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On the class of v-mixing graphs

M.I. Isaev and K.V. Isaeva

Abstract

We study three mixing properties of a graph: large algebraic connec-
tivity, large Cheeger constant (isoperimetric number) and large spectral
gap from 1 for the second largest eigenvalue of the transition probability
matrix of the random walk on the graph. We prove equivalence of this
properties (in some sense). We give estimates for the probability for a ran-
dom graph to satisfy these properties. In addition, we present asymptotic
formulas for the numbers of Eulerian orientations and Eulerian circuits in
an undirected simple graph.

1 Introduction

Let G be an undirected simple graph with vertex set VG and edge set EG.
We define n x n matrix @ by

-1, {vj,v} € EG,
Qi = dj, j=k, (1)
0, otherwise,

where n = |V G| and d; denotes the degree of v; € VG. The matrix Q = Q(G)
is called the Laplacian matriz of the graph G. The eigenvalues A\; < Ao <

. < A\, of the matrix @) are always non-negative real numbers and A\; = 0.
The eigenvalue s = A\o(G) is called the algebraic connectivity of the graph G.
The original theory related to algebraic connectivity was produced by Fiedler,
see [5], [6]. The number A3(G) is a discrete analogue of the smallest positive
eigenvalue of the Laplace differential operator on the Riemannian manifold.
(For more information on the spectral properties of the Laplace matrix see, for
example, [13] and references therein.)

Let F, be the set of simple graphs G satisfying the following property:

Property 1. The algebraic connectivity \o(G) > ~|VG|.

For a subset of vertices A C VG let A denote the set of all edges connecting
a vertex in A and a vertex outside A:

0A = {{u,v} e EG:ue Ajv e VG \ A}. (2)



The Cheeger constant (or isoperimetric number) of G, denoted i(G), is defined
by

0A VG

i(G) = min u:ACVG,O<|A|§u . (3)

A 2
The number i(G) is a discrete analogue of the (Cheeger) isoperimetric con-
stant in the theory of Riemannian manifolds and it has many interesting inter-
pretations (for more detailed information see, for example, [12] and references
therein).

Let C, be the set of simple graphs G satisfying the following property:

Property 2. The Cheeger constant (isoperimetric number) i(G) > v|VG|.

Let P = P(G) be the transition probability matrix of the random walk on

the graph G.
1
PO {vj,vk}'e EG,
0, otherwise,

(4)
The eigenvalues of P are such that
l=x12x2...2xn=>—-1 (5)

The graph G is connected if and only if the random walk is an irreducible
Markov chain. In this case, there exists a unique stationary distribution and
multiplicity of the eigenvalue x1 = 1 is equal to one. (For more information on
random walks on graphs see, for example, [8] and references therein.)

Let M., be the set of simple graphs G satisfying the following property:

Property 3. The spectral gap 1 — x2(G) > v and mind; > 7|V G|
j

Graphs of F,, C,, M., have strong mixing properties. We call 7, NCyNM,,
as the class of y-mixing graphs. Actually (see Section 2 of the present work),
Properties 1-3 are equivalent in the following sense: if a graph satisfies one of
these properties with v = 9 > 0, then it satisfies all Properties 1-3 with some
v > 0 depending only on ~p.

In Section 3 we estimate the probability of a random graph to be y-mixing.
We consider the following model (Gilbert’s random graph model): every possible
edge occurs independently with some fixed probability 0 < p < 1. It turned out
that in this model almost all graphs (asymptotically) are y-mixing with some
v > 0 depending only on p.

In Section 4 we construct some general family of graphs, satisfying Properties
1-3 (see Example 3 and Remark 4.1). For example, the family of complete
bipartite graphs {K, ,} is the special case of our general family. We also give
some other examples.

In addition, we consider two enumeration problems: counting the number
of Eulerian orientations (FO) and counting the number of Eulerian circuits
(EC) in an undirected simple graph. It is known that both of these problems
is complete for the class #P, see [2], [9].



Recently, in [3], [4] the asymptotic behaviour of the numbers of Eulerian
orientations and Eulerian circuits was determined for -mixing graphs (more
precisely, for graphs satisfying Property 1).

In Section 5 we present the asymptotic formulas for EO, EC and compare
them against the exact values for small graphs. Actually, if the graph G is
y-mixing then for any ¢ > 0 the error term |§(G)| < Cn~1?*¢ where C > 0
depends only on € and v. We plan to give the proofs of these formulas in a
subsequent paper.

2 Equivalence of Properties 1-3

We recall that for a simple graph G with n vertices:

X2(G) < — mind;, (6a)

A2(G) > 2mind; —n + 2, (6b)
i@ < Pl @Empsd, (@) g
A2(G) < A2 (Gh) + 1, (8a)

2(6) € Xa(), (8b)

where G arises from G by removing one vertex and all adjacent edges, G’ is an
arbitrary graph such that VG’ = VG and EG C EG'.
Estimates (6), (8) were obtained in [5]. Estimates (7) were given in [12].
Using (7) and the inequality d; < n, we find that for any o > 0

Fy CCyy and Cyy C Foy, (9)

where 7y; > 0 depends only on .
In order to complete the proof of the equivalence of Properties 1-3 we need
the following lemma. For & € R™ and n x n matrix M let us denote

|2 = vaTz, (M| = sup  [[MZ]. (10)
ZER, ||Z]|=1

Lemma 1. Let a,by,by > 0. Let A be symmetric positive semidefinite n X n
matrix such that for some @ € R™, w # 0,

Ad =0 (11a)
and for any @ € R™ such that €% = 0

[ AT > alld]. (11b)



Then for any symmetric n X n matriz B such that
IB|| <by and @7 Bw > byl (11c)

the following statement holds:

det(A — AB) =0,
{A#O — A>p (12)

for some p = p(a,b1,b2) > 0.

The proof of Lemma 1 is given at the end of this section.
Note that
P=1-D'Q, (13)

where Q and P are the same as in (1) and (4), respectively, I denotes the
identity matrix and D is the diagonal matrix defined by D;; = d;.
Let Ay = %Q, By = %D and @ = [1,...,1]7. Using (13), we find that:

det(A; — M) = 0 <= det(Q — Anl) = 0; (14)
det(4; — ABy) =0 <= det(P — (1 = \)I) = 0; (15)
for any @ € R™ such that @’ w, = 0
1
al Ayii > EAQ(G)ﬁTﬁ; (16)
1 T 1 . T -
| Bl < - maxd; <1, Wi Biw; > - min d; Wy ws. (17)
J J

Combining Property 1, (6a), (14)-(17) and Lemma 1, we get that for any v > 0
‘F’YU - M’Yza (18)

where 2 > 0 depends only on 7.
Let Ay = D 2QD~2, B=nD""! and @ = D21, where D* is the diagonal
matrix defined by D3, = (d;)°. Using (13), we find that:

det(As — M) =0 <= det(P — (1 — \)I) = 0; (19)
det(As — AB3) = 0 <= det(Q — A\nl) = 0; (20)
for any @ € R™ such that 4”@y = 0
i’ At > (1 — x2(Q))a" @; (21)
n _. . T ST
|| B2 < e We By = nalif @, > s Wo. (22)

J
Combining Property 3, (19)-(22) and Lemma 1, we get that for any v9 > 0
M., C Fy,, (23)

where 3 > 0 depends only on 7.
Putting together (9), (18) and (23), we obtain the desired assertion:



Theorem 1. Let F,,C,, M., be defined as in Section 1. Then for any vo >0
Fro UCyy UM, C FyNCy N M, (24)
where v > 0 depends only on vp.

Now it remains to prove Lemma 1.
Proof of Lemma 1. Let det(A — AB) = 0. Then for some ¥ € R", ¥ # 0,

AU = AB7. (25)
Let @ = 0 + ¥, where ¥ || @ and ¢ @ = 0. Due to (11a), we have that
v AT = 0. (26)
Since A # 0, using (25), we get that
[ Bo) = —0 BiL. (27)
Using (11c), (27) and the CauchySchwarz inequality, we find that
b7 = 15187 > 157 Bo.| = [# B3| = boldy 2 (28)

Thus we have that b
2

o]l > \/mﬂﬁll- (29)
Using (11b), (11c) and (29), we find that:
|A%]| = af|7.],
1391 < bl < P o
Combining (25) and (30), we obtain that
abs
A > m (31)
|

3 Probability for a random graph to be y-mixing

Let £ be a random variable belonging to the binomial distribution B(M, p):

M!
P =pME 0<p<l, MeN (32)

Pr&=h = mar—mn

Note that
Pr(¢ <aM)<c ™M (33)



for some o > 0, ¢ > 1 depending only on p. This follows, for example, from the

following estimate: for 1 < k < %
_ _ 2 (M +1
Pr¢=k) _M-ktl p pgz( ) p So (30)
Pr(¢=k-1) k 1-p m(M—i—l)l—p

Let G be a random graph belonging to Gilbert’s random graph model G(n, p):

Vicicj<n Pr({vi,v;} € EG) =p, 0<p<1,

35
(independently for each {i,7}). (35)
For a subset of vertices A C VG, using (33), we find that
Pr(|04] < afA|(n — |A])) < e71A0=1AD, (36)
Using (36), we get that
an n
] —) < < —) <
P@) << Y (oAl <alAll) <
ACVG@, 0<|AILE
n/2
<D > Pr(9A] < alA|(n—|4]) <
k=1|A|=k (37)
n/2 n/2

n! k(n— n! _
< o (n—k) < e n/2\k <
_Zkz!(n—kz)!c _Zk!(n—k)! () =
k=1 k=1
S (1 + C—n/2)n 1 S ﬁ—n

for some 8 > 1 depending only on p.

Due to (37) and Theorem 1, we obtain that probability for a random graph
(in Gilbert’s model G(n, p)) to be y-mixing is at least 1— ", where v = y(p) >
0 and 8 = B(p) > 1.

4 Some basic properties and examples
We note that, due to (6b) and Theorem 1,

if mjin d; = o|VG]| the graph G is y-mixing

(38)
for some o > 1/2 for some v = y(o) > 0.

Example 1. Let K,, and K,, be two complete graphs with n vertices. We define
el by
VGl =VK,UVK,,

EG\Y = EK,, UEK, UE™, (39)
where BT = {{v;,0;},i=1,...n}.



For G = GS}’ we have that for all j =1,...,2n
Lycw
dj:n+1>§|VGn [, (40)
but

. 1
Gy _ et
n n|VEK,|

— 0, asn— oo. (41)

Thus the family {Gg)} does not satisfy Property 2 (and hence Properties 1,3).
We note also that even the vertex and the edge connectivity is large for this
family of graphs.

Example 2. Let K, be the complete graph with n vertices. We define GSLQ) by

VGSLQ) - VK’n, U Un-‘rl)

42
EG® = EK, U{vn,vp1}. (42)

For G = G2 we have that mind; = 1, but one can show that x2(G 2)) =1/y/n.

Note also that Examples 1 and 2 show, in particular, that both conditions of
Property 3 are necessary.

Example 3. Let G° be a connected simple graph with m > 1 vertices. Let

C1,C2, ..., Cny be some natural numbers. We define GS’) by
VG(3) = {vi- ci=1,...,n¢, j=1,...,m}, (43)
;1’ Jz}e 51)<:>{UJ17’UJ2}€EGO
We estimate the Cheeger constant (isoperimetric number) i(G,(E’)). Let
cozlg}1<n Cjs C’:ch. (44)
We have that
the degree of each vertex of VG at least con (45a)
and
VG®| = Cn. (45b)
Let Ac VG, |A| < Cn/2.
e Case 1. |A| < ¢on/2. Using (45), we find that
(3)
1641 > conlA| - |4 > U4 = ©VE (46)



e Case 2. |A| > con/2. Let V1, Vo C V Gy such that

i con
vj€V1<:>|{vj.vj€A}|2%, (47)
i Gn
vj€V2<:>|{vj:vj¢A}|27. (48)
Due to ¢on/2 < |A] < Cn/2, we have that
ViuVe =VGo, [Vi|>0, [Va]>0. (49)

Since G is connected, we can find v;, € Vi, vj, € Vs such that {v;,,v,} €
EGy. Estimating the number of edges in A, matching these vertices, we
obtain that

coci,n? cin CQ|VG£13)|
0A] > = 2= > 0|4 = T Al (50)

Combining (46), (50) and Theorem 1, we obtain that the family {VGS’)}

satisfies Properties 1-3 with « > 0, depending only on Gy, ¢, ..., Cn.

We note that Example 3 can be modified so that the constants ¢y, ...,¢, >0
are not necessarily natural numbers. We assumed that just for simplicity of the
proof.

Remark 1. Combining (8), Theorem 1 and Example 3, one can prove Prop-
erties 1-3 for a large number of classic examples (including {K,}, {Kp,»} and
many others).

5 Asymptotic estimates for y-mixing graphs

An FEulerian orientation of G is an orientation of its edges such that for every
vertex the number of incoming edges and outgoing edges are equal. We de-
note FO(G) the number of Eulerian orientations. Eulerian orientations of the
complete graph K, are called regular tournaments.

An Eulerian circuit in G is a closed walk which uses every edge of G exactly
once. Let EC(G) denote the number of these up to cyclic equivalence.

We recall that EO(G) = EC(G) = 0, if the degree of at least one vertex of
G is odd (for more information see, for example, [1]). In this section we always
assume that every vertex has even degree.

Let consider two enumeration problems: counting the number of Eulerian
orientations and counting the number of Eulerian circuits in an undirected sim-
ple graph. It is known that both of these problems is complete for the class #P,
see [2], [9].

The results presented in this section are based on estimates of [3], [4]. We
plan to give detailed proofs in a subsequent paper.



5.1 FEulerian orientations

We recall that the problem of counting Eulerian orientations can be reduced
to counting perfect matching for some class of bipartitute graphs for which it
can be done approximately with high probability in polynomial time, see [9].
However, the degree of the polynomial is large, so, in fact, these algorithms have
a very big work time for the error term O(n=1/2).

For ~-mixing graphs we have the following asymptotic formula:

Proposition 1. Let G be an undirected simple graph with n vertices vi,vs, ..., vy
having even degrees. Let G be a y-mixing graph for some v > 0. Then

EO(G) = (1+4(Q)) | 2P0+ T a5 1<G> II 7
{vs,

Vi o}eBa (51)
1

1 1
A(d; + 12 2(d; + D)(de +1)  4(dg + 1)2°

P=1-

where d; denotes the degree of vertex v;, t(G) denotes the number of spanning
trees of the graph G and for any e > 0

6(G)] < Cn~V2Fe, (52)
where constant C > 0 depends only on v and €.

Remark 2. We note that, according to the Kirchhoff Matrix-Tree-Theorem,
see [7], we have that

1
t(G) = _)\2)\3"')\71 :detMu, (53)
n

where Mj; results from deleting the first row and the first column of Q.

Remark 3. For the complete graph A\2(K,) = n, EK, = M, t(K,) =

5 2
n"=,

n(n—1)
2

1 1 1
H Jk ( 4n? 22 4n2)
{vj, v} €EKy (54)

_ ()T e o

The result of Proposition 1 for this case is reduced to the result of [11] on
counting regular tournaments in the complete graph.

We plan to give the proof of Proposition 1 in a subsequent paper. In the
present work we just compare the answers given by formula (51) against the
exact values for small graphs. Let

EOqppros(G) — EO(G)

Error(G) = EO(G) ,

(55)



where EQqppros(G) is taken according to right-hand side of (51). The following
charts show the dependence of Error(G) on the ratio A\2(G)/n, where A2(G) is
the algebraic connectivity and n = |VG| =6,7,8,9:

n=6 n=7
1.5} Error 1.5} Error
135 135
12 12
105 k4 105
.
08 asf ¢
075 078 i
06 R L
0.5 . 045 ot
+
03 . 03 . :"
.
015 ‘ 015 S .,
* ACH + + AGIn
q o1 0z 03 04 05 k3] o7 o8 o9 1 [ o1 o0z 03 04 05 06 o7 ik:) o9 1
n=8 n=9
1s}Emor 1.5} Eror

N e o

% ,
045 T 045 .

o Be.
03 5 ik *

?‘i R FRELY
015 e .t 015 e o1
ts - ACH . e % AC'/n

The charts show, in particular, that Error decreases significantly with re-
spect to the ratio A\2(G)/n.

5.2 FEulerian circuits

To our knowledge approximate polynomial algorithms for counting the number
of Eulerian circuits have not yet been obtained in the literature (in contrast to
the orientations). However, we have the formula for EC(G) similar to (51) for
~y-mixing graphs. This formula is more complicated, so we need some additional
notations. Let

W=Q'=@Q+J)", (56)

where @ is the Laplacian matrix and J denotes the matrix with every entry 1.
Let & = (a1, ...,a,) € R™ be defined by

aj = Wj; (57)
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Let B = Qd and

n—1 n
Ci=TI(1-8 > Wbk |, (58)
=1 k=j+1
Cy = L 59
? El ( 2(d; + 1)) (59)

where d; is the degree of v; € VG. Let

— — —

R(0) = tr(AO)WA@)W), (60)

where tr(+) is the trace fucntion, A(f) denotes the diagonal matrix whose diago-
nal elements are equal to components of the vector Qéi Let &%) = (egk), cee e%k)) €

R™ be defined by eg-k) = 0k, where §;; is the Kronecker delta. Let rj, = R(é(k)),

03H<1+ﬁ>. (61)

j=1 J

Finally, let

Ci= ] P (62)

{Ujavk}eEG
where Pjj, is the same as in (51).

Proposition 2. Let G be an undirected simple graph with n vertices vi,vs, ..., vy
having even degrees. Let G be a y-mizing graph for some v > 0. Then

EC(@) =01+5@) | ]] (%ﬂ - 1)!2EG—"TIW—"Tl,/t(G)OlcQQOL; ;
j=1
(63)
where Cy,Ca, Cs, Cy are defined according to (58), (59), (61), (62), respectively,
d; is the degree of vertex vj, t(G) is the number of spanning trees of G and for
any € >0
|6(G)] < C'n= 12, (64)

where constant C' > 0 depends only on v and ¢.
Remark 4. One can obtain for the case of G = K, that
C1CC3C, =1+ O(nil) (65)

Using Remark 5.2 and Stirling’s formula for factorials, the result of Proposition
2 for this case can be reduced to the result of [10] on counting Eulerian circuits
in the complete graph.
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We plan to give the proof of Proposition 2 in a subsequent paper. In the
present work we just compare the answers given by formula (63) against the
exact values for small graphs. Let

ECoppros(G) — EC(G)

Error' (G) = EC(G) ;

(66)

where ECqpprox(G) is taken according to right-hand side of (63). The following
charts show the dependence of Error’(G) on the ratio A2(G)/n, where \o(G) is
the algebraic connectivity and n = |VG| =6,7,8,9:

n=6 n=7
1.5} Error’ 1.5} Error
1.35 135
.
12 12
-
105 105 *
03 09 i
.
075 075
06 ., Il
045 045
0’ -
03 0z
.
* . 0’0
015 . . 015 1%
ACH + AN
[t 01 nz 0.3 na 0s 06 o7 08 09 1 [ o1 0z o3 04 ns 06 07 k:] o9 1
n==§ n=9
15 Ergy 15 Ermor
1.35 : 135 ¢
12 12
1
1.05 - 105
08 i 03
.
it
075 v ws
-
06 2 Il Fs
045 LR, 045 =
.t + 'z
. e had
03 ¢ 7& 03 +
¥ o SR AT
018 e, 05 i
. He . ACI SR TR AT
[t 01 nz 0.3 na 0s 06 o7 08 09 1 [ o1 0z o3 04 ns 06 07 k:] o9 1

The charts show, in particular, that Error’ decreases significantly with re-
spect to the ratio A2(G)/n.
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