On the class of gamma-mixing graphs

Mikhail Isaev, K.V Isaeva

To cite this version:

Mikhail Isaev, K.V Isaeva. On the class of gamma-mixing graphs. 2012. hal-00684088v1

HAL Id: hal-00684088 https://hal.science/hal-00684088v1

Preprint submitted on 30 Mar 2012 (v1), last revised 14 Dec 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the class of γ-mixing graphs

M.I. Isaev and K.V. Isaeva

Abstract

We study three mixing properties of a graph: large algebraic connectivity, large Cheeger constant (isoperimetric number) and large spectral gap from 1 for the second largest eigenvalue of the transition probability matrix of the random walk on the graph. We prove equivalence of this properties (in some sense). We give estimates for the probability for a random graph to satisfy these properties. In addition, we present asymptotic formulas for the numbers of Eulerian orientations and Eulerian circuits in an undirected simple graph.

1 Introduction

Let G be an undirected simple graph with vertex set $V G$ and edge set $E G$. We define $n \times n$ matrix Q by

$$
Q_{j k}=\left\{\begin{array}{cl}
-1, & \left\{v_{j}, v_{k}\right\} \in E G \tag{1}\\
d_{j}, & j=k \\
0, & \text { otherwise }
\end{array}\right.
$$

where $n=|V G|$ and d_{j} denotes the degree of $v_{j} \in V G$. The matrix $Q=Q(G)$ is called the Laplacian matrix of the graph G. The eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\ldots \leq \lambda_{n}$ of the matrix Q are always non-negative real numbers and $\lambda_{1}=0$. The eigenvalue $\lambda_{2}=\lambda_{2}(G)$ is called the algebraic connectivity of the graph G. The original theory related to algebraic connectivity was produced by Fiedler, see [5], [6]. The number $\lambda_{2}(G)$ is a discrete analogue of the smallest positive eigenvalue of the Laplace differential operator on the Riemannian manifold. (For more information on the spectral properties of the Laplace matrix see, for example, [13] and references therein.)

Let \mathcal{F}_{γ} be the set of simple graphs G satisfying the following property:
Property 1. The algebraic connectivity $\lambda_{2}(G) \geq \gamma|V G|$.
For a subset of vertices $A \subseteq V G$ let ∂A denote the set of all edges connecting a vertex in A and a vertex outside A :

$$
\begin{equation*}
\partial A=\{\{u, v\} \in E G: u \in A, v \in V G \backslash A\} . \tag{2}
\end{equation*}
$$

The Cheeger constant (or isoperimetric number) of G, denoted $i(G)$, is defined by

$$
\begin{equation*}
i(G)=\min \left\{\frac{|\partial A|}{|A|}: A \subset V G, 0<|A| \leq \frac{|V G|}{2}\right\} . \tag{3}
\end{equation*}
$$

The number $i(G)$ is a discrete analogue of the (Cheeger) isoperimetric constant in the theory of Riemannian manifolds and it has many interesting interpretations (for more detailed information see, for example, [12] and references therein).

Let \mathcal{C}_{γ} be the set of simple graphs G satisfying the following property:
Property 2. The Cheeger constant (isoperimetric number) $i(G) \geq \gamma|V G|$.
Let $P=P(G)$ be the transition probability matrix of the random walk on the graph G.

$$
P_{j k}=\left\{\begin{array}{cl}
\frac{1}{d_{j}}, & \left\{v_{j}, v_{k}\right\} \in E G, \tag{4}\\
0, & \text { otherwise },
\end{array}\right.
$$

The eigenvalues of P are such that

$$
\begin{equation*}
1=\chi_{1} \geq \chi_{2} \ldots \geq \chi_{n} \geq-1 \tag{5}
\end{equation*}
$$

The graph G is connected if and only if the random walk is an irreducible Markov chain. In this case, there exists a unique stationary distribution and multiplicity of the eigenvalue $\chi_{1}=1$ is equal to one. (For more information on random walks on graphs see, for example, [8] and references therein.)

Let \mathcal{M}_{γ} be the set of simple graphs G satisfying the following property:
Property 3. The spectral gap $1-\chi_{2}(G) \geq \gamma$ and $\min _{j} d_{j} \geq \gamma|V G|$
Graphs of $\mathcal{F}_{\gamma}, \mathcal{C}_{\gamma}, \mathcal{M}_{\gamma}$ have strong mixing properties. We call $\mathcal{F}_{\gamma} \cap \mathcal{C}_{\gamma} \cap \mathcal{M}_{\gamma}$ as the class of γ-mixing graphs. Actually (see Section 2 of the present work), Properties 1-3 are equivalent in the following sense: if a graph satisfies one of these properties with $\gamma=\gamma_{0}>0$, then it satisfies all Properties 1-3 with some $\gamma>0$ depending only on γ_{0}.

In Section 3 we estimate the probability of a random graph to be γ-mixing. We consider the following model (Gilbert's random graph model): every possible edge occurs independently with some fixed probability $0<p<1$. It turned out that in this model almost all graphs (asymptotically) are γ-mixing with some $\gamma>0$ depending only on p.

In Section 4 we construct some general family of graphs, satisfying Properties 1-3 (see Example 3 and Remark 4.1). For example, the family of complete bipartite graphs $\left\{K_{n, n}\right\}$ is the special case of our general family. We also give some other examples.

In addition, we consider two enumeration problems: counting the number of Eulerian orientations ($E O$) and counting the number of Eulerian circuits $(E C)$ in an undirected simple graph. It is known that both of these problems is complete for the class $\# P$, see [2], [9].

Recently, in [3], [4] the asymptotic behaviour of the numbers of Eulerian orientations and Eulerian circuits was determined for γ-mixing graphs (more precisely, for graphs satisfying Property 1).

In Section 5 we present the asymptotic formulas for $E O, E C$ and compare them against the exact values for small graphs. Actually, if the graph G is γ-mixing then for any $\varepsilon>0$ the error term $|\delta(G)| \leq C n^{-1 / 2+\varepsilon}$, where $C>0$ depends only on ε and γ. We plan to give the proofs of these formulas in a subsequent paper.

2 Equivalence of Properties 1-3

We recall that for a simple graph G with n vertices:

$$
\begin{gather*}
\lambda_{2}(G) \leq \frac{n}{n-1} \min _{j} d_{j}, \tag{6a}\\
\lambda_{2}(G) \geq 2 \min _{j} d_{j}-n+2, \tag{6b}\\
\frac{\lambda_{2}(G)}{2} \leq i(G) \leq \sqrt{\lambda_{2}(G)\left(2 \max _{j} d_{j}-\lambda_{2}(G)\right)}, \tag{7}\\
\lambda_{2}(G) \leq \lambda_{2}\left(G_{1}\right)+1, \tag{8a}\\
\lambda_{2}(G) \leq \lambda_{2}\left(G^{\prime}\right), \tag{8b}
\end{gather*}
$$

where G_{1} arises from G by removing one vertex and all adjacent edges, G^{\prime} is an arbitrary graph such that $V G^{\prime}=V G$ and $E G \subset E G^{\prime}$.

Estimates (6), (8) were obtained in [5]. Estimates (7) were given in [12].
Using (7) and the inequality $d_{j} \leq n$, we find that for any $\gamma_{0}>0$

$$
\begin{equation*}
\mathcal{F}_{\gamma_{0}} \subset \mathcal{C}_{\gamma_{1}} \quad \text { and } \quad \mathcal{C}_{\gamma_{0}} \subset \mathcal{F}_{\gamma_{1}} \tag{9}
\end{equation*}
$$

where $\gamma_{1}>0$ depends only on γ_{0}.
In order to complete the proof of the equivalence of Properties 1-3 we need the following lemma. For $\vec{x} \in \mathbb{R}^{n}$ and $n \times n$ matrix M let us denote

$$
\begin{equation*}
\|\vec{x}\|=\sqrt{\vec{x}^{T} \vec{x}}, \quad\|M\|=\sup _{\vec{x} \in \mathbb{R}^{n},\|\vec{x}\|=1}\|M \vec{x}\| . \tag{10}
\end{equation*}
$$

Lemma 1. Let $a, b_{1}, b_{2}>0$. Let A be symmetric positive semidefinite $n \times n$ matrix such that for some $\vec{w} \in \mathbb{R}^{n}, \vec{w} \neq \overrightarrow{0}$,

$$
\begin{equation*}
A \vec{w}=0 \tag{11a}
\end{equation*}
$$

and for any $\vec{u} \in \mathbb{R}^{n}$ such that $\vec{u}^{T} \vec{w}=0$

$$
\begin{equation*}
\|A \vec{u}\| \geq a\|\vec{u}\| \tag{11b}
\end{equation*}
$$

Then for any symmetric $n \times n$ matrix B such that

$$
\begin{equation*}
\|B\| \leq b_{1} \quad \text { and } \quad \vec{w}^{T} B \vec{w} \geq b_{2}\|\vec{w}\|^{2} \tag{11c}
\end{equation*}
$$

the following statement holds:

$$
\left\{\begin{array}{l}
\operatorname{det}(A-\lambda B)=0, \tag{12}\\
\lambda \neq 0
\end{array} \Longrightarrow \lambda \geq \rho\right.
$$

for some $\rho=\rho\left(a, b_{1}, b_{2}\right)>0$.
The proof of Lemma 1 is given at the end of this section.
Note that

$$
\begin{equation*}
P=I-D^{-1} Q \tag{13}
\end{equation*}
$$

where Q and P are the same as in (1) and (4), respectively, I denotes the identity matrix and D is the diagonal matrix defined by $D_{j j}=d_{j}$.

Let $A_{1}=\frac{1}{n} Q, B_{1}=\frac{1}{n} D$ and $\vec{w}_{1}=[1, \ldots, 1]^{T}$. Using (13), we find that:

$$
\begin{gather*}
\operatorname{det}\left(A_{1}-\lambda I\right)=0 \Longleftrightarrow \operatorname{det}(Q-\lambda n I)=0 ; \tag{14}\\
\operatorname{det}\left(A_{1}-\lambda B_{1}\right)=0 \Longleftrightarrow \operatorname{det}(P-(1-\lambda) I)=0 ; \tag{15}
\end{gather*}
$$

for any $\vec{u} \in \mathbb{R}^{n}$ such that $\vec{u}^{T} \vec{w}_{1}=0$

$$
\begin{gather*}
\vec{u}^{T} A_{1} \vec{u} \geq \frac{1}{n} \lambda_{2}(G) \vec{u}^{T} \vec{u} \tag{16}\\
\left\|B_{1}\right\| \leq \frac{1}{n} \max _{j} d_{j} \leq 1, \quad \vec{w}_{1}^{T} B_{1} \vec{w}_{1} \geq \frac{1}{n} \min _{j} d_{j} \vec{w}_{1}^{T} \vec{w}_{1} . \tag{17}
\end{gather*}
$$

Combining Property 1, (6a), (14)-(17) and Lemma 1, we get that for any $\gamma_{0}>0$

$$
\begin{equation*}
\mathcal{F}_{\gamma_{0}} \subset \mathcal{M}_{\gamma_{2}} \tag{18}
\end{equation*}
$$

where $\gamma_{2}>0$ depends only on γ_{0}.
Let $A_{2}=D^{-\frac{1}{2}} Q D^{-\frac{1}{2}}, B=n D^{-1}$ and $\vec{w}_{2}=D^{\frac{1}{2}} \vec{w}_{1}$, where D^{s} is the diagonal matrix defined by $D_{j j}^{s}=\left(d_{j}\right)^{s}$. Using (13), we find that:

$$
\begin{gather*}
\operatorname{det}\left(A_{2}-\lambda I\right)=0 \Longleftrightarrow \operatorname{det}(P-(1-\lambda) I)=0 \tag{19}\\
\operatorname{det}\left(A_{2}-\lambda B_{2}\right)=0 \Longleftrightarrow \operatorname{det}(Q-\lambda n I)=0 \tag{20}
\end{gather*}
$$

for any $\vec{u} \in \mathbb{R}^{n}$ such that $\vec{u}^{T} \vec{w}_{2}=0$

$$
\begin{gather*}
\vec{u}^{T} A_{2} \vec{u} \geq\left(1-\chi_{2}(G)\right) \vec{u}^{T} \vec{u} \tag{21}\\
\left\|B_{2}\right\| \leq \frac{n}{\min _{j} d_{j}}, \quad \vec{w}_{2}^{T} B_{1} \vec{w}_{2}=n \vec{w}_{1}^{T} \vec{w}_{1} \geq \vec{w}_{2}^{T} \vec{w}_{2} \tag{22}
\end{gather*}
$$

Combining Property 3, (19)-(22) and Lemma 1, we get that for any $\gamma_{0}>0$

$$
\begin{equation*}
\mathcal{M}_{\gamma_{0}} \subset \mathcal{F}_{\gamma_{3}} \tag{23}
\end{equation*}
$$

where $\gamma_{3}>0$ depends only on γ_{0}.
Putting together (9), (18) and (23), we obtain the desired assertion:

Theorem 1. Let $\mathcal{F}_{\gamma}, \mathcal{C}_{\gamma}, \mathcal{M}_{\gamma}$ be defined as in Section 1. Then for any $\gamma_{0}>0$

$$
\begin{equation*}
\mathcal{F}_{\gamma_{0}} \cup \mathcal{C}_{\gamma_{0}} \cup \mathcal{M}_{\gamma_{0}} \subset \mathcal{F}_{\gamma} \cap \mathcal{C}_{\gamma} \cap \mathcal{M}_{\gamma} \tag{24}
\end{equation*}
$$

where $\gamma>0$ depends only on γ_{0}.
Now it remains to prove Lemma 1.
Proof of Lemma 1. Let $\operatorname{det}(A-\lambda B)=0$. Then for some $\vec{v} \in \mathbb{R}^{n}, \vec{v} \neq 0$,

$$
\begin{equation*}
A \vec{v}=\lambda B \vec{v} . \tag{25}
\end{equation*}
$$

Let $\vec{v}=\vec{v}_{\|}+\vec{v}_{\perp}$, where $\vec{v}_{\|} \| \vec{w}$ and $\vec{v}_{\perp}^{T} \vec{w}=0$. Due to (11a), we have that

$$
\begin{equation*}
\vec{v}_{\|}^{T} A \vec{v}=0 . \tag{26}
\end{equation*}
$$

Since $\lambda \neq 0$, using (25), we get that

$$
\begin{equation*}
\vec{v}_{\|}^{T} B \vec{v}_{\|}=-\vec{v}_{\|}^{T} B \vec{v}_{\perp} . \tag{27}
\end{equation*}
$$

Using (11c), (27) and the CauchySchwarz inequality, we find that

$$
\begin{equation*}
b_{1}\left\|\vec{v}_{\|}\right\|\left\|\vec{v}_{\perp}\right\| \geq\left\|\vec{v}_{\|}\right\|\left\|B \vec{v}_{\perp}\right\| \geq\left|\vec{v}_{\|}^{T} B \vec{v}_{\perp}\right|=\left|\vec{v}_{\|}^{T} B \vec{v}_{\|}\right| \geq b_{2}\left\|\vec{v}_{\|}\right\|^{2} . \tag{28}
\end{equation*}
$$

Thus we have that

$$
\begin{equation*}
\left\|\vec{v}_{\perp}\right\| \geq \frac{b_{2}}{\sqrt{b_{1}^{2}+b_{2}^{2}}}\|\vec{v}\| \tag{29}
\end{equation*}
$$

Using (11b), (11c) and (29), we find that:

$$
\begin{align*}
& \|A \vec{v}\| \geq a\left\|\vec{v}_{\perp}\right\|, \\
& \|B \vec{v}\| \leq b_{1}\|\vec{v}\| \leq \frac{b_{1} \sqrt{b_{1}^{2}+b_{2}^{2}}}{b_{2}}\left\|\vec{v}_{\perp}\right\| . \tag{30}
\end{align*}
$$

Combining (25) and (30), we obtain that

$$
\begin{equation*}
\lambda \geq \frac{a b_{2}}{b_{1} \sqrt{b_{1}^{2}+b_{2}^{2}}} . \tag{31}
\end{equation*}
$$

3 Probability for a random graph to be γ-mixing

Let ξ be a random variable belonging to the binomial distribution $B(M, p)$:

$$
\begin{equation*}
\operatorname{Pr}(\xi=k)=\frac{M!}{k!(M-k)!} p^{k}(1-p)^{M-k}, \quad 0<p<1, M \in \mathbb{N} . \tag{32}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{Pr}(\xi \leq \alpha M) \leq c^{-M} \tag{33}
\end{equation*}
$$

for some $\alpha>0, c>1$ depending only on p. This follows, for example, from the following estimate: for $1 \leq k \leq \frac{p(M+1)}{p+2}$

$$
\begin{equation*}
\frac{\operatorname{Pr}(\xi=k)}{\operatorname{Pr}(\xi=k-1)}=\frac{M-k+1}{k} \frac{p}{1-p} \geq \frac{\frac{2}{p+2}(M+1)}{\frac{p}{p+2}(M+1)} \frac{p}{1-p} \geq 2 . \tag{34}
\end{equation*}
$$

Let G be a random graph belonging to Gilbert's random graph model $G(n, p)$:

$$
\begin{array}{r}
\forall_{1 \leq i<j \leq n} \operatorname{Pr}\left(\left\{v_{i}, v_{j}\right\} \in E G\right)=p, \quad 0<p<1, \\
\text { (independently for each }\{i, j\}) . \tag{35}
\end{array}
$$

For a subset of vertices $A \subset V G$, using (33), we find that

$$
\begin{equation*}
\operatorname{Pr}(|\partial A| \leq \alpha|A|(n-|A|)) \leq c^{-|A|(n-|A|)} \tag{36}
\end{equation*}
$$

Using (36), we get that

$$
\begin{align*}
\operatorname{Pr}\left(i(G) \leq \frac{\alpha n}{2}\right) & \leq \sum_{A \subset V G, 0<|A| \leq \frac{n}{2}} \operatorname{Pr}\left(|\partial A| \leq \alpha|A| \frac{n}{2}\right) \leq \\
& \leq \sum_{k=1}^{n / 2} \sum_{|A|=k} \operatorname{Pr}(|\partial A| \leq \alpha|A|(n-|A|)) \leq \tag{37}\\
& \leq \sum_{k=1}^{n / 2} \frac{n!}{k!(n-k)!} c^{-k(n-k)} \leq \sum_{k=1}^{n / 2} \frac{n!}{k!(n-k)!}\left(c^{-n / 2}\right)^{k} \leq \\
& \leq\left(1+c^{-n / 2}\right)^{n}-1 \leq \beta^{-n}
\end{align*}
$$

for some $\beta>1$ depending only on p.
Due to (37) and Theorem 1, we obtain that probability for a random graph (in Gilbert's model $G(n, p)$) to be γ-mixing is at least $1-\beta^{-n}$, where $\gamma=\gamma(p)>$ 0 and $\beta=\beta(p)>1$.

4 Some basic properties and examples

We note that, due to (6b) and Theorem 1,

$$
\begin{gather*}
\text { if } \min _{j} d_{j} \geq \sigma|V G| \tag{38}\\
\text { for some } \sigma>1 / 2
\end{gather*} \Longrightarrow \begin{array}{r}
\text { the graph } G \text { is } \gamma \text {-mixing } \\
\text { for some } \gamma=\gamma(\sigma)>0
\end{array}
$$

Example 1. Let K_{n} and \tilde{K}_{n} be two complete graphs with n vertices. We define $G_{n}^{(1)}$ by

$$
\begin{align*}
V G_{n}^{(1)} & =V K_{n} \cup V \tilde{K}_{n} \\
E G_{n}^{(1)} & =E K_{n} \cup E \tilde{K}_{n} \cup E^{+} \tag{39}\\
& \quad \text { where } E^{+}=\left\{\left\{v_{i}, \tilde{v}_{i}\right\}, i=1, \ldots n\right\} .
\end{align*}
$$

For $G=G_{n}^{(1)}$ we have that for all $j=1, \ldots, 2 n$

$$
\begin{equation*}
d_{j}=n+1>\frac{1}{2}\left|V G_{n}^{(1)}\right|, \tag{40}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{i\left(G_{n}^{(1)}\right)}{n} \leq \frac{\left|E^{+}\right|}{n\left|V K_{n}\right|} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{41}
\end{equation*}
$$

Thus the family $\left\{G_{n}^{(1)}\right\}$ does not satisfy Property 2 (and hence Properties 1,3). We note also that even the vertex and the edge connectivity is large for this family of graphs.

Example 2. Let K_{n} be the complete graph with n vertices. We define $G_{n}^{(2)}$ by

$$
\begin{align*}
& V G_{n}^{(2)}=V K_{n} \cup v_{n+1}, \\
& E G_{n}^{(2)}=E K_{n} \cup\left\{v_{n}, v_{n+1}\right\} . \tag{42}
\end{align*}
$$

For $G=G_{n}^{(2)}$ we have that $\min _{j} d_{j}=1$, but one can show that $\chi_{2}\left(G_{n}^{(2)}\right)=1 / \sqrt{n}$. Note also that Examples 1 and 2 show, in particular, that both conditions of Property 3 are necessary.

Example 3. Let G^{0} be a connected simple graph with $m>1$ vertices. Let $c_{1}, c_{2}, \ldots, c_{m}$ be some natural numbers. We define $G_{n}^{(3)}$ by

$$
\begin{align*}
& V G_{n}^{(3)}=\left\{v_{j}^{i}: i=1, \ldots, n c_{j}, j=1, \ldots, m\right\}, \\
& \quad\left\{v_{j_{1}}^{i_{1}}, v_{j_{2}}^{i_{2}}\right\} \in E G_{n}^{(3)} \Longleftrightarrow\left\{v_{j_{1}}, v_{j_{2}}\right\} \in E G^{0} . \tag{43}
\end{align*}
$$

We estimate the Cheeger constant (isoperimetric number) $i\left(G_{n}^{(3)}\right)$. Let

$$
\begin{equation*}
c_{0}=\min _{1 \leq j \leq m} c_{j}, \quad C=\sum_{j=1}^{m} c_{j} . \tag{44}
\end{equation*}
$$

We have that

$$
\begin{equation*}
\text { the degree of each vertex of } V G_{n}^{(3)} \text { at least } c_{0} n \tag{45a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|V G_{n}^{(3)}\right|=C n \tag{45b}
\end{equation*}
$$

Let $A \subset V G_{n}^{(3)},|A| \leq C n / 2$.

- Case 1. $|A| \leq c_{0} n / 2$. Using (45), we find that

$$
\begin{equation*}
|\delta A| \geq c_{0} n|A|-|A|^{2} \geq \frac{c_{0} n}{2}|A|=\frac{c_{0}\left|V G_{n}^{(3)}\right|}{2 C}|A| \tag{46}
\end{equation*}
$$

- Case 2. $|A|>c_{0} n / 2$. Let $V_{1}, V_{2} \subset V G_{0}$ such that

$$
\begin{align*}
& v_{j} \in V_{1} \Longleftrightarrow\left|\left\{v_{j}^{i}: v_{j}^{i} \in A\right\}\right| \geq \frac{c_{0} n}{2 m}, \tag{47}\\
& v_{j} \in V_{2} \Longleftrightarrow\left|\left\{v_{j}^{i}: v_{j}^{i} \notin A\right\}\right| \geq \frac{c_{j} n}{2} . \tag{48}
\end{align*}
$$

Due to $c_{0} n / 2<|A| \leq C n / 2$, we have that

$$
\begin{equation*}
V_{1} \cup V_{2}=V G_{0}, \quad\left|V_{1}\right|>0, \quad\left|V_{2}\right|>0 \tag{49}
\end{equation*}
$$

Since G^{0} is connected, we can find $v_{j_{1}} \in V_{1}, v_{j_{2}} \in V_{2}$ such that $\left\{v_{j_{1}}, v_{j_{2}}\right\} \in$ $E G_{0}$. Estimating the number of edges in ∂A, matching these vertices, we obtain that

$$
\begin{equation*}
|\delta A| \geq \frac{c_{0} c_{j_{2}} n^{2}}{4 m} \geq \frac{c_{0}^{2} n}{2 m C}|A|=\frac{c_{0}^{2}\left|V G_{n}^{(3)}\right|}{2 m C^{2}}|A| \tag{50}
\end{equation*}
$$

Combining (46), (50) and Theorem 1, we obtain that the family $\left\{V G_{n}^{(3)}\right\}$ satisfies Properties 1-3 with $\gamma>0$, depending only on $G_{0}, c_{1}, \ldots, c_{m}$.

We note that Example 3 can be modified so that the constants $c_{1}, \ldots, c_{m}>0$ are not necessarily natural numbers. We assumed that just for simplicity of the proof.

Remark 1. Combining (8), Theorem 1 and Example 3, one can prove Properties 1-3 for a large number of classic examples (including $\left\{K_{n}\right\},\left\{K_{n, n}\right\}$ and many others).

5 Asymptotic estimates for γ-mixing graphs

An Eulerian orientation of G is an orientation of its edges such that for every vertex the number of incoming edges and outgoing edges are equal. We denote $E O(G)$ the number of Eulerian orientations. Eulerian orientations of the complete graph K_{n} are called regular tournaments.

An Eulerian circuit in G is a closed walk which uses every edge of G exactly once. Let $E C(G)$ denote the number of these up to cyclic equivalence.

We recall that $E O(G)=E C(G)=0$, if the degree of at least one vertex of G is odd (for more information see, for example, [1]). In this section we always assume that every vertex has even degree.

Let consider two enumeration problems: counting the number of Eulerian orientations and counting the number of Eulerian circuits in an undirected simple graph. It is known that both of these problems is complete for the class $\# P$, see [2], [9].

The results presented in this section are based on estimates of [3], [4]. We plan to give detailed proofs in a subsequent paper.

5.1 Eulerian orientations

We recall that the problem of counting Eulerian orientations can be reduced to counting perfect matching for some class of bipartitute graphs for which it can be done approximately with high probability in polynomial time, see [9]. However, the degree of the polynomial is large, so, in fact, these algorithms have a very big work time for the error term $O\left(n^{-1 / 2}\right)$.

For γ-mixing graphs we have the following asymptotic formula:
Proposition 1. Let G be an undirected simple graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ having even degrees. Let G be a γ-mixing graph for some $\gamma>0$. Then

$$
\begin{gather*}
E O(G)=(1+\delta(G))\left(2^{|E G|+\frac{n-1}{2}} \pi^{-\frac{n-1}{2}} \frac{1}{\sqrt{t(G)}} \prod_{\left\{v_{j}, v_{k}\right\} \in E G} P_{j k}\right) \tag{51}\\
P_{j k}=1-\frac{1}{4\left(d_{j}+1\right)^{2}}-\frac{1}{2\left(d_{j}+1\right)\left(d_{k}+1\right)}-\frac{1}{4\left(d_{k}+1\right)^{2}}
\end{gather*}
$$

where d_{j} denotes the degree of vertex $v_{j}, t(G)$ denotes the number of spanning trees of the graph G and for any $\varepsilon>0$

$$
\begin{equation*}
|\delta(G)| \leq C n^{-1 / 2+\varepsilon} \tag{52}
\end{equation*}
$$

where constant $C>0$ depends only on γ and ε.
Remark 2. We note that, according to the Kirchhoff Matrix-Tree-Theorem, see [7], we have that

$$
\begin{equation*}
t(G)=\frac{1}{n} \lambda_{2} \lambda_{3} \cdots \lambda_{n}=\operatorname{det} M_{11}, \tag{53}
\end{equation*}
$$

where M_{11} results from deleting the first row and the first column of Q.
Remark 3. For the complete graph $\lambda_{2}\left(K_{n}\right)=n, E K_{n}=\frac{n(n-1)}{2}, t\left(K_{n}\right)=$ n^{n-2},

$$
\begin{array}{r}
\prod_{\left\{v_{j}, v_{k}\right\} \in E K_{n}} P_{j k}=\left(1-\frac{1}{4 n^{2}}-\frac{1}{2 n^{2}}-\frac{1}{4 n^{2}}\right)^{\frac{n(n-1)}{2}}= \tag{54}\\
=\left(e^{\ln \left(1-\frac{1}{n^{2}}\right)}\right)^{\frac{n(n-1)}{2}}=e^{-1 / 2}+O\left(n^{-1}\right) .
\end{array}
$$

The result of Proposition 1 for this case is reduced to the result of [11] on counting regular tournaments in the complete graph.

We plan to give the proof of Proposition 1 in a subsequent paper. In the present work we just compare the answers given by formula (51) against the exact values for small graphs. Let

$$
\begin{equation*}
\operatorname{Error}(G)=\frac{E O_{\text {approx }}(G)-E O(G)}{E O(G)} \tag{55}
\end{equation*}
$$

where $E O_{\text {approx }}(G)$ is taken according to right-hand side of (51). The following charts show the dependence of $\operatorname{Error}(G)$ on the ratio $\lambda_{2}(G) / n$, where $\lambda_{2}(G)$ is the algebraic connectivity and $n=|V G|=6,7,8,9$:

The charts show, in particular, that Error decreases significantly with respect to the ratio $\lambda_{2}(G) / n$.

5.2 Eulerian circuits

To our knowledge approximate polynomial algorithms for counting the number of Eulerian circuits have not yet been obtained in the literature (in contrast to the orientations). However, we have the formula for $E C(G)$ similar to (51) for γ-mixing graphs. This formula is more complicated, so we need some additional notations. Let

$$
\begin{equation*}
W=\hat{Q}^{-1}=(Q+J)^{-1} \tag{56}
\end{equation*}
$$

where Q is the Laplacian matrix and J denotes the matrix with every entry 1. Let $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ be defined by

$$
\begin{equation*}
\alpha_{j}=W_{j j} \tag{57}
\end{equation*}
$$

Let $\vec{\beta}=Q \vec{\alpha}$ and

$$
\begin{gather*}
C_{1}=\prod_{j=1}^{n-1}\left(1-\beta_{j} \sum_{k=j+1}^{n} W_{j k} \beta_{k}\right) \tag{58}\\
C_{2}=\prod_{j=1}^{n}\left(1-\frac{\beta_{j}^{2}}{2\left(d_{j}+1\right)}\right) \tag{59}
\end{gather*}
$$

where d_{j} is the degree of $v_{j} \in V G$. Let

$$
\begin{equation*}
R(\vec{\theta})=\operatorname{tr}(\Lambda(\vec{\theta}) W \Lambda(\vec{\theta}) W) \tag{60}
\end{equation*}
$$

where $\operatorname{tr}(\cdot)$ is the trace fucntion, $\Lambda(\vec{\theta})$ denotes the diagonal matrix whose diagonal elements are equal to components of the vector $Q \vec{\theta}$. Let $\vec{e}^{(k)}=\left(e_{1}^{(k)}, \ldots, e_{n}^{(k)}\right) \in$ \mathbb{R}^{n} be defined by $e_{j}^{(k)}=\delta_{j k}$, where $\delta_{j k}$ is the Kronecker delta. Let $r_{k}=R\left(\vec{e}^{(k)}\right)$,

$$
\begin{equation*}
C_{3}=\prod_{j=1}^{n}\left(1+\frac{r_{j}^{2}}{2\left(d_{j}+1\right)}\right) . \tag{61}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
C_{4}=\prod_{\left\{v_{j}, v_{k}\right\} \in E G} P_{j k} \tag{62}
\end{equation*}
$$

where $P_{j k}$ is the same as in (51).
Proposition 2. Let G be an undirected simple graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ having even degrees. Let G be a γ-mixing graph for some $\gamma>0$. Then

$$
\begin{equation*}
E C(G)=\left(1+\delta^{\prime}(G)\right)\left(\prod_{j=1}^{n}\left(\frac{d_{j}}{2}-1\right)!2^{|E G|-\frac{n-1}{2}} \pi^{-\frac{n-1}{2}} \sqrt{t(G)} C_{1} C_{2} C_{3} C_{4}\right) \tag{63}
\end{equation*}
$$

where $C_{1}, C_{2}, C_{3}, C_{4}$ are defined according to (58), (59), (61), (62), respectively, d_{j} is the degree of vertex $v_{j}, t(G)$ is the number of spanning trees of G and for any $\varepsilon>0$

$$
\begin{equation*}
\left|\delta^{\prime}(G)\right| \leq C^{\prime} n^{-1 / 2+\varepsilon}, \tag{64}
\end{equation*}
$$

where constant $C^{\prime}>0$ depends only on γ and ε.
Remark 4. One can obtain for the case of $G=K_{n}$ that

$$
\begin{equation*}
C_{1} C_{2} C_{3} C_{4}=1+O\left(n^{-1}\right) \tag{65}
\end{equation*}
$$

Using Remark 5.2 and Stirling's formula for factorials, the result of Proposition 2 for this case can be reduced to the result of [10] on counting Eulerian circuits in the complete graph.

We plan to give the proof of Proposition 2 in a subsequent paper. In the present work we just compare the answers given by formula (63) against the exact values for small graphs. Let

$$
\begin{equation*}
\operatorname{Error}^{\prime}(G)=\frac{E C_{\text {approx }}(G)-E C(G)}{E C(G)}, \tag{66}
\end{equation*}
$$

where $E C_{\text {approx }}(G)$ is taken according to right-hand side of (63). The following charts show the dependence of $\operatorname{Error}^{\prime}(G)$ on the ratio $\lambda_{2}(G) / n$, where $\lambda_{2}(G)$ is the algebraic connectivity and $n=|V G|=6,7,8,9$:

$$
\mathrm{n}=8
$$

$$
\mathrm{n}=9
$$

The charts show, in particular, that Error ${ }^{\prime}$ decreases significantly with respect to the ratio $\lambda_{2}(G) / n$.

Acknowledgements

This work was carried out under the supervision of S.P. Tarasov and supported in part by RFBR grant no 11-01-00398a.

References

[1] N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory, 1736-1936, Clarendon Press, Oxford, 1976.
[2] G. Brightwell, P. Winkler, Note on Counting Eulerian Circuits, Proceedings of the 7th ALENEX and 2nd ANALCO 2005 , ALENEX/ANALCO 2005 Vancouver, BC, C Demetrescu, R Sedgewick and R Tamassia (eds.), (2005) 259-262. arXiv:cs/0405067v1.
[3] M. Isaev, Asymptotic behaviour of the number of Eulerian circuits, Electronic Journal of Combinatorics, 2011, V.18(1), P.219, e-print arXiv: 1104.3046.
[4] M. Isaev, Asymptotic behaviour of the number of Eulerian orientations of graphs, e-print arXiv:1110.2598.
[5] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (98) (1973), 298-305.
[6] M. Fiedler, Laplacian of graphs and algebraic connectivity, Combinatorics and Graph Theory 25, 57-70, 1989.
[7] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847), 497-508. Translated by J. B. O'Toole in I.R.E. Trans. Circuit Theory, CT-5 (1958) 4.
[8] L. Lovasz, Random walks on graphs: A survey, Combinatorics, Paul Erdös is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 353-397. Janos Bolyai Math. Soc., Budapest, 1996.
[9] M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, Algorithmica 16 (1996), 402414.
[10] B. D. McKay, R. W. Robinson, Asymptotic enumeration of eulerian circuits in the complete graph. Combinatorica, 7(4), December 1998.
[11] B. D. McKay, The asymptotic numbers of regular tournaments, eulirian digraphs and eulirian oriented graphs. Combinatorica 10 (1990), no. 4, 367377.
[12] B. Mohar, Isoperimetric numbers of graphs, J. Combin. Theory, Ser. B 47, 1989.
[13] B. Mohar, The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications, Vol. 2, Ed. Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, Wiley, 1991, pp. 871-898.

M.I. Isaev

Moscow Institute of Physics and Technology,
141700 Dolgoprudny, Russia
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
e-mail: Isaev.M.I@gmail.com

K.V. Isaeva

Moscow Institute of Physics and Technology,
141700 Dolgoprudny, Russia
e-mail: Isaeva.K.V@gmail.com

