
y(σ, t) = 0, (σ, t) ∈ ΣT , y(x, 0) = y0(x), x ∈ Ω.

(5)

where λ denotes a positive real number and O a subdomain of QT . Notice that here we impose a
priori that the control v is of bang-bang type, that is, it takes only two values, λ on O ∩ qT and −λ on
(QT \O)∩ qT , respectively. λ is the amplitude of the piecewise constant control and 1O depends on (x, t)
but no volume constraint nor regularity assumption are introduced on O. In particular, discontinuities
in the time evolution of O are allowed.

Accordingly, for any α > 0, we consider the optimization problem

(BBα)

{
Minimize in (λ, 1O) :

1
2
λ2

subject to (λ, 1O) ∈ Dα(y0, T )

where

Dα(y0, T ) = {(λ, 1O) ∈ R+ × L∞ (qT ; {0, 1}) : y = y(λ, 1O) solves (5) and satisfies ‖y(·, T )‖L2(Ω) ≤ α}.

(BBα) can be viewed as an optimal design problem where the design variable is the space-time region
where the control takes its two possible values and the optimality is related to the amplitude of the
bang-bang control. Also notice that in the case where the control is of bang-bang type, (BBα) coincides
with (Pα). We emphasize that this formulation makes sense and is of a practical interest even when
the control of minimal L∞-norm is not of bang-bang type. Indeed, we address directly the problem of
computing bang-bang type controls with minimal amplitude which, as indicated above, is of a major
interest in practice. Up to our knowledge, this perspective has not been addressed so far.

Since the space of admissible designs is not convex, we first obtain a well-posed relaxed formulation
and then show how this equivalent but new formulation allows to obtain, for any α > 0, a robust
approximation of the solution of the original problem. Precisely, in Section 2 we introduce and analyze
this relaxed formulation (see Theorem 2.1). In particular, we obtain that the relaxed problem is an
equivalent penalty version of (Pα) and prove that there exists a minimizing sequence of bang-bang type
controls (see Theorem 2.1, part 3, for precise statements). Then, we derive and discuss the first-order
necessary optimality condition of the relaxed problem. From this, we recover the bang-bang structure of
the control for the pure heat equation and in one space dimension.

The case where the control acts on a part of the boundary in Dirichlet and Neumann forms is also
considered and the same type of results is obtained. The numerical resolution of the relaxed problem
is addressed in Section 3. We describe the algorithm used to solve the relaxed problem and present
several numerical experiments. In particular, the approach allows to capture the oscillatory behavior of
the control near T as α goes to zero.
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2 Relaxation and necessary optimality conditions

2.1 The inner case

We adopt the penalty approach mentioned before and for simplicity, we still use α to denote the penalty
parameter. Hence we transform (BBα) into the following problem:

(Tα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2L2(Ω)

)
subject to

yt −∆y + a y = λ [(2 1O − 1)] 1ω in QT ,

y = 0 on ΣT , y(·, 0) = y0 in Ω
(λ, 1O) ∈ R+ × L∞ (qT ; {0, 1}) .

Accordingly, we also consider the problem

(RTα)



Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2L2(Ω)

)
subject to

yt −∆y + a y = [λ (2s− 1)] 1ω in QT
y = 0 on ΣT , y(·, 0) = y0 in Ω
(λ, s) ∈ R+ × L∞ (qT ; [0, 1]) .

In (Tα), the approximate controllability condition ‖y(·, T )‖L2(Ω) ≤ α has been introduced in the cost
function via a penalty technique. First, this leads to an easier numerical resolution. Second, this is
motivated by the fact that a relaxation for (Pα) (and consequently also for (BBα)) needs of an a priori
estimate; precisely a uniform (with respect to 1O) observability inequality for the solutions of the system
(4). See [19] where such a uniform observability inequality was proved for the heat equation in 1D and
for null controls of minimal L2-norm.We claim that this type of uniform inequality is difficult to obtain
in the general case considered in this work.

Also notice that for all v ∈ L∞(qT ), denoting by λ = ‖v‖L∞(qT ), the identity v = λ(2s − 1),with
s ∈ L∞(qT ; [0, 1]), holds. Thus, the original problem with a cost functional of the form

1
2
‖v‖2L∞(qT ) +

1
2α
‖y(·, T )‖2L2(Ω)

transforms into our problem (RTα). In this respect, we are redefining the decision variables of the
optimization problem: instead of an L∞ control function v, we are looking for a control function of the
form λ(2s− 1), with λ a positive real number and s ∈ L∞(qT ; [0, 1].

From now on we consider the space L∞ (qT ; [0, 1]) endowed with the usual weak-? topology. We have
the following result.

Theorem 2.1 (RTα) is a true relaxation of (Tα) in the following sense:

1. there exists one minimizer of (RTα) ,

2. up to subsequences, every minimizing sequence, say (λn, 1On) of (Tα) converges to some (λ, s) ∈
R+ × L∞ (qT ; [0, 1]) such that (λ, s) is a minimizer for (RTα) , and conversely,

3. if (λ, s) is a minimizer for (RTα) and if 1On converges to s weak-? in L∞ (qT ; [0, 1]) , then, up to a
subsequence, (λ, 1On) is a minimizing sequence for (Tα) .

Proof. Let us first prove that the functional Jα (λ, s) is continuous. Assume that (λn, sn) ∈ R+ ×
L∞ (qT ; [0, 1]) satisfies {

λn → λ

sn ⇀ s weak− ? in L∞ (qT ; [0, 1])
as n→∞.
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Since [λn (2sn (x, t)− 1)] ⇀ [λ (2s (x, t)− 1)] weak-? in L∞ (qT ; [0, 1]) (in particular, also weakly in
L2 (qT )), the solution yn of the system{

ynt −∆yn + a yn = [λn (2sn (x, t)− 1)] 1ω, (x, t) ∈ QT ,
yn (σ, t) = 0, (σ, t) ∈ ΣT , yn (x, 0) = y0 (x) , x ∈ Ω

satisfies {
yn ⇀ y weakly in L2

(
0, T ;H1

0 (Ω)
)

ynt ⇀ yt weakly in L2
(
0, T ;H−1 (Ω)

)
,

where y = y (x, t) solves{
yt −∆y + a y = [λ (2s (x, t)− 1)] 1ω, (x, t) ∈ QT ,
y (σ, t) = 0, (σ, t) ∈ ΣT , y (x, 0) = y0 (x) , x ∈ Ω.

By Aubin’s lemma, up to a subsequence still labeled by n, yn → y strongly in L2
(
0, T ;L2 (Ω)

)
.

Hence, up to a subsequence,

yn (t, ·)→ y (t, ·) strongly in L2 (Ω) and a.e. t ∈ [0, T ] . (6)

Since yn(t) are continuous functions, convergence (6) in fact holds for all t ∈ [0, T ]. In particular,
Jα (λn, sn) → Jα (λ, s) as n → ∞. Moreover, Jα (λ, s) is clearly coercitive. As a consequence, problem
(RTα) has a solution.

Statements 2. and 3. are a straightforward consequence of the continuity of Jα (λ, s) and of the
density of the space L∞ (qT ; {0, 1}) in L∞ (qT ; [0, 1]) (see [12, Prop. 7.2.14, p. 289]). 2

Next, we analyze the first-order necessary optimality condition for the relaxed problem (RTα) .

Theorem 2.2 The functional Jα as defined in problem (RTα) is Gâteaux differentiable and its directional
derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = λ̂

(
λ−

∫
qT

p(2s− 1) dx dt
)
− 2λ

∫
qT

pŝ dxdt (7)

where p ∈ C
(
[0, T ] ;L2 (Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)

solves the adjoint equation{
− pt −∆p+ a p = 0, (x, t) ∈ QT
p(σ, t) = 0, (σ, t) ∈ ΣT , p(x, T ) + α−1y(x, T ) = 0, x ∈ Ω,

(8)

where y is the solution of the heat equation in problem (RTα).

Proof. Let
(
λ̂, ŝ
)
∈ R+×L∞ (qT ; [0, 1]) be an admissible direction, i.e., for ε small enough,

(
λ+ ελ̂, s+ εŝ

)
∈

R+ ×L∞ (qT ; [0, 1]) . Denote by y(λ+εbλ,s+εbs) the solution of the state law as defined in (RTα) associated

with the perturbation
(
λ+ ελ̂, s+ εŝ

)
. Thanks to the linearity of the heat equation it is easy to see that

y(λ+εbλ,s+εbs) = y(λ,s) + εŷ + ε2ỹ

where y(λ,s) is the state associated with the control (λ, s) , ŷ is a solution to ŷt −∆ŷ + a ŷ =
[
2λŝ+ λ̂ (2s− 1)

]
1ω, (x, t) ∈ QT

ŷ (σ, t) = 0, (σ, t) ∈ ΣT , ŷ (x, 0) = 0, x ∈ Ω,
(9)
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and ỹ solves {
ỹt −∆ỹ + a ỹ = 2λ̂ŝ1ω, (x, t) ∈ QT
ỹ(σ, t) = 0, (σ, t) ∈ ΣT , ỹ (x, 0) = 0, x ∈ Ω.

A straightforward computation shows that

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = lim
ε→0

Jα

(
λ+ ελ̂, s+ εŝ

)
− Jα (λ, s)

ε
= λλ̂+ α−1

∫
Ω

y(λ,s) (·, T ) ŷ (·, T ) dx. (10)

On the other hand, taking into account the initial condition ŷ (·, 0) = 0 and the final condition p (·, T ) =
−α−1y (·, T ) , from the weak form of the system (9) it is deduced that

α−1

∫
Ω

y(λ,s) (·, T ) ŷ (·, T ) dx = −λ̂
∫
qT

p (2s− 1) dxdt− 2λ
∫
qT

p ŝ dxdt

for p ∈ W (0, T ) =
{
v ∈ L2

(
0, T ;H1

0 (Ω)
)

: vt ∈ L2
(
0, T ;H−1 (Ω)

)}
solution of (8). Replacing this ex-

pression into (10) we obtain (7). 2

Corollary 2.1 Let (λ?, s?) ∈ R+ × L∞ (qT ; [0, 1]) be an optimal solution of (RTα). Then,

s? (x, t) =
{

0 if p (x, t) < 0
1 if p (x, t) > 0

(11)

and λ? = ‖p‖L1(qT ). Consequently, if N = 1 or if the potential a = 0 for N > 1, then s? is a characteristic
function and therefore problem (Tα) is well-posed, i.e., the control is of bang-bang type.

Proof. Let (λ?, s?) ∈ R+ × L∞ (qT ; [0, 1]) be an optimal solution of (RTα). From (7) it follows that

(λ− λ?)
(
λ? −

∫
qT

p(2s? − 1) dx dt
)
− 2λ?

∫
qT

p(s− s?) dxdt ≥ 0 (12)

for all (λ, s) ∈ R+ × L∞ (qT ; [0, 1]) . In particular, if λ = λ?, then∫
qT

p s?dxdt ≥
∫
qT

p s dxdt ∀s ∈ L∞ (qT ; [0, 1]) .

A standard localization argument (see for instance [21, pages 67-69]) shows that this variational inequality
is equivalent to the point-wise variational inequality

p (x, t) s? (x, t) ≥ p (x, t) s (x, t) ∀s ∈ L∞ (qT ; [0, 1]) , for a.e. (x, t) ∈ qT .

From this we easily obtain (11). Now consider the case of the pure heat equation, i.e., a = 0. Using the
fact that thanks to the analyticity of p the zero set of p has zero Lebesgue measure, we conclude that s?

is a characteristic function. The same holds if a 6= 0 and N = 1 (see [2]).
Finally, if we put s = s? in (12), then

λ? =
∫
qT

p (2s? − 1) dxdt = ‖p‖L1(qT ) ,

where the last equality is a consequence of (11). Notice that from this last equality and (11), the optimal
control λ?(2s? − 1) has exactly the structure given by (3). 2

Remark 1 Notice that even in the case where (Tα) is well-posed, the relaxed formulation (RTα) remains
very useful at the numerical level. Precisely, since the admissibility set for (RTα) is convex (contrary to
what happens in (Tα)), it is allowed to make variations in this space and therefore we may implement a
gradient algorithm to solve (RTα), and consequently also (Tα). Moreover, Theorem 2.1, part 3, provides
a constructive way of computing a minimizing sequence of bang-bang type controls for the general case of
the heat equation with a potential in dimension N > 1.
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2.2 The boundary case

We address the situation where the control acts on a part of the boundary. Recall that ΣT := Γ× (0, T )
with Γ = ∂Ω. We note Σ0 = Γ0 × (0, T ) for any Γ0 ⊂ Γ.

2.2.1 Dirichlet-type controls

For a fixed α > 0, we focus on the system{
yt −∆y + a y = 0, (x, t) ∈ QT
y (σ, t) = f (σ, t) 1Σ0 , (σ, t) ∈ ΣT , y (x, 0) = y0 (x) , x ∈ Ω

(13)

and look for the control f , with support in Σ0, which satisfies

‖y (·, T )‖H−1(Ω) ≤ α. (14)

It is important to notice that we have moved from the L2−norm for the final state to the H−1−norm
because, as observed in ([14, p. 217]), if f ∈ L2 (Σ0) and y0 ∈ L2 (Ω), then, in general, y (·, T ) /∈ L2 (Ω) .

Under some technical assumptions, some positive results concerning the existence of a solution for the
approximate controllability problem (13)-(14) are obtained in [5].

Similarly to the inner situation, we consider the optimization problem

(Bα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2H−1(Ω)

)
subject to

yt −∆y + a y = 0 in QT
y = λ [2 1O − 1] 1Σ0 on ΣT , y(·, 0) = y0 in Ω
(λ, 1O) ∈ R+ × L∞ (Σ0; {0, 1})

with y0 ∈ L2 (Ω) . We also consider the new problem

(RBα)



Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2H−1(Ω)

)
subject to

yt −∆y + a y = 0 in QT
y = λ [2s− 1] 1Σ0 on ΣT , y(·, 0) = y0 in Ω
(λ, s) ∈ R+ × L∞ (Σ0; [0, 1]) .

Then, we have:

Theorem 2.3 (RBα) is a relaxation of (Bα) in the same terms as stated in Theorem 2.1.

Before proving this result, we recall some results concerning the properties of the solution to the
following non-homogeneous system:{

yt −∆y + a y = 0, (x, t) ∈ QT
y (σ, t) = f (σ, t) , (σ, t) ∈ ΣT , y (x, 0) = y0 (x) , x ∈ Ω,

(15)

with f ∈ L∞ (ΣT ) and y0 ∈ L2 (Ω) . Following [14, pp. 208-221] or [15, Vol. II, p.86], a weak solution of
(15) is a function y ∈ L2 (QT ) which satisfies∫

QT

y(−ϕt −∆ϕ+ aϕ)dxdt =
∫

Ω

y0(x)ϕ(x, 0)dx−
∫

ΣT

f∂νϕdΣT
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for all ϕ ∈ X1 (QT ) =
{
v ∈ H2,1 (QT ) : v = 0 on ΣT and v (x, T ) = 0, x ∈ Ω

}
. As usual, ∂νϕ de-

notes the derivative of ϕ in the direction of the outward unit normal vector to Γ. Then, it is proved (see
also [5, Prop. 5.1]) that there exists a unique weak solution of system (15) which has the regularity

y ∈ H1/2,1/4 (QT ) = L2
(

0, T ;H1/2 (Ω)
)
∩H1/4

(
0, T ;L2 (Ω)

)
.

Moreover, the estimate
‖y‖H1/2,1/4(QT ) ≤ c

(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
holds. In particular,

‖y‖L2(0,T ;L2(Ω)) ≤ c
(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
. (16)

On the other hand, standard arguments show that the weak solution of (15) also satisfies yt ∈ L2
(
0, T ;H−2 (Ω)

)
and

‖yt‖L2(0,T ;H−2(Ω)) ≤ c
(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
. (17)

Finally, we also notice that y ∈ C
(
[0, T ] ;H−1 (Ω)

)
(see [15, Vol. I, Th. 3.1]). As a consequence, the cost

functionals Jα and Jα above are well-defined.

Proof of Theorem 2.3. The proof follows the same lines as in Theorem 2.1. The only difference is that
in this case, from estimates (16) and (17), we have the convergences{

yn ⇀ y weakly in L2
(
0, T ;L2 (Ω)

)
ynt ⇀ yt weakly in L2

(
0, T ;H−2 (Ω)

)
,

where y = y (x, t) solves{
yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = λ (2s (σ, t)− 1) 1Σ0 , (σ, t) ∈ ΣT , y (x, 0) = y0 (x) , x ∈ Ω.

But again by Aubin’s lemma, up to a subsequence yn → y strongly in L2
(
0, T ;H−1 (Ω)

)
. The rest of

the proof runs as in Theorem 2.1. 2

Remark 2 We notice that if the initial condition y0 ∈ L∞ (Ω) , then the solution of system (15) satisfies
y ∈ L∞ (QT ) (see [14, p.221]). In particular, y (·, T ) ∈ L2 (Ω) and therefore the H−1 (Ω)−norm in the
costs Jα and Jα may be replaced by the L2 (Ω)−norm.

From now on, we assume that y0 belongs to L∞(Ω) and then replace in Jα and Jα the term
α−1‖y(·, T )‖2H−1(Ω) by α−1‖y(·, T )‖2L2(Ω). This leads to a stronger underlying controllability condition.
Similarly to Theorem 2.2 and Corollary 2.1 we have:

Theorem 2.4 For y0 ∈ L∞(Ω) the functional Jα as defined above is Gâteaux differentiable and its
directional derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = λ̂

(
λ+

∫
Σ0

∂νp(2s− 1) dΣ0

)
+ 2λ

∫
Σ0

∂νp ŝ dΣ0 (18)

where p solves the backward equation (8).

Remark 3 As shown in [5, Lemma 4.1 and Remark 5.1], if y0 ∈ L∞(Ω), then ∂νp ∈ L1(Σ0) and hence
the integrals in (18) make sense.

Corollary 2.2 Let (λ?, s?) ∈ R+ × L∞ (Σ0; [0, 1]) be an optimal solution of (RBα). Then,

s? (σ, t) =
{

0 if ∂νp (σ, t) < 0
1 if ∂νp (σ, t) > 0

(19)

and λ? = ‖∂νp‖L1(Σ0). As a consequence, if N = 1 or if the potential a = 0 for N > 1, then s? is a
characteristic function and therefore problem (Bα) is well-posed, i.e., the control is of bang-bang type.



2 RELAXATION AND NECESSARY OPTIMALITY CONDITIONS 9

2.2.2 Neumann-type controls

Consider the system {
yt −∆y + a y = 0 (x, t) ∈ QT
∂νy = g ΣT , y (·, 0) = y0(x), x ∈ Ω.

(20)

For y0 ∈ L2 (Ω) and g ∈ L2
(
0, T ;H−1/2 (Γ)

)
the system (20) has a unique solution y ∈ L2

(
0, T ;H1 (Ω)

)
∩

C
(
[0, T ] ;L2 (Ω)

)
which satisfies the variational formulation

d

dt

∫
Ω

y (x, t) v (x) dx+
∫

Ω

[∇y (x, t)∇v (x) + a (x, t) y (x, t) v (x)] dx = < g (t) , v >Γ ∀v ∈ H1 (Ω) ,

where < ·, · >Γ stands for the duality product in H1/2 (Γ) (see [15, 21]). Moreover,

‖y‖C([0,T ];L2(Ω)) + ‖y‖L2(0,T ;H1(Ω)) ≤ C
(
‖y0‖L2(Ω) + ‖g‖L2(0,T ;H−1/2(Γ))

)
.

With the same notation as in the preceding section, we consider the two problems

(NBα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2L2(Ω)

)
subject to

yt −∆y + a y = 0 in QT
∂νy = λ [2 1O − 1] 1Σ0 on ΣT , y (·, 0) = y0 in Ω
(λ, 1O) ∈ R+ × L∞ (ΣT ; {0, 1})

and

(RNBα)



Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + α−1 ‖y (·, T )‖2L2(Ω)

)
subject to

yt −∆y + a y = 0 in QT
∂νy = λ [2s− 1] 1Σ0 on ΣT , y (·, 0) = y0 in Ω
(λ, s) ∈ R+ × L∞ (ΣT ; [0, 1]) .

The same type of arguments as the ones used in the two preceding cases lets prove that (RNBα) is a
relaxation of (NBα). Also, a direct computation shows that the functional Jα is Gâteaux differentiable
and its directional derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα (λ, s)
∂ (λ, s)

·
(
λ̂, ŝ
)

= λ̂

(
λ+

∫
Σ0

p (2s− 1) dΣ0

)
+ 2λ

∫
Σ0

ŝ p dΣ, (21)

where p solves the system{
− pt −∆p+ a p = 0 in QT

∂νp = 0 on ΣT , p (·, T ) = α−1y (·, T ) in Ω.
(22)

By using (21), we obtain that if (λ?, s?) is a solution of (RNBα), then

s? (σ, t) =
{

0 if p (σ, t) > 0
1 if p (σ, t) < 0

and λ? = ‖p‖L1(Σ0) .
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3 Numerical experiments for N = 1 and N = 2

We first consider the 1D case with Ω = (0, 1) and highlight the oscillatory behavior of the null bang-bang
controls near T . Then, we consider a 2D situation with Ω = (0, 1) × (0, 1) and compare our approach
with the dual method introduced in [9]. Preliminary, we briefly discuss the gradient algorithms and the
approximation used to solve the different extremal problems.

3.1 Algorithm and numerical approximation

Let us provide some details on the inner situation and in the 1D case for which we take Ω = (0, 1).
First notice that we may remove the constraint λ ∈ R+ since, if (λ, s) solves (RTα), then (−λ, 1− s)

is also a solution. Hence, the expression (7) provides the following iterative descent algorithm :
(λ0, s0) given in R× L∞(QT , [0, 1]),

λn+1 = λn − an
(
λn −

∫
qT

pn(2sn − 1) dx dt
)
, n ≥ 0,

sn+1 = P[0,1](sn + bnλ
npn), n ≥ 0

(23)

where pn solves (8), P[0,1](x) = max(0,min(1, x)) denotes the projection of any x onto [0, 1] and an, bn
denote the optimal descent step which is obtained as the solution of the extremal problem :

min Jα(λn+1(a), sn+1(b)) over a, b ∈ R+. (24)

Problem (24) is solved by using line search techniques. The gradient algorithm is stopped as soon as∣∣∣∣λn − ∫
qT

pn(2sn − 1) dxdt
∣∣∣∣ ≤ σ|λn| (25)

for some given tolerance σ > 0 small enough.
As for the numerical discretization, we use the two-step Gear scheme (also used in [4] in the same

context) for the time integration coupled with a P1 finite element approach for the spatial approximation.
Precisely, for large integer Nx, we consider the Nx points xi ∈ [0, 1] such that x1 = 0, xi < xi+1 and
xNx = 1. We note for i ∈ I = {1, . . . , Nx − 1}, ∆xi = xi+1 − xi and ∆x = maxi∈I ∆xi. We note by
P∆x the corresponding partition of Ω = [0, 1] and by P∆t the corresponding partition of [0, T ], obtained
in the same way. Finally, set h = (∆x,∆t) and Qh the quadrangulation of QT associated to h so that
QT =

⋃
K∈Qh K.

The following (conformal) finite element approximation of L2(0, T ;H1
0 (0, 1)) is introduced:

X0h = {ϕh ∈ C0(QT ) : ϕh|K ∈ (P1,x ⊗ P1,t)(K) ∀K ∈ Qh, ϕh(0, t) = ϕh(1, t) = 0 ∀t ∈ (0, T ) }.

Here Pm,ξ denotes the space of polynomial functions of order m in the variable ξ. Accordingly, the
functions in X0h reduce on each quadrangle K ∈ Qh to a linear polynomial in both x and t. The space
X0h, conformal approximation of L2(QT ) is a finite-dimensional subspace of L2(0, T ;H1

0 (0, 1)). Moreover,
the functions ϕh ∈ X0h are uniquely determined by their values at the nodes (xi, tj) of Qh such that
0 < xi < 1.

Let us now introduce other finite dimensional spaces. First, we set

Φ∆x = { z ∈ C0([0, 1]) : z|k ∈ P1,x(k) ∀k ∈ P∆x }.

Then, Φ∆x is a finite dimensional subspace of L2(0, 1) and the functions in Φ∆x are uniquely determined
by their values at the nodes of P∆x.
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Secondly, since the variable λ(2s−1) ∈ L∞(QT ) appears in the right hand side of the forward problem
in y, it is natural to approximate λ(2s − 1) ∈ L∞(QT ) by a piecewise constant function. Thus, let Mh

be the space defined by

Mh = {µh ∈ L∞(QT ) : µh|K ∈ (P0,x ⊗ P0,t)(K) ∀K ∈ Qh }.

Mh is a finite dimensional subspace of L∞(QT ) and the functions in Mh are uniquely determined by their
(constant) values on the quadrangles K ∈ Qh.

Therefore, for any sh ∈Mh and any λh ∈ R, the approximation yh ∈ X0h of the solution of (RTα) is
given as follows :

(i) Consider the times tj = j∆t and set yh|t=0 = π∆x(y0) ∈ Φ∆x.

(ii) Then, yh|t=t1 is the solution to the in Ψ ∈ Φ∆x

∫ 1

0

1
∆t

(Ψ− yh|t=0)z dx+
1
2

∫ 1

0

(Ψxzx + π∆xA(x, t1)Ψz) dx

+
1
2

∫ 1

0

((yh|t=0)xzx + π∆xA(x, tNt)yh|t=0z) dx

=
1
2
λh

∫ 1

0

((2sh(x, t1)− 1) + (2sh(x, t0)− 1)) z(x) dx ∀z ∈ Φ∆x.

(iii) Finally, for given n = 1, . . . , N − 1, Ψ? = yh|t=tn−1 and Ψ = yh|t=tn , yh|t=tn+1 is the solution to the
linear problem

∫ 1

0

1
2∆t

(3Ψ− 4Ψ + Ψ?)z dx+
∫ 1

0

(Ψxzx + π∆x(A(x, tn−1))Ψz) dx

=
∫ 1

0

µh(x, tn−1)z(x) dx ∀z ∈ Φ∆x.

Here, π∆x denotes the projection over Φ∆x.
At the finite dimensional level, algorithm (23) reads as follows :

(λ0
h, s

0
h) ∈ R×Mh,

λn+1
h = λnh − anh

(
λnh −

∫
qT

pnh(2snh − 1) dx dt
)
, n ≥ 0,

sn+1
h = P[0,1](snh + bnhλ

n
hp
n
h), n ≥ 0

where pnh is an approximation of the backward problem (8), obtained by using P1 finite element in space
and the Gear scheme for the time integration, as described above.

3.2 Experiments in 1D - Oscillatory behavior of the bang-bang control

3.2.1 Distributed case

We take Ω = (0, 1) and first consider the data ω = (0.25, 0.75), a ≡ 0 and y0(x) = sin(2πx). In order to
have a better control of the diffusion, we also replace the operator −∆ by −c∆ with c lower than one.

The algorithm is initialized with λ = 1 and s = 1/2. We take σ := 10−3 as stopping criterion
parameter.
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We take a uniform partition P∆x for Ω : xi+1 − xi = 1/Nx with Nx = 400. On the other hand, in
order to describe correctly the oscillations of the density near T , we take a non uniform partition P∆t of
the time interval (0, T ): precisely we define

t1 = 0; tj+1 − tj =
T

epT − 1
(e

pT
Nt − 1)e

p(Nt+1−j)
Nt

T , j = 1, ..., Nt,

where Nt ∈ N is the number of sub-interval of the partition P∆t and any p ∈ N. The points tj , distributed
along (0, T ), are thus exponentially concentrated near t = T . Here p := 6 and Nt = 400.

Table 1 collects the value of λh and ‖yh(·, T )‖L2(0,1) with respect to the penalty parameter α. We
take c := 1/10. We check that the L∞-norm λh of the control increases as α goes to zero : in other words,
the amount of work needed to get closer to the zero target at time T is more important. However, as a
consequence of the null controllability of (1), we check that λh is uniformly bounded by above w.r.t. α.

The value α also affects the shape of the bang-bang control. Figure 1 depicts the iso-values of the
optimal density for α = 10−2, 10−4, 10−6 and α = 10−8. According to the symmetry of ω and of the
initial datum y0, we obtain a symmetric density over QT . For α = 10−2, the density is constant in time
and related to the sign of y0: precisely, for all t, sh(x, t) = 0 if y0(x) > 0 and sh(x, t) = 1 if y0(x) < 0.
However, for α small enough, for instance here, α = 10−3, the optimal density exhibits some variations
with respect to the variable t. These variations are mainly located at the end of the time interval.
Moreover, as α decreases, the number of theses oscillations, that is, the number of theses changes of sign
of vh increases so that, at the null controllability limit (α = 0) one may expected an oscillatory behavior
of the bang-bang control, both in space and time, in an arbitrarily close neighborhood of (0, 1) × {T}.
This is in agreement with our observations in the L2-case (see [20]). Of course, as in the L2-case, this
behavior may only be captured with an arbitrarily fine mesh. The increasing number of iterates needed
to satisfy the criterion (25) as α decreases is also the consequence of these oscillations near T .

In Figure 1 we also observe that (except for α = 10−2) the optimal density sh is not strictly a bi-
valued function (as it should be almost everywhere) and takes some intermediate values: this is due
to the numerical approximation and to the very low variation of the cost function with respect to the
density near the minimum (a bi-valued density is obtained after a very large number of iterates). Figure
2 displays the sign of the adjoint solution p (see (8)) in QT and also clearly exhibits the variation of the
bang-bang control: recall that from (11), s and p are related through the relation 2s− 1 = sign(p).

More interesting is the fact that, whatever be the initial guess (λ0
h, s

0
h) ∈ R+ × L∞(QT , [0, 1]) for the

algorithm, we always get the same limit. This is of course in agreement with the fact that the control v
of minimal L∞-norm is unique, and so the couple (λ, s) defined by v = λ(2s− 1)1ω is.

α 10−1 10−2 10−4 10−6 10−8

‖yh(·, T )‖L2(Ω) 8.96× 10−2 5.34× 10−2 6.24× 10−3 4.37× 10−4 9.17× 10−5

λh 0.087 0.471 1.309 1.831 1.948
] iterates 11 213 561 1032 4501

Table 1: Nx = Nt = 400 - y0(x) = sin(2πx) - c = 0.1

3.2.2 Boundary case

In the boundary situation, the density s is simply a time function. This allows to observe clearer the
singular character of the control as α goes to zero when one wants to recover the null control of minimal
L∞-norm. The procedure is similar, except that we consider a non uniform partition P∆x (concentrated
on x = 1) in order to better describe the final state p(·, T ) of the adjoint system (oscillating near x = 1):

x1 = 0; xi+1 − xi =
1

ep − 1
(e

p
Nx − 1)e

p(Nx+1−i)
Nx , i = 1, ..., Nx,
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Figure 1: Nx = Nt = 400 - y0(x) = sin(2πx) - ω = (0.25, 0.75) - c = 0.1 - From left to right and from top
to bottom, iso-values of the density function sh in QT for α = 10−2, 10−4, 10−6 and α = 10−8.
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Figure 2: Nx = Nt = 400 - y0(x) = sin(2πx) - ω = (0.25, 0.75) - c = 0.1 - Sign of the adjoint state p for
α = 10−6 (left) and α = 10−8 (right).

with p = 3 and Nx = 400.
For the Dirichlet boundary control considered in Section 2.2.1, from Theorem 2.4, we consider the

following gradient algorithm :
(λ0
h, s

0
h) ∈ R×Nh,

λn+1
h = λnh − anh

(
λnh +

∫
Σ0

∂νp
n
h(2snh − 1) dΣ0

)
, n ≥ 0,

sn+1
h = P[0,1](snh − bnhλnh∂νpnh(1, ·)), n ≥ 0

where pnh is an approximation of the backward problem (8) and Nh the space defined by

Nh = {µh ∈ L∞([0, T ]) : µh|k ∈ P0,t(K) ∀k ∈ P∆t }.

As in the inner situation, the algorithm is controlled by the absolute value |λnh+
∫

Σ0
∂νp

n
h(2snh−1) dΣ0|

of the residue. For the Neumann boundary control discussed in Section 2.2.2, the algorithm is
(λ0
h, s

0
h) ∈ R×Nh,

λn+1
h = λnh − anh

(
λnh +

∫
Σ0

pnh(2snh − 1) dΣ0

)
, n ≥ 0,

sn+1
h = P[0,1](snh + bnhλ

n
hp
n
h(1, ·)), n ≥ 0

where pnh is an approximation of the solution p of (22).
Let us discuss the Neumann boundary case with y0(x) = sin(πx), T = 1/2, c = 1/10, a := 0 and

Σ0 = {1}× (0, T ). The algorithm is stopped as soon as |λnh +
∫ 1

0
pnh(1, t) (2snh(t)−1) dt|/|λnh| ≤ σ := 10−3.

Table 2 reports the L∞-norm λh and the L2(0, 1)-norm of the yh(·, T ) for various values of α. The
amplitude λh increases as α→ 0, and is significantly bigger than for the inner case.

Figure 3 depicts the optimal density sh with respect to the time variable. We observe here that the
density is almost everywhere a characteristic function with an increasing number of change of sign as t
goes to T−. Figure 4 (left) depicts the trace in time of the approximate controlled solution yh and Figure
4 (right) displays yh along QT .
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α 10−2 10−4 10−6 10−8

‖yh(·, T )‖L2(Ω) 2.96× 10−1 1.59× 10−1 5.56× 10−2 9.31× 10−3

λh 1.488 10.181 29.121 34.03
] iterates 33 512 6944 20122

Table 2: (λh, yh(T )) with respect to α in the Neumann boundary case.

Let us insist again on that oscillatory behavior. For α = 10−6, Figure 5 depicts the optimal density
sh(t) for t ∈ [0.4, 0.5] and t ∈ [0.48, 0.5] respectively. These figures indicate that the frequency of these
sign changes increases as t gets closer to T . Moreover, the number of these sign changes increases as
α → 0. At the limit in α → 0, we expect a bounded amplitude λh but an arbitrarily large number
of oscillations near T , in agreement with our observations for the L2 situation in [20]. The figures also
confirm, in agreement with the optimality conditions for Jα, that the optimal density is almost everywhere
a characteristic function, so that no relaxation occurs.
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Figure 3: Neumann case - The optimal density sh(t) for t ∈ [0, T ] - α = 10−4.

For Dirichlet boundary control, the situation is similar: we report in Table 3 the optimal amplitude
λh and ‖yh(·, T )‖L2(0,1) for several values of α.

α 10−2 10−4 10−6 10−8

‖yh(·, T )‖L2(Ω) 9.21× 10−2 3.28× 10−3 7.31× 10−4 2.34× 10−5

λh 0.98 5.12 7.30 9.02
] iterates 21 319 4912 9301

Table 3: (λh, ‖yh(·, T )‖L2(0,1)) with respect to α in the Dirichlet boundary case.

3.3 Experiments in 2D

The algorithm developed in the previous section, which is valid for any N , may be modified by taking
into account that the relaxed cost is quadratic with respect to λ. Precisely, we note S := 2s − 1 ∈
L∞(qT , [−1, 1]) and remark that the solution y of (1) can be decomposed as y = y+ λ zS , where y solves
(1) with v = 0 and zS solves
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Figure 4: Neumann case - Left : yh(1, t) for t ∈ (0, T ) ; Right: Approximated controlled solution yh -
α = 10−4.
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Figure 5: Neumann case -α = 10−6- Optimal density for t ∈ [0.4, 0.5] (left) and for t ∈ [0.48, 0.5] (right).
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{
zt −∆z + a z = S 1ω, (x, t) ∈ QT
z(σ, t) = 0, (σ, t) ∈ ΣT , z(x, 0) = 0, x ∈ Ω.

The new expression of the relaxed cost Jα is as follows

Jα(λ, S) =
1
2

(
λ2 + α−1‖y(·, T ) + λzS(·, T )‖2L2(Ω)

)
.

Proceeding as above, the directional derivative at (λ, S) in the admissible direction (λ̂, Ŝ) is given by

∂Jα(λ, S)
∂(λ, S)

· (λ̂, Ŝ) = λ̂

(
λ+ α−1

∫
Ω

(y(·, T ) + λzS(·, T ))zS(·, T ) dx
)
−
∫
qT

pŜ dx dt

where p solves −pt − ∆p + a p = 0 in QT , p(·, T ) = −λα−1(y(·, T ) + λzS(·, T )) and p = 0 on ΣT . A
gradient algorithm to minimize the functional Jα is then

(λ0, S0) given in R× L∞(QT , [−1, 1]),

λn+1 = λn − an
(
λn + α−1

∫
Ω

(y(·, T ) + λnzSn(·, T ))zSn(·, T ) dx
)
, n ≥ 0,

Sn+1/2 = Sn + bnp
n, Sn+1 = P[−1,1](Sn+1/2), n ≥ 0

(26)

where (an, bn) denotes the minimizer of the functional Jα(λn+1, Sn+1/2) over R+ × R+ easily obtained
by a Newton type method. This algorithm is simpler than (23) which requires a line search technique
to solve (24): it ensures that Jα(λn+1, Sn+1/2) ≤ Jα(λn, Sn). Moreover, we have checked in our nu-
merical experiments that there is decreasing of the cost, that is, Jα(λn+1, Sn+1) ≤ Jα(λn, Sn) for all n.
Eventually, from (23), the algorithm is stopped as soon as∣∣∣∣λn +

∫
Ω
y(·, T )zSn(·, T )dx

α+ ‖zSn(·, T )‖2L2(Ω)

∣∣∣∣ ≤ σ|λn| (27)

for a given tolerance σ. Note that, at the miminal point, this leads to an expression of the optimal λ,
that is the L∞(qT )-norm of the bang-bang control in terms of the optimal distribution S: λ = − <

y(·, T ), zS(·, T ) >L2(Ω) /(α+ < zS(·, T ), zS(·, T ) >L2(Ω)). The data we consider are the following:

Ω = (0, 1)2, ω = (0.2, 0.6)2, c = 0.1, T = 0.5, y0(x) = 1(0.5,0.8)2(x), a ≡ 0.

Moreover, in order to reduce the natural dissipation of the heat from the boundary, we impose a free
Neumann boundary condition, that is ∇y · ν = 0 on ΣT (instead of a null Dirichlet boundary condition).
Up to that change, the relaxed formulation (RTα) is unchanged. We use P2 finite elements in space:
the finite element discretization of Ω composed of 3694 triangles is drawn in Figure 6. For the time
integration, we still use the second order Gear scheme (see Section 3).

Finally, we do not take a too small value for α, precisely α = 10−4, in order to restrict the number of
oscillations of the density near T , and therefore reduce the computational cost needed to capture them.
The algorithm is initialized with λ0

h = 1 and S0
h = 0 in qT .

Figure 7 displays the iso-values of the optimal density sh in ω (defined from Sh by sh = (Sh+1)/2) for
8 values of t ∈ [0, T ]: t = kT/12 with k in {0, 3, 5, 7, 9, 10, 11, 12}. As in the 1D-space situation, we recover
that, for any t ∈ [0, T ), x → sh(x, t) is a (0, 1)-function in ω and that the variations of sh with respect
to t increase abruptly when t becomes close enough to T . In particular, for t = T , the density we obtain
has some important variations and takes some values in (0, 1). Very likely, a very fine mesh together
with a large number of iterates is needed to recover a bi-valued function. Table 4 collects some numerical
values obtained after 3012 iterates of the algorithm (26) with σ = 10−3 in (27). We observe in particular
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Figure 6: Mesh of Ω - 3694 triangles - P2 finite elements - 7449 degres of freedom.

that the final state satisfies ‖yh(·, T )‖L2(Ω) ≈ 5.06× 10−2, of the order of
√
α. In the uncontrolled case,

we obtain ‖yh(·, T )‖L2(Ω) ≈ 1.11 × 10−1. The gap between the controlled and uncontrolled case seems
rather small but is not: with Neumann free boundary condition, recall that, in the uncontrolled case,
the heat equation is not dissipative and 0 is not a free trajectory (in the uncontrolled case, we get that
limT→∞ ‖y(·, T )‖L2(Ω) ≈ 9.98 × 10−2 6= 0). The evolution of the norm ‖yh(·, t)‖L2(Ω) with respect to
the time variable is given in Figure 8. As is classical for the L2-situation, we check that the bang-bang
control v almost drives to rest the solution on qT : we get ‖yh(·, T )‖L2(ω) ≈ 8.1× 10−4 of the order of α.
The iso-values of yh(x, T ) in Ω are given in Figure 9.

α Jα,h(λh, Sh) λh ‖yh(·, T )‖L2(Ω) ] iterate CPU time
10−4 18.177 3.265 5.06× 10−2 3012 1729s

Table 4: Direct method - Numerical results.

3.4 Comparison with the dual approach

We now compare in the 2D case our method with the one introduced and developed in [9]. We consider
the inner controllability case which is not numerically discussed in [9]. The dual reformulation of the
bang-bang controllability problem leads to the extremal problem

min
ϕα,T∈L2(Ω)

Jα(ϕα,T ) =
1
2
‖ϕ‖2L1(qT ) +

α

2
‖ϕα,T ‖2L2(Ω) +

∫
Ω

y0(x)ϕ(x, 0) dx

where (ϕ,ϕα,T ) solves (4). The optimal bang-bang control is then given by (3). For any α > 0, the
minimizer of Jα is approximated by the way of the conjugate gradient algorithm : contrarily to the
L2-situation (where the term ‖ϕ‖2L1(qT ) is replaced by ‖ϕ‖2L2(qT ), see [9, 20]), the optimal descent step at
each iteration is not explicit but may be approximated numerically by the secant method.

The same discretization and data (as in the preceding section) are used and the algorithm is initialized
with ϕ0

T,h = 0 in Ω. Table 5 collects some numerical values obtained with the dual method obtained
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Figure 7: Iso-values of the optimal density for t = kT
12 with k = 0, 3, 5, 7, 9, 10, 11, 12.
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Figure 8: Evolution of ‖yh(·, t)‖L2(Ω) vs. t ∈
(0, T ) in the controlled (full line) and uncon-
trolled (dashed line) cases.
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Figure 9: Iso-values of yh(·, T ) on QT .

after 2000 iterates. Comparing with Table 4, the dual method gives similar values1. At a first glance,
the direct method seems to provide a slightly better result since the value of the relaxed function Jh is
smaller than −J ?h : actually, - still with α = 10−4 - when we push the algorithm (26) with a very fine mesh
(9455 triangles and 31934 degrees of freedom) and σ = 10−6 in (27), we obtain some intermediate values
between Table 4 and Table 5: λh ≈ 3.298 and Jh(λh, Sh) ≈ 18.26. Observe also that the methods provide
the same value for the norm ‖yh(·, T )‖L2(Ω) as the variation of the two costs, near the optimum, is very
low with respect to Sh and sign(ph) respectively. The main qualitative difference is found in the behavior
of the residue with respect to the iterates, reported in Figures 10. The dual method leads to a typical
evolution when an ill-posed problem is considered (Figure 10-right): the algorithm needs few iterates to
recover the low frequencies of the adjoint solution ϕT,α (leading to a fast decrease of the residue) then
somehow stagnates - as the consequence of the ill-posedness - to recover the high frequencies (we refer to
[4, 20] for a detailed discussion on that issue for the L2-case). On the other hand, the evolution of the
residue corresponding to the direct method (Figure 10-left) is much smoother, as the consequence of the
relaxation procedure.

α J?h(ϕT,h) ‖ϕh‖L1(qT ) ‖yh(·, T )‖L2(Ω) ] iterate CPU time
10−4 −18.327 3.317 5.06× 10−2 2000 1504s

Table 5: Dual method - Numerical results.

Finally, it is important to emphasize that although the method introduced in this paper gives similar
numerical results as the dual one, however the scope of both approaches is different. Indeed, if we look
at the problem of computing bang-bang type controls with minimal amplitude (which is of practical
interest since bang-bang controls are easier to implement than more general L∞ controls) for other
parabolic systems (where it is not known if the control of minimal L∞-norm is of bang-bang type) then
the relaxation method introduced in the present paper applies, but the one based of computing optimal
controls of minimal L∞-norm does not because a priori we don’t know that optimal controls in L∞-norm

1Recall that from the Legendre-Fenchel theorem, the following holds : infv∈L∞(qT ) Jα(vα) = − infϕT∈L2(Ω) J ?α (ϕT ).

This explains the minus sign in Table 5.
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Figure 10: Evolution of the relative residue (in log10 scale) with respect to the iterates : Direct method
(Left) and dual method (Right).

are of bang-bang type. For the contrary, if we are interested in computing controls with minimal L∞-
norm for a given parabolic system where it is unknown whether these controls are of bang-bang type,
then the approach of this paper does not apply. As a conclusion, in these two scenarios there is not
possibility for comparison because the methods introduced by Glowinski et al. and the one described
here address different problems. Nevertheless, the above comparison with the dual method provides a
useful information concerning the accuracy of the proposed method.

4 Concluding remarks

In this paper, a reformulation of the L∞-controllability problem for the heat equation in terms of an
optimal design one has been proposed. This new formulation, which needs of relaxation, leads to a
simple descent algorithm for the numerical resolution of the original problem. In spite of the well-
posedness character of the problem, optimal bang-bang controls highly oscillate near the final time.
While the amplitude of approximate controls is bounded by above with respect to the penalty parameter
α, the number of these oscillations is not. This feature, closely related to the heat kernel regularization
property, renders severally ill-posed the numerical approximation of the null control of L∞ norm. In
this respect, the minimization of the relaxed cost is not easier than the minimization of the conjugate
function (derived from duality arguments) commonly used. The subtle difference, strongly enhanced for
small values of α, comes from the fact that the density s belongs to L∞ while the dual variable degenerates
in an abstract completed space, possibly larger than L∞.

When the density is known to be almost everywhere a characteristic function, others methods may
be used to solve the initial problem (5). For instance, in the boundary case of Section 2.2, one may write
the density s ∈ L∞([0, T ]; {−1, 1}) as the sum of characteristic functions and make use of algorithms
from constrained optimization: such strategy is much more intricate when the density depends on several
variables. In that case, one may use a level set approach (used in optimal shape design) which requires the
resolution of a nonlinear Hamilton-Jacobi equation of first order (in our controllability context, we refer
to [17]). As already mentioned in Remark 1, the approach we have used here, based on the introduction
of a relaxed problem and justified mathematically, is easy to implement in any dimension.
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This work may be extended in several ways. Let us first mention the semi-linear situation where the
state equation of (1) is replaced by

yt −∆y + f(y) = v 1ω (28)

and for which positive controllability results exist (see [5]). A fixed point strategy reduces the search of
nonlinear bang-bang controls for (28) to the construction of sequence of controls for (1). Consequently,
our approach may be used here. We refer to [6] for a complete study in the L2 case.

Also consider the following optimal control problem, closely related to (Pα) : for any fixed λ > 0

min
v∈L∞(qT ;[−λ,λ])

‖y(·, T )‖L2(Ω)

where y = y(v) solves (1) . It turns out that the optimal control is of bang-bang form (we refer to [21],
p.133) so that our method may be used as well.

Finally, let us mention the wave type equation where the situation is different: in that case, existence
of bang-bang control does not hold in general, as it depends on the initial data (see [11]). This means that,
by applying the same procedure, some data may exhibit relaxation, that is optimal densities taking values
in (0,1). See also [10] where the controllability of the wave equation was studied by using penalization
techniques.
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