M I Isaev 
  
R G Novikov 
  
Reconstruction of a potential from the impedance boundary map

We consider the inverse boundary value problem for the Schrödinger equation at fixed energy with boundary measurements represented as the impedance boundary map (or Robin-to-Robin map). We give formulas and equations for finding (generalized) scattering data for the aforementioned equation from boundary measurements in this impedance representation. Combining these results with results of the inverse scattering theory we obtain efficient methods for reconstructing potential from the impedance boundary map. To our knowledge, results of the present work are new already for the case of Neumannto-Dirichlet map.

Introduction

We consider the equation

-∆ψ + v(x)ψ = Eψ, x ∈ D, E ∈ R, (1.1) 
where

D is an open bounded domain in R d , d ≥ 2, with ∂D ∈ C 2 , (1.2) v ∈ L ∞ (D), v = v. (1.3) 
Equation (1.1) can be considered as the stationary Schrödinger equation of quantum mechanics at fixed energy E. Equation (1.1) at fixed E arises also in acoustics and electrodynamics.

Following [START_REF] Gesztesy | Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrodinger Operators on Bounded Lipschitz Domains[END_REF], [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], we consider the impedance boundary map Mα = Mα,v (E) defined by Mα [ψ] α = [ψ] α-π/2 (1.4) for all sufficiently regular solutions ψ of equation (1.1) in D = D ∪∂D, where

[ψ] α = [ψ(x)] α = cos α ψ(x) -sin α ∂ψ ∂ν | ∂D (x), x ∈ ∂D, α ∈ R (1.5)
and ν is the outward normal to ∂D. Under assumptions (1.2), (1.3), in Lemma 3.2 of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF] it was shown that there is not more than a countable number of α ∈ R such that E is an eigenvalue for the operator -∆ + v in D with the boundary condition cos α ψ| ∂Dsin α ∂ψ ∂ν | ∂D = 0.

(1.6)

Therefore, for any fixed E we can assume that for some fixed α ∈ R E is not an eigenvalue for the operator -∆ + v in D with boundary condition (

and, as a corollary, Mα can be defined correctly.

We consider Mα = Mα,v (E) as an operator representation of all possible boundary measurements for the physical model described by (1.1). We recall that the impedance boundary map Mα is reduced to the Dirichlet-to-Neumann(DtN) map if α = 0 and is reduced to the Neumann-to-Dirichlet(NtD) map if α = π/2. The map Mα can be called also as the Robin-to-Robin map.

As in [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], we consider the following inverse boundary value problem for equation (1.1).

Problem 1.1. Given Mα for some fixed E and α, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at fixed energy (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). Note that in the initial Gel'fand formulation energy E was not yet fixed and boundary measurements were considered as an operator relating ψ| ∂D and ∂ψ ∂ν | ∂D for ψ satisfying (1.1).

Problem 1.1 for E = 0 can be considered also as a generalization of the Calderon problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]).

Note also that Problem 1.1 can be considered as an example of ill-posed problem: see [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF], [START_REF] Lavrent'ev | Ill-posed problems of mathematical physics and analysis[END_REF] for an introduction to this theory. Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem 1.1 with α = 0 (i.e. for the DtN case) were given for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] in dimension d ≥ 3 and in [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] in dimension d = 2.

Global stability estimates for Problem 1.1 with α = 0 were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] in dimension d ≥ 3 and in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] in dimension d = 2. A principal improvement of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] was given recently in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] (for E = 0). Due to [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] these logarithmic stability results are optimal (up to the value of the exponent). An extention of the instability estimates of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] to the case of non-zero energy as well as to the case of Dirichlet-to-Neumann map given on the energy intervals was obtained in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF]. An extention of stability estimates of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] to the energy dependent case was given recently in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]. Instability estimates complementing stability results of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] were obtained in [START_REF] Isaev | Instability in the Gel'fand inverse problem at high energies, Applicable Analysis[END_REF].

Note also that for the Calderon problem (of the electrical impedance tomography) in its initial formulation the global uniqueness was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2. In addition, for the case of piecewise constant or piecewise real analytic conductivity the first uniqueness results for the Calderon problem in dimension d ≥ 2 were given in [START_REF] Druskin | The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity[END_REF], [START_REF] Kohn | Determining conductivity by boundary measurements II, Interior results[END_REF]. Lipschitz stability estimate for the case of piecewise constant conductivity was proved in [START_REF] Alessandrini | Lipschitz stability for the inverse conductivity problem[END_REF] and additional studies in this direction were fulfilled in [START_REF] Rondi | A remark on a paper by[END_REF].

It should be noted that in most of previous works on inverse boundary value problems for equation (1.1) at fixed E it was assumed in one way or another that E is not a Dirichlet eigenvalue for the operator -∆ + v in D, see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]- [START_REF] Santacesaria | Global stability for the multi-channel Gel'fand-Calderon inverse problem in two dimensions[END_REF]. Nevertheless, the results of [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] can be considered as global uniqueness and reconstruction results for Problem 1.1 in dimension d = 2 with general α.

Global stability estimates for Problem 1.1 in dimension d ≥ 2 with general α were recently given in [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF].

In the present work we give formulas and equations for finding (generalized) scattering data from the impedance boundary map Mα with general α. Combining these results with results of [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]- [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]- [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], we obtain efficient reconstruction methods for Problem 1.1 in multidimensions with general α. To our knowledge these results are new already for the NtD case.

In particular, in the present work we give first mathematically justified approach for reconstructing coefficient v from boundary measurements for (1.1) via inverse scattering without the assumption that E is not a Dirichlet eigenvalue for -∆ + v in D. In addition, numerical efficiency of related inverse scattering techniques was shown in [START_REF] Alexeenko | Solution of the three-dimensional acoustical inverse scattering problem. The modified Novikov algorithm[END_REF], [START_REF] Bogatyrev | Numerical realization of algorithm for exact solution of twodimensional monochromatic inverse problem of acoustical scattering[END_REF], [START_REF] Burov | Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem[END_REF], [START_REF] Burov | Functionalanalytical solution of the problem of acoustic tomography from point transducer data[END_REF]; see also [START_REF] Bikowski | Direct numerical reconstruction of conductivities in three dimensions using scattering transforms[END_REF].

Definitions of (generalized) scattering data are recalled in Section 2. Our main results are presented in Section 3. Proofs of these results are given in Sections 4, 5 and 6.

Scattering data

Consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R d , d ≥ 2 (2.1)
where

(1 + |x|) d+ε v(x) ∈ L ∞ (R d ) (as a function of x), for some ε > 0. (2.2)
For equation (2.1) we consider the functions ψ + and f of the classical scattering theory and the Faddeev functions ψ, h, ψ γ , h γ (see, for example, [START_REF] Berezin | The Schrödinger Equation[END_REF], [START_REF] Eskin | Lectures on Linear Partial Differential Equations[END_REF], [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Newton | Inverse Schrödinger scattering in three dimensions[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]).

The functions ψ + and f can be defined as follows:

ψ + (x, k) = e ikx + R d G + (x -y, k)v(y)ψ + (y, k)dy, (2.3) 
G + (x, k) = - 1 2π d R d e iξx ξ 2 -k 2 -i0 dξ, x, k ∈ R d , k 2 > 0, (2.4) 
where (2.3) at fixed k is considered as an equation for

ψ + in L ∞ (R d ); f (k, l) = 1 2π d R d e -ilx ψ + (x, k)v(x)dx, k, l ∈ R d , k 2 > 0.
(2.5)

In addition: ψ + (x, k) satisfies (2.3) for E = k 2 and describes scattering of the plane waves e ikx ; f (k, l), k 2 = l 2 , is the scattering amplitude for equation (2.1) for E = k 2 . Equation (2.3) is the Lippman-Schwinger integral equation.

The functions ψ and h can be defined as follows:

ψ(x, k) = e ikx + R d G(x -y, k)v(y)ψ(y, k)dy, (2.6) 
G(x, k) = - 1 2π d R d e iξx dξ ξ 2 + 2kξ e ikx , x ∈ R d , k ∈ C d , Im k = 0, (2.7) 
where (2.6) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), µ ∈ L ∞ (R d ); h(k, l) = 1 2π d R d e -ilx ψ(x, k)v(x)dx, k, l ∈ C d , Im k = Im l = 0.
(2.8)

In addition, ψ(x, k) satisfies (2.1) for E = k 2 , and ψ, G and h are (nonanalytic) continuations of ψ + , G + and f to the complex domain. In particular, h(k, l) for k 2 = l 2 can be considered as the "scattering" amplitude in the complex domain for equation (2.1) for E = k 2 . The functions ψ γ and h γ are defined as follows:

ψ γ (x, k) = ψ(x, k + i0γ), h γ (k, l) = h(k + i0γ, l + i0γ), x, k, l, γ ∈ R d , γ 2 = 1.
(2.9)

We recall also that

ψ + (x, k) = ψ k/|k| (x, k), f (k, l) = h k/|k| (k, l), x, k, l ∈ R d , |k| > 0. (2.10) We consider f (k, l) and h γ (k, l), where k, l, γ ∈ R d , k 2 = l 2 = E, γ 2 = 1, and h(k, l), where k, l ∈ C d , Im k = Im l = 0, k 2 = l 2 = E, as scattering data S E for equation (2.1) at fixed E ∈ (0, +∞). We consider h(k, l), where k, l ∈ C d , Im k = Im l = 0, k 2 = l 2 = E, as scattering data S E for equation (2.1) at fixed E ∈ (-∞, 0].
We consider also the sets E, E γ , E + defined as follows:

E = ζ ∈ C d \ R d : equation (2.6) for k = ζ is not uniquely solvable for ψ = e ikx µ with µ ∈ L ∞ (R d ) , (2.11a) 
E γ = ζ ∈ R d \ {0} : equation (2.6) for k = ζ + i0γ is not uniquely solvable for ψ = L ∞ (R d ) , γ ∈ S d-1 , (2.11b 
)

E + = ζ ∈ R d \ {0} : equation (2.6) for k = ζ is not uniquely solvable for ψ = L ∞ (R d ) . (2.11c)
In addition, E + is a well-known set of the classical scattering theory for equation (2.1) and E + = ∅ for real-valued v satisfying (2.2) (see, for example, [START_REF] Berezin | The Schrödinger Equation[END_REF], [START_REF] Newton | Inverse Schrödinger scattering in three dimensions[END_REF]). Note also that E + is spherically symmetric. The sets E, E γ were considered for the first time in [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF]. Concerning the properties of E and E γ , see [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Grinevich | Faddeev eigenfunctions for multipoint potentials[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF], [START_REF] Newton | Inverse Schrödinger scattering in three dimensions[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF].

We consider also the functions R, R γ , R + defined as follows:

R(x, y, k) = G(x -y, k) + R d G(x -z, k)v(z)R(z, y, k)dz, x, y ∈ R d , k ∈ C d , Im k = 0, (2.12) 
where G is defined by (2.7) and formula (2.12) at fixed y, k is considered as an equation for R(x, y, k) = e ik(x-y) r(x, y, k), (2.13) where r is sought with the properties

r(•, y, k) is continuous on R d \ {y} (2.14a) r(x, y, k) → 0 as |x| → ∞, (2.14b) r(x, y, k) = O(|x -y| 2-d ) as x → y for d ≥ 3, r(x, y, k) = O(| ln |x -y||) as x → y for d = 2; (2.14c) R γ (x, y, k) = R(x, y, k + i0γ), x, y ∈ R d , k ∈ R d \ {0}, γ ∈ S d-1 ; (2.15) R + (x, y, k) = R k/|k| (x, y, k), x, y ∈ R d , k ∈ R d \ {0}. (2.16)
In addition, the functions R(x, y, k), R γ (x, y, k) and R + (x, y, k) (for their domains of definition in k and γ) satisfy the following equations:

(∆ x + E -v(x))R(x, y, k) = δ(x -y), (∆ y + E -v(y))R(x, y, k) = δ(x -y), x, y ∈ R d , E = k 2 .
(2.17)

The function R + (x, y, k) (defined by means of (2.12) for k ∈ R d \ {0} with G replaced by G + of (2.4)) is well-known in the scattering theory for equations (2.1), (2.17) (see, for example, [START_REF] Yu | The uniqueness theorem in the inverse problem of spectral analysis for the Schrodinger equation[END_REF]). In particular, this function describes scattering of the spherical waves G + (xy, k) generated by a source at y. In addition

R + (x, y, k) is a radial function in k, i.e. R + (x, y, k) = R + (x, y, |k|), x, y ∈ R d , k ∈ R d \ {0}. (2.18)
Apparently, the functions R and R γ were considered for the first time in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF].

In addition, under the assumption (2.2): equation (2.12) at fixed y and k is uniquely solvable for R with the properties (2.13), (2.14) 

if and only if

k ∈ C d \ (\R d ∪ E); equation (2.12) with k = ζ + i0γ, ζ ∈ R d \ {0}, γ ∈ S d-1 , at fixed y, ζ and γ is uniquely solvable for R γ if and only if ζ ∈ R d \({0}∪E γ ); equation (2.12) with k = ζ + i0ζ/|ζ|, ζ ∈ R d \ 0, at fixed y and ζ is uniquely solvable for R + if and only if ζ ∈ R d \ ({0} ∪ E + ).

Main results

Let v and v 0 satisfy (1.3), (1.7) for some fixed E and α. Let M α,v (x, y, E), M α,v 0 (x, y, E), x, y ∈ ∂D, denote the Schwartz kernels of the impedance boundary maps Mα,v , Mα,v 0 , for potentials v and v 0 , respectively, where Mα,v , Mα,v 0 are considered as linear integral operators. In addition, we consider v 0 as some known background potential.

Let

h, ψ, f , ψ + , h γ , ψ γ , E, E + , E γ and h 0 , ψ 0 , f 0 , ψ +,0 , h 0 γ , ψ 0 γ , E 0 , E +,0 , E 0
γ denote the functions and sets of (2.3), (2.5), (2.6), (2.8), (2.9), (2.11) for potentials v and v 0 , respectively. Here and bellow in this section we always assume that v ≡ 0, v 0 ≡ 0 on R d \ D. Theorem 3.1. Let D satisfy (1.2) and potentials v, v 0 satisfy (1.3), (1.7) for some fixed E and α. Then:

h(k, l) -h 0 (k, l) = = 1 2π d ∂D ∂D [ψ 0 (x, -l)] α (M α,v -M α,v 0 ) (x, y, E)[ψ(y, k)] α dx dy, k, l ∈ C d \ (E ∪ E 0 ), k 2 = l 2 = E, Im k = Im l = 0, (3.1) [ψ(x, k)] α = [ψ 0 (x, k)] α + ∂D A α (x, y, k)[ψ(y, k)] α dy, x ∈ ∂D, k ∈ C d \ (E ∪ E 0 ), Im k = 0, k 2 = E (3.2)
where

A α (x, y, k) = lim ε→+0 ∂D D α,ε R 0 (x, ξ, k) (M α,v -M α,v 0 ) (ξ, y, E)dξ, (3.3) 
D α,ε R 0 (x, ξ, k) = [[R 0 (x + εν x , ξ, k)] ξ,α ] x,α = = cos 2 α -sin α cos α ∂ ∂ν x + ∂ ∂ν ξ + sin 2 α ∂ 2 ∂ν x ∂ν ξ R 0 (x + εν x , ξ, k),
x, ξ, y ∈ ∂D, (3.4) where R 0 denotes the Green function of (2.12) for potential v 0 , ν x is the outward normal to ∂D at x. In addition, formulas completely similar to (3.1) -(3.4) are also valid for the classical scattering functions f , ψ + , f 0 , ψ +,0 and sets E + , E +,0 of (2.3), (2.5), (2.11c) for v and v 0 , respectively, but with R +,0 in place of R 0 in (3.3), (3.4), where R +,0 denotes the Green function of (2.16) for potential v 0 . Theorem 3.1 is proved in Section 4. Note that formula of the type (3.1) for h γ is not completely similar to (3.1): see formula (3.6) given below. In this formula (3.6), in addition to expected ψ γ (x, k), we use also ψ γ (x, k, l) defined as follows:

ψ γ (x, k, l) = e ilx + R d G γ (x -y, k)v(y)ψ γ (y, k, l)dy, G γ (x, k) = G(x, k + i0γ), γ ∈ S d-1 , x, k, l ∈ R d , k 2 = l 2 > 0, (3.5)
where (3.5) at fixed γ, k, l is considered as an equation for

ψ γ (•, k, l) in L ∞ (R d ), G is defined by (2.7).
Proposition 3.1. Let the asssumptions of Theorem 3.1 hold. Let ψ γ (x, k) correspond to v according to (2.9) and ψ 0 -γ (•, k, l) correspond to v 0 according to (3.5). Then

h γ (k, l) -h 0 γ (k, l) = = 1 2π d ∂D ∂D [ψ 0 -γ (x, -k, -l)] α (M α,v -M α,v 0 ) (x, y, E)[ψ γ (y, k)] α dx dy, γ ∈ S d-1 , k ∈ R d \ ({0} ∪ E γ ∪ E 0 γ ), l ∈ R d , k 2 = l 2 = E.
(3.6) In addition, formulas completely similar to (3.2) -(3.4) are also valid for the functions ψ γ (x, k), ψ 0 γ (x, k) and sets E γ , E 0 γ of (2.9), (2.11b) for v and v 0 , respectively, but with R 0 γ in place of R 0 in (3.3), (3.4), where R 0 γ denotes the Green function of (2.15) for potential v 0 . Proposition 3.1 is proved in Section 4. Note that (3.2) is considered as a linear integral equation for finding [ψ(x, k)] α , x ∈ ∂D, at fixed k, from Mα,v -Mα,v 0 and [ψ 0 (x, k)] α , whereas (3.1) is considered as an explicit formula for finding h from h 0 , Mα,v -Mα,v 0 , [ψ 0 (x, k)] α and [ψ(x, k)] α . In addition, we use similar interpretation for similar formulas for ψ + , f and for ψ γ , h γ , mentioned in Theorem 3.1 and Proposition 3.1.

Under the assumptions of Theorem 3.1, the following propositions are valid:

Proposition 3.2. Equation (3.2) for [ψ(x, k)] α at fixed k ∈ C d \ (R d ∪ E 0
) is a Fredholm linear integral equation of the second kind in the space of bounded functions on ∂D. In addition, the same is also valid for the equation for

[ψ + (x, k)] α at fixed k ∈ R d \ ({0} ∪ E +,0 ), mentioned in Theorem 3.

1, and for the equation for

[ψ γ (x, k)] α at fixed γ ∈ S d-1 , k ∈ R d \ ({0} ∪ E 0 γ ), mentioned in Proposition 3.1. Proposition 3.2 is proved in Section 4. Proposition 3.3. For k ∈ C d \ (R d ∪ E 0 ) equation (3.
2) is uniquely solvable in the space of bounded functions on ∂D if and only if k / ∈ E. In addition, the aforementioned equations for 

[ψ + (x, k)] α , k ∈ R d \ ({0} ∪ E +,0 ), and [ψ γ (x, k)] α , γ ∈ S d-1 , k ∈ R d \ ({0} ∪ E 0 γ ),
-∆ x φ α (x, y) = λφ α (x, y), x ∈ D, φ α (x, y) = (M α,v -M α,v 0 ) (x, y, E), x ∈ ∂D, (3.7) 
where we assume that λ is not a Dirichlet eigenvalue for -∆ in D. Then

A α (x, y, k) = lim ε→+0 ∂D [R 0 (x + εν x , ξ, k)] x,α [φ α (ξ, y)] ξ,α dξ- -sin α D [R 0 (x, ξ, k)] x,α (v 0 (ξ) -E + λ)φ α (ξ, y)dξ, x, y ∈ ∂D, (3.8 
) where Proposition 3.4 is proved in Section 4. Note that, for the case when sin α = 0, formula (3.8) coincides with (3.3). However, for sin α = 0, formula (3.8) does not contain ∂ 2 R 0 /∂ν x ∂ν ξ in contrast with (3.3) and is more convenient than (3.8) in this sense.

[R 0 (x+εν x , ξ, k)] x,α = cos α -sin α ∂ ∂ν x R 0 (x+εν x , ξ, k), x ∈ ∂D, ξ ∈ D, (3.9) 
[φ α (ξ, y)] ξ,α = cos α -sin α ∂ ∂ν ξ φ α (ξ, y) = = cos α φ α (ξ, y) -sin α Φ(λ)φ α (•, y) (ξ), ξ, y ∈ ∂D, ( 3 
Theorem 3.1, Propositions 3.1 -3.4 and the reconstruction results from generalized scattering data (see [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF], [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]- [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]- [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF]) imply the following corollary: Corollary 3.1. To reconstruct a potential v in the domain D from its impedance boundary map Mα,v (E) at fixed E and α one can use the following schema: 

1. v 0 → {S 0 E }, {R 0 }, {[ψ 0 ] α }, Mα,v 0 via direct problem methods, 2. {R 0 }, Mα,v 0 , Mα,v → {A α }
4. {S 0 E }, {[ψ 0 ] α }, {[ψ] α }, Mα,v 0 , Mα,v
→ {S E } as described in Theorem 3.1 and Proposition 3.1, 5. {S E } → v as described in [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy[END_REF], [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. 1. Energies below the ground state[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator[END_REF]- [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]- [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF],

where {S 0 E } and {S E } denote some appropriate part of h 0 , f 0 , h 0 γ and h, f ,

h γ , respectively, {[ψ 0 ] α } and {[ψ] α } denote some appropriate part of [ψ 0 ] α , [ψ +,0 ] α , [ψ 0 γ ] α and [ψ] α , [ψ + ] α , [ψ γ ] α , respectively, {R 0 }, {A α } denote some appropriate part of R 0 , R +,0 , R 0 γ , A α , A + α , A α,γ .
Remark 3.1. For the case when v 0 ≡ 0, sin α = 0, Theorem 3.1, Propositions 3.1 -3.3 and Corollary 3.1 (with available references at that time at step 5) were obtained in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] (see also [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF]). Note that basic results of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] were presented already in the survey given in [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. For the case when sin α = 0 Theorem 3.1, Propositions 3.1 -3.3 and Corollary 3.1 (with available references at that time at step 5) were obtained in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF].

Remark 3.2. The results of Theorem 3.1, Propositions 3.1 -3.4 and Corollary 3.1 remain valid for complex-valued v, v 0 and complex E, α, under the condition that (1.7) holds for both v and v 0 .

Remark 3.3. Under the assumptions of Theorem 3.1, the following formula holds:

Mα,v (E) -Mα,v 0 (E) = (D α R +,0 (E)) -1 -(D α R + (E)) -1 , (3.11) 
D α R + (E)u(x) = lim ε→+0 ∂D D α,ε R + (x, y, √ E)u(y)dy, D α R +,0 (E)u(x) = lim ε→+0 ∂D D α,ε R +,0 (x, y, √ E)u(y)dy, x ∈ ∂D, (3.12) 
where D α,ε is defined as in (3.4), R + (x, y, √ E), R +,0 (x, y, √ E), √ E > 0, are the Green functions of (2.16) written as in (2.18) for potentials v, v 0 , respectively, u is the test function. For the case when sin α = 0, v 0 ≡ 0, d ≥ 3, formula (3.11) was given in [START_REF] Nachman | Reconstructions from boundary measurements[END_REF]. Using techniques developed in [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF] and in the present work, we obtain (3.11) in the general case.

4 Proofs of Theorem 3.1 and Propositions 3.1, 3.2, 3.4

In this section we will use formulas and equations for impedance boundary map from [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. These results are presented in detail in Subsection 4. 

Preliminaries

Let G α,v (x, y, E) be the Green function for the operator ∆v + E in D with the impedance boundary condition (1.6) under assumptions (1.2), (1.3) and (1.7). We recall that (see formulas (3.12), (3.13) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]):

G α,v (x, y, E) = G α,v (y, x, E), x, y ∈ D, (4.1) 
and, for sin α = 0,

M α,v (x, y, E) = 1 sin 2 α G α,v (x, y, E) - cos α sin α δ ∂D (x -y), x, y ∈ ∂D, (4.2)
where M α (x, y, E) and δ ∂D (x-y) denote the Schwartz kernels of the impedance boundary map Mα,v (E) and the identity operator Î on ∂D, respectively, where Mα and Î are considered as linear integral operators. We recall also that (see, for example, formula (3.16) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]):

ψ(x) = 1 sin α ∂D (cos α ψ(ξ) -sin α ∂ ∂ν ψ(ξ))G α,v (x, ξ, E)dξ, x ∈ D, (4.3) 
for all sufficiently regular solutions ψ of equation (1.1) in D and sin α = 0. We will use the following properties of the Green function G α (x, y, E):

G α,v (x, y, E) is continuous in x, y ∈ D, x = y, (4.4 
)

|G α,v (x, y, E)| ≤ c 1 (|x -y| 2-d ), x, y ∈ D, for d ≥ 3, |G α,v (x, y, E)| ≤ c 1 (| ln |x -y||), x, y ∈ D, for d = 2, ( 4.5) 
where

c 1 = c 1 (D, E, v, α) > 0.
Actually, properties (4.4), (4.5) are well-known for sin α = 0 (the case of the Direchlet boundary condition) and for cos α = 0 (the case of the Neumann boundary condition). Properties (4.4), (4.5) with d ≥ 3, sin α cos α < 0, v ≡ 0 and E = 0 were proven in [START_REF] Lanzani | On the Robin boundary condition for Laplace's equation in Lipschitz domains[END_REF]. For d = 2 see also [START_REF] Begehr | Some harmonic Robin functions in the complex plane[END_REF]. In Section 6 we give proofs of (4.4), (4.5) for the case of general α, v and E.

In addition, under assumptions of Theorem 3.1, the following identity holds (see formula (3.9) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]):

D (v -v 0 )ψψ 0 dx = ∂D [ψ] α Mα,v -Mα,v 0 [ψ 0 ] α dx (4.6)
for all sufficiently regular solutions ψ, ψ 0 of equation (1.1) in D for potentials v, v 0 , respectively, where [ψ] α , [ψ 0 ] α are defined according to (1.5). Identity (4.6) for sin α = 0 is reduced to the Alessandrini identity (Lemma 1 of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]).

We will use also that:

R(k)u C 1+δ (Ω) ≤ c 2 (D, Ω, v, k, δ) u L ∞ (D) , R(k)u(x) = D R(x, y, k)u(y)dy, x ∈ Ω, k ∈ C d \ (R d ∪ E), (4.7a) Rγ (k)u C 1+δ (Ω) ≤ c 3 (D, Ω, v, k, γ, δ) u L ∞ (D) , Rγ (k)u(x) = D R γ (x, y, k)u(y)dy, x ∈ Ω, γ ∈ S d-1 , k ∈ R d \ ({0} ∪ E γ ), (4.7b) for u ∈ L ∞ (D), δ ∈ [0, 1),
where Ω is such an open bounded domain in R d that D ∈ Ω and C 1+δ denotes C 1 with the first derivatives belonging to the Hölder space C δ . We will use also the Green formula:

∂D φ 1 ∂φ 2 ∂ν -φ 2 ∂φ 1 ∂ν dx = D (φ 1 ∆φ 2 -φ 2 ∆φ 1 ) dx, (4.8) 
where φ 1 and φ 2 are arbitrary sufficiently regular functions in D.

Proof of Theorem 3.1 and Proposition 3.1

For the case when sin α = 0, Theorem 3.1 and Proposition 3.1 were proved in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. In this subsection we generalize the proof of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF] to the case sin α = 0. We proceed from the following formulas and equations (being valid under assumption (2.2) on v 0 and v):

h(k, l) -h 0 (k, l) = 1 2π d R d ψ 0 (x, -l)(v(x) -v 0 (x))ψ(x, k)dx, k, l ∈ C d \ (E 0 ∪ E), k 2 = l 2 , |Im k| = |Im l| = 0, (4.9) ψ(x, k) = ψ 0 (x, k) + R d R 0 (x, y, k)(v(y) -v 0 (y))ψ(y, k)dy, x ∈ R d , k ∈ C d \ (R d ∪ E 0 ), (4.10) 
where (4.10) at fixed k is considered as an equation for

ψ = e ikx µ(x, k) with µ ∈ L ∞ (R d ); f (k, l) -f 0 (k, l) = 1 2π d R d ψ +,0 (x, -l)(v(x) -v 0 (x))ψ + (x, k)dx, k, l ∈ R d \ ({0} ∪ E +,0 ∪ E + ), k 2 = l 2 , (4.11) ψ + (x, k) = ψ +,0 (x, k) + R d R +,0 (x, y, k)(v(y) -v 0 (y))ψ + (y, k)dy, x ∈ R d , k ∈ R d \ ({0} ∪ E +,0 ), (4.12) 
where (4.12) at fixed k is an equation for ψ + ∈ L ∞ (R d );

h γ (k, l) -h 0 γ (k, l) = 1 2π d R d ψ 0 -γ (x, -k, -l)(v(x) -v 0 (x))ψ γ (x, k)dx, γ ∈ S d-1 , k ∈ R d \ (E 0 γ ∪ E γ ), l ∈ R d , k 2 = l 2 , (4.13) ψ γ (x, k) = ψ 0 γ (x, k) + R d R 0 γ (x, y, k)(v(y) -v 0 (y))ψ γ (y, k)dy, x ∈ R d , γ ∈ S d-1 , k ∈ R d \ ({0} ∪ E 0 γ ), (4.14) 
where (4.14) at fixed γ and k is considered as an equation for

ψ γ ∈ L ∞ (R d ).
We recall that ψ + , f , ψ, h, ψ γ , h γ were defined in Sections 2, 3 by means of (2.3) -(2.9), (3.5). Equation (4.12) is well-known in the classical scattering theory for the Schrödinger equation (2.1). Formula (4.11) was given, in particular, in [START_REF] Stefanov | A uniqueness result for the inverse back-scattering problem[END_REF]. To our knowledge formula and equations (4.9), (4.10), (4.14) were given for the first time in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], whereas formula (4.13) was given for the first time in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF].

In addition, under assumption (2.2) on v 0 and v:

equation (4.10) at fixed k ∈ C d \ (R d ∪ E 0 ) is uniquely solvable for ψ = e ikx µ(x, k) with µ ∈ L ∞ (R d ) if and only if k / ∈ E; (4.15a) equation (4.12) at fixed k ∈ R d \ ({0} ∪ E +,0 ) is uniquely solvable for ψ + ∈ L ∞ (R d ) if and only if k / ∈ E + ; (4.15b) equation (4.14) at fixed γ ∈ S d-1 and k ∈ R d \ ({0} ∪ E + γ ) is uniquely solvable for ψ γ ∈ L ∞ (R d ) if and only if k / ∈ E γ . (4.15c)
Let us prove Theorem 3.1 for the case of the Faddeev functions ψ, h. The proof of Theorem 3.1 for the case of ψ + , f and the proof of Proposition 3.1 are similar.

Note that formula (3.1) follows directly from (4.6) and (4.9).

Using (2.17) and applying (4.6) for equation (4.10), we get that

ψ(x, k) -ψ 0 (x, k) = ∂D ∂D [R 0 (x, ξ, k)] ξ,α (M α,v -M α,v 0 ) (ξ, y, E)[ψ(y, k)] α dξdy, x ∈ R d \ D, (4.16) where 
[R 0 (x, ξ, k)] ξ,α = cos α -sin α ∂ ∂ν ξ R 0 (x, ξ, k). (4.17) 
Equation (3.2) follows from formula (4.16), definition (1.5) and the property that

lim ε→+0 cos α -sin α ∂ ∂ν x u(x + εν x ) = [u(x)] α , x ∈ ∂D, (4.18) 
for u(x) = ψ(x, k)ψ 0 (x, k).

Proofs of Propositions 3.2 and 3.4

In this subsection we prove Propositions 3.2, 3.4 for the case of equation (3.2) for [ψ] α . The proofs of Propositions 3.2 and 3.4 for the cases of ψ + and ψ γ are absolutely similar.

Proof of Proposition 3.2. The proof of Proposition 3.2 for the case of sin α = 0 was given in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. Let us assume that sin α = 0. Using (4.2), we find that

(M α,v -M α,v 0 ) (ξ, y, E) = 1 sin 2 α (G α,v -G α,v 0 ) (ξ, y, E), ξ, y ∈ ∂D. (4.19) 
Using (2.17), (4.1), (4.8) and the impedance boundary condition (1.6) for 

G α,v , G α,v 0 , we get that ∂D [R 0 (x, ξ, k)] α,ξ (G α,v -G α,v 0 )(ξ, y, E)dξ = = ∂D [R 0 (x, ξ, k)] α,ξ (G α,v -G α,v 0 ) (ξ, y, E)dξ- -R 0 (x, ξ, k)[(G α,v -G α,v 0 ) (ξ, y, E)] α,ξ dξ = = sin α D R 0 (x,ξ, k)∆ ξ (G α,v -G α,v 0 ) (ξ, y, E)dξ- -(G α,v -G α,v 0 ) (ξ, y, E)∆ ξ R 0 (x, ξ, k) dξ = = sin α D R 0 (x, ξ, k) v(ξ) -v 0 (ξ) G α,v (ξ, y, E)dξ, x ∈ R d \ D, y ∈ ∂D.
A α (x, y, k) = lim ε→+0 cos α -sin α ∂ ∂ν x B α (x+εν x , y, k), x, y ∈ ∂D, (4.21) 
where

B α (x, y, k) = ∂D [R 0 (x, ξ, k)] α,ξ (M α,v -M α,v 0 )(ξ, y, E)dξ = = 1 sin α D R 0 (x, ξ, k) v(ξ) -v 0 (ξ) G α,v (ξ, y, E)dξ, x ∈ R d \ D, y ∈ ∂D. (4.22)
Thus, we have that the limit in (4.21) (and, hence, in (3.3)) is well defined and As a corollary of (4.24), Âα (k) is a compact operator in L ∞ (D).

A α (x, y, k) = 1 sin α D [R 0 (x, ξ, k)] x,α v(ξ) -v 0 (ξ) G α,v (ξ, y, E)dξ, x, y ∈ ∂D.
Proof of Proposition 3.4. Using (2.17), (3.7) and (4.8), we get that

∂D φ α (ξ, y) ∂ ∂ν ξ R 0 (x, ξ, k) -R 0 (x, ξ, k) ∂ ∂ν ξ φ α (ξ, y) dξ = = D φ α (ξ, y)∆ ξ R 0 (x, ξ, k) -R 0 (x, ξ, k)∆ ξ φ α (ξ, y) dξ = = D R 0 (x, ξ, k)(v 0 (ξ) -E + λ)φ α (ξ, y)dξ, x ∈ R d \ D, y ∈ ∂D. (4.25) Combining (3.7), (4.22) and (4.25) 
, we find that Formula (3.10) follows from (3.7) and the definition of Φ.

B α (x, y, k) = ∂D [R 0 (x, ξ, k)] ξ,α φ α (ξ, y)dξ = = ∂D R 0 (x, ξ, k)[φ α (ξ, y)] ξ,α dξ -sin α D R 0 (x, ξ, k)(v 0 (ξ) -E + λ)φ α (ξ, y)dξ, x ∈ R d \ D, y ∈ ∂D. ( 4 

Proof of Proposition 3.3

For the case when sin α = 0, Proposition 3.3 was proved in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. In this section we prove Proposition 3.3 for sin α = 0. We will prove Proposition 3.3

for the case of equation (3.2) for [ψ] α . The proofs for the cases of ψ + and ψ γ are similar.

According to (4.15), to prove Proposition 3.3 (for the case of ψ) it is sufficient to show that equation (3.2) (at fixed k ∈ C d \ (R d ∪ E 0 )) is uniquely solvable in the space of bounded functions on ∂D if and only if equation (4.10) is uniquely solvable for ψ = e ikx µ(x, k) with µ ∈ L ∞ (R d ).

Let equation (4.10) have several solutions. Then, repeating the proof of Theorem 3.1 separately for each solution, we find that [ψ] α on ∂D for each of these solutions satisfies equation (3.2). Thus, using also (1.7) we obtain that equation (3.2) has at least as many solutions as equation (4.10).

To prove the converse (and thereby to prove Proposition 3.3) it remains to show that any solution [ψ] α of (3.2) can be continued to a continuos solution of (4.10).

Let ψ be the solution of (1.1) with the impedance boundary data [ψ] α , satisfying (3.2). Let

ψ 1 (x) = ψ 0 (x, k) + D R 0 (x, y, k)(v(y) -v 0 (y))ψ(y)dy, x ∈ R d .
(

Using (4.7), we obtain that

ψ 1 defined by (5.1) belongs to C 1+δ (R d ), δ ∈ [0, 1). (5.2) 
We have that (5.5) Using (3.2), (4.21), (5.2), (5.5), we find that

(-∆ + v 0 (x) -E)ψ(x) = (v 0 (x) -v(x))ψ(x), x ∈ D, (5.3) 
(-∆ + v 0 (x) -E)ψ 1 (x) = D -δ(x -y)(v(y) -v 0 (y))ψ(y)dy = = (v 0 (x) -v(x))ψ(x), x ∈ D.
[ψ 1 (x)] α = [ψ 0 (x, k)] α + ∂D A α (x, y, k)[ψ(y)] α dy = [ψ(x)] α , x ∈ ∂D. (5.6)
Using (5.3), (5.4) and (5.6), we obtain that

(-∆ + v 0 (x) -E)(ψ 1 (x) -ψ(x)) = 0, x ∈ D, [ψ 1 (x) -ψ(x)] α = 0, x ∈ ∂D. (5.7) 
Since v 0 satisfies (1.7), we get that

ψ 1 (x) = ψ(x), x ∈ D.
(5.8)

Combining (5.1), (5.2) and (5.8), we find that ψ 1 is a continuos solution of (4.10).

6 Proofs of properties (4.4), (4.5)

As it was mentioned in Subsection 4.1, properties (4.4), (4.5) are well-known for cos α = 0 (the case of the Neumann boundary condition). To extend these properties to the case of general α, v, E, we use the following schema: we obtain these properties for the case when sin α = 0. As it was already mentioned in Section 4, properties (4.4), (4.5) are wellknown for sin α = 0 (the case of the Dirichlet boundary condition). Lemma 6.1. Let D satisfy (1.2) and potential v satisfy (1.3), (1.7) for some fixed E and for α = α 1 , α = α 2 simultaneously, where sin α 1 = 0 and sin α 2 = 0. Let G j denote the Green function G α j ,v , j = 1, 2. Let G 1 satisfy:

1. G α 1 ,v → G
G 1 (x, y, E) is continuous in x, y ∈ D, x = y, (6.2 
)

|G 1 (x, y, E)| ≤ a 1 |x -y| 2-d for d ≥ 3, |G 1 (x, y, E)| ≤ a 1 | ln |x -y|| for d = 2,
x, y ∈ D.

(6.3)

Then:

G 2 (x, y, E) is continuous in x, y ∈ D, x = y, (6.4 
)

|G 2 (x, y, E)| ≤ a 2 |x -y| 2-d for d ≥ 3, |G 2 (x, y, E)| ≤ a 2 | ln |x -y|| for d = 2, x, y ∈ D, (6.5) 
where

a 2 = a 2 (D, E, a 1 , v, α 1 , α 2 ) > 0.
Proof of Lemma 6.1. First, we derive formally some formulas and equations relating the Green functions G 1 and G 2 . Then, proceeding from these formulas and equations, we obtain, in particular, estimates (6.4), (6.5).

Consider W = G 2 -G 1 .
Using definitions of G 1 , G 2 and formula (4.3), we find that:

(-∆ x + v(x) -E)W (x, y) = 0, x, y ∈ D, (6.6) cos α 2 W (x, y) -sin α 2 ∂W ∂ν x (x, y) x∈∂D = = -cos α 2 G 1 (x, y, E) -sin α 2 ∂G 1 ∂ν x (x, y, E) x∈∂D = = -cos α 2 G 1 (x, y, E) -sin α 2 cos α 1 sin α 1 G 1 (x, y, E) x∈∂D = = sin(α 2 -α 1 ) sin α 1 G 1 (x, y, E) x∈∂D , y ∈ D, (6.7) 
W (x, y) = 1 sin α 1 ∂D cos α 1 W (ξ, y) -sin α 1 ∂W ∂ν ξ (ξ, y) G 1 (ξ,
x, E)dξ, x, y ∈ D.

(6.8) Using (6.7) and (6.8), we find the following linear integral equation for W (•, y) on ∂D:

W (•, y) = W 0 (•, y) + K1 W (•, y), y ∈ D, (6.9) 
where

W 0 (x, y) = sin(α 2 -α 1 ) sin α 2 ∂D G 1 (ξ, x, E)G 1 (ξ, y, E)dξ, (6.10) K1 u(x) = sin(α 2 -α 1 ) sin α 2 sin α 1 ∂D G 1 (ξ, x, E)u(ξ)dξ,
x ∈ ∂D, y ∈ D, u is a test function.

(6.11)

In addition, for

δ n W = W - n j=1
( K1 ) j-1 W 0 (6.12) equation (6.9) takes the form Let us show that the homogeneous equation

δ n W = ( K1 ) n W 0 + K1 δ n W. ( 6 
u = K1 u, u ∈ C(∂D), (6.16) 
has only trivial solution u ≡ 0.

Using the fact that the potential v satisfy (1.7) for α = α 1 , we define ψ by

(-∆ + v(x) -E)ψ(x) = 0, x ∈ D, cos α 1 ψ| ∂D -sin α 1 ∂ψ ∂ν | ∂D = u. (6.17) 
Due to (4.3), we have that

ψ(x) = 1 sin α 1 ∂D (cos α 1 ψ(ξ) -sin α 1 ∂ψ ∂ν (ξ))G 1 (ξ, x, E)dξ, x ∈ D. (6.18)
Using (6.16), (6.18), we find that

sin(α 2 -α 1 ) sin α 2 ψ(x) = K1 u(x) = u(x), x ∈ ∂D. (6.19) 
Therefore, we have that

cos α 1 ψ(x) -sin α 1 ∂ψ ∂ν (x) = sin(α 2 -α 1 ) sin α 2 ψ(x), x ∈ ∂D. (6.20) 
Since sin α 1 = 0 and sin α 2 = 0, using (6.20), we obtain that cos α 2 ψ(x)sin α 2 ∂ψ ∂ν (x) = 0 (6.21)

Taking into account the fact that the potential v satisfy (1.7) for α = α 2 , we get that ψ ≡ 0 and u ≡ 0. Proceeding from

F = W (x, y) and F ′ = cos α 2 sin α 2 W (x, y) - sin(α 2 -α 1 ) sin α 1 sin α 2 G 1 (x, y, E), x ∈ ∂D, y ∈ D, (6.22) 
found from (6.9), (6.13) and (6.7) (with F ′ substituted in place of ∂W/∂ν x ), we consider W (x, y) = 1 sin α 1 ∂D cos α 1 F (ξ, y)-sin α 1 F ′ (ξ, y) G 1 (ξ, x, E)dξ, x, y ∈ D. From (6.2), (6.3), (6.10)-(6.16), (6.24)-(6.26) it follows that G 2 defined as G 2 = G 1 + W is the Green function for the operator ∆v + E in D with the impedance boundary condition (1.6) for α = α 2 and that G 2 satisfies (6.4), (6.5). where a 4 = a 4 (D, E, a 3 , v 1 , v 2 , α) > 0.

Proof of Lemma 6.2. First, we derive formally some formulas and equations relating the Green functions G 1 and G 2 . Then, proceeding from these formulas and equations, we obtain, in particular, estimates (6.29), (6.30). Using (4.1), the impedance boundary condition for G 1 , G 2 , we find that Using (6.27), (6.28), we find that u ∈ C( D). Taking into account the fact that the potential v 2 satisfy (1.7), we get that u ≡ 0. Proceeding from (6.27), (6.28), (6.36), (6.37) it follows that G 2 found from (6.32), (6.35) is the Green function for the operator ∆v + E in D with the impedance boundary condition (1.6) for v = v 2 and that G 2 satisfies (6.29), (6.30).
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 10 where A α is defined in (3.3), Φ(λ) = M0,0 (λ) is the Dirichlet-to-Neumann map for (3.7). In addition, formulas completely similar to (3.8) are also valid for the kernels A + α (but with R + 0 in place of R 0 ) and A α,γ (but with R 0 γ in place of R 0 ), arising in the equations for [ψ + ] α and [ψ γ ] α , mentioned in Theorem 3.1 and Proposition 3.1.
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 3 as described in Theorem 3.1 and Propositions 3.1, 3.4, {A α }, {[ψ 0 ] α } → {[ψ] α } as described in Theorem 3.1 and Proposition 3.1,

( 4 .

 4 20) Combining (4.16), (4.19) and (4.20), we obtain that

( 4 . 23 )

 423 Let Âα (k) denote the linear integral operator on ∂D with the Schwartz kernel A α (x, y, k) of (3.3),(4.23). Using (4.5), (4.7), (4.23), we obtain thatÂα (k) : L ∞ (∂D) → C δ (∂D)is a bounded linear operator.(4.24) 

  .26) Combining (4.21) and (4.26), we obtain (3.8).

(5. 4 )

 4 Combining (4.6) and (4.22), we get thatD R 0 (x, y, k)(v(y)v 0 (y))ψ(y)dy = ∂D B α (x, y, k)[ψ(y)] α dy, x ∈ R d \ D.

α 2 ,

 2 v by means of Lemma 6.1 given bellow (with sin α 1 = 0 and sinα 2 = 0), 2. G α,v 1 → G α,v2 by means of Lemma 6.2 given bellow. The proofs of steps 1, 2 are based on the theory of Fredholm linear integral equations of the second kind. Starting from (4.4), (4.5) for cos α = 0 and combining steps 1, 2 and the property G α,v (•, •, E) = G α,v-E (•, •, 0), (6.1)

(6. 23 )

 23 Using (6.9) and properties of G 1 (including formula (4.3)), we subsequently obtain that lim ε→+0 W (xεν x , y) = F (x, y), x ∈ ∂D, y ∈ D, εν x , y) = F ′ (x, y), x ∈ ∂D, y ∈ D.(6.26) 

Lemma 6 . 2 .

 62 Let D satisfy (1.2) and potentials v 1 , v 2 satisfy (1.3), (1.7) for some fixed E and α. Let G j denote the Green function G α,v j , j = 1, 2. Let G 1 satisfy:G 1 (x, y, E) is continuous in x, y ∈ D, x = y,(6.27)|G 1 (x, y, E)| ≤ a 3 |x -y| 2-d for d ≥ 3, |G 1 (x, y, E)| ≤ a 3 | ln |x -y|| for d = 2,x, y ∈ D.(6.28)Then: G 2 (x, y, E) is continuous in x, y ∈ D, x = y,(6.29)|G 2 (x, y, E)| ≤ a 4 |x -y| 2-d for d ≥ 3, |G 2 (x, y, E)| ≤ a 4 | ln |x -y|| for d = 2,x, y ∈ D,(6.30) 

G 1 (

 1 x, y, E) = D G 1 (x, ξ, E) ∆ ξv 2 (ξ) + E G 2 (ξ, y, E) dξ, G 2 (x, y, E) = D G 2 (ξ, y, E) ∆ ξv 1 (ξ) + E G 1 (x, ξ, E) dξ, ∂D G 1 (x, ξ, E) ∂G 2 ∂ν ξ (ξ, y, E) -G 2 (ξ, y, E) ∂G 1 ∂ν ξ (x, ξ, E) dξ = 0,x, y ∈ D.(6.31)Combining (6.31) with (4.8), we get thatG 2 (•, y, E) -G 1 (•, y, E) = K2 G 2 (•, y, E), y ∈ D,(6.32)whereK2 u(x) = D (v 2 (ξ)v 1 (ξ)) G 1 (x, ξ, E)u(ξ)dξ. 32) takes the form δ n G = ( K2 ) n G 1 + K2 δ n G. (6.35) Our analysis based on (6.31)-(6.35) is given bellow. Using (6.27), (6.28), we find that ( K2 ) n G 1 ∈ C( D × D) for sufficiently great n with respect to d, (6.36) K2 is a compact operator in C( D). (6.37)Let us show that the homogeneous equationu = K2 u, u ∈ C( D),(6.38)has only trivial solution u ≡ 0. Using (6.33),(6.38) and properties of the Green function G 1 , we find that(-∆ + v 1 (x) -E)u(x) = D -δ(xξ) (v 2 (ξ)v 1 (ξ)) u(ξ)dξ = = (v 1v 2 )u(x), x ∈ D,cos α u(x)sin α ∂u ∂ν (x) = 0, x ∈ ∂D.(6.39)

  are uniquely solvable in the space of bounded functions on ∂D if and only if k / ∈ E + and k / ∈ E γ , respectively. Proposition 3.4. Let φ α (x, y) be the solution of the Dirichlet boundary value problem at fixed y ∈ ∂D, λ ∈ C:

	Proposition 3.3 is proved in Section 5.
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