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Abstract 

Unlike other large rivers flowing out of Tibet the Yellow River escapes from the plateau 

towards the northeast crossing no less than 5 NW-SE striking, actively growing mountain 

ranges and intervening basins. Thick Plio-Quaternary deposits and high fluvial terraces testify 

to a phase of aggradation and sediment infill up to the average surface elevation (3200-3250 

m a.s.l.) of the Gonghe, Guide and Qinghai Lake basins. A set of 7 main terraces across the 

Gonghe Basin suggest progressive downcutting of the Yellow River carving the present 500 

m-deep Longyang gorge at the basin exit. 10Be and 26Al concentrations in quartz of surface 

and sub-surface samples of four  terraces constrain the timing of incision of the Yellow River 

by determining the burial age of the deposit and the exposure age of its surface. Modeling of 

the depth dependence of the 10Be concentration and of the 26Al/10Be ratio allows constrain the 

onset of the ongoing phase of incision to 120-250 ka. These ages suggest long-term incision 

rates between 2 and 6 mm/year. Together with the present morphology of the Yellow River 

terraces across the Gonghe basin and the Longyang gorge the ages imply rapid river 

catchment evolution and interaction between river dynamics, tectonic and climate in the 

northeastern edge of the Tibetan plateau.  
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1) Introduction 

How and when the Tibetan plateau reached its present altitude and shape are important to 

investigate as the topography influences atmospheric circulations, thus the climate, but also 

because it may be used to constrain models of Tibetan plateau evolution (e.g., Tapponnier et 

al., 1982; Peltzer & Tapponnier, 1988; England & Houseman, 1986; Houseman & England, 

1993; Royden et al., 1997; Fluteau et al., 1999; Tapponnier et al., 2001; Liu-Zeng et al., 

2008). In the stepped growth model of Tibet of Tapponnier et al. (2001), northeastern Tibet is 

the youngest part of the plateau that formed from Pliocene time to present (Meyer et al., 1998; 

Métivier et al., 1998). The region is characterized by narrow actively growing ranges (e.g., 

Tapponnier et al., 1990; Meyer et al., 1998; Van der Woerd et al., 2001) that separate flat 

rapidly filling closed sedimentary basins (Meyer et al., 1998, Métivier et al., 1998; Van der 

Woerd, 1998). Such process may have been active in the central part of the Tibetan plateau, 

leading to the formation of a high topography at about 5000 m a.s.l.. From this point of view, 

the northeastern Tibetan region is a key place to unravel processes of the formation of the 

Tibetan Plateau. Understanding the different roles of tectonics, climate and the evolving 

drainage is thus important to constrain the formation of the present topography of Tibet (e.g., 

Clark et al., 2004; Liu-Zeng et al., 2008).  

 

The Yellow River, together with the Jinsha, Lancang (Mekong), and Nu (Salween) rivers, 

drains the Tibetan plateau on its eastern rim (Figure 1). While its source is located on the high 

summer monsoon influenced central plateau, like the other large rivers, it does not escape the 

plateau to the southeast but is captured to the north after a hairpin loop in the Zoige (Roergai) 

basin (Figure 1; e.g., Harkins et al., 2007). As it flows back to the northwest, north of the 

Anyemaqen Shan, it enters regions of lesser precipitation that barely feed the river. This 

particularity makes the river sensitive to any north-south shift of the northern monsoon limit, 
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which depends on climate variations (e.g., Benn & Owen, 1998; Joussaume, 1999). Both the 

fact that the river crosses a relatively dry northeastern Tibet allowing long-term preservation 

of the terraces and its high sensitivity to climate change probably in part explains the long 

sequence of fluvial terraces found all along the river from the Anyemaqen to the Ordos, in 

northern China.  

 

The terraces of the Yellow River, near Gonghe (Figure 2) or near Lanzhou (e.g., Wang et al., 

2010; Li, 1991), have been commonly interpreted both to testify the first occurrence of the 

Yellow River in northeast Tibet and as a record of regional plateau surface uplift (e.g., Li et 

al. 1997; Li, 1991; Harkins et al. 2007). In this study, we will show that the terraces instead 

more likely indicate rapid incision of the river after a phase of damming and deposition of the 

Yellow River. In fact, probably better than anywhere else in Tibet, the terraces of the Yellow 

River across the Gonghe basin illustrate a process of plateau building that involves damming 

of the drainage by active range growth and rapid filling of closed sedimentary basins (e.g., 

Métivier et al., 1998; Meyer et al., 1998). 

 

In this paper, we describe the terraces of the Yellow River in the Gonghe basin. We present 

the 10Be and 26Al exposure ages obtained on four different terrace levels that allow to  

constrain both the incision history of the Yellow river across the Gonghe basin and the uplift 

rate of the surrounding ranges. We then discuss the implications on the basin history, and on 

the local and regional tectonics. 

 

 

2) Geological and geomorphic setting 

2.1 The Yellow River, basins and ranges 
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From the Zoige basin, east of Anyemaqen and south of the Kunlun fault to the Gobi platform, 

over a length of 500 km (or river length of >1000 km), the elevation drop of the Yellow River 

reaches about 2500 m as it crosses several sedimentary basins (Tongde, Gonghe, Guide, 

Xunhua, Linxia), all separated by actively growing ranges (Heka Shan, Waligong Shan, 

Kongma Shan, Laji Shan) (Figures 1-3). Along this stretch, the river crosses no less than 3 

active strike-slip fault systems and about 6 active thrusts implying interactions of river 

dynamics and active tectonics. Across both the Kunlun and Haiyuan left-lateral strike-slip 

faults (Figure 1), the Yellow River is deflected 80-90 km left-laterally (e.g., Gaudemer et al., 

1989, 1995; Van der Woerd et al., 2002). Right-lateral movement along the Haiyen fault that 

connects with the more easterly trending Riyue-Laji-Kongma Shan thrusts contribute to the 

range growth along the northeastern border of the Guide basin.  The Tongde basin is bounded 

to the north by the southvergent Heka Shan (Figure 1; Harkins et al., 2007). The Gonghe 

basin is limited to the north and south by active thrusts. In the south, thrusts are northvergent 

in the west and southvergent in the east, and their activity is attested by the magnitude Mw 

6.9 1990 seismic event (Chen et al., 1996). In the north, the Qinghainan Shan thrusts are 

southvergent to the west and are attested by folded and uplifted alluvial fans and terraces 

(Van der Woerd, 1998) and northvergent to the east (Waligong Shan). Intensely faulted and 

folded Neogene series in front of the Ryue-Laji Shan (Fang et al., 2005) together with detrital 

zircon ages and their provenance from the Laji Shan (Lease et al., 2007) imply major 

shortening phases during the Plio-Quaternary along the northern Guide basin. Additional but 

less important thrusting also occurs along the western Linxia basin (Fang et al., 2003; Zheng 

et al., 2003), across the Lanzhou thrusts (Wang et al., 2010) and across the Tianjing-Mibo 

Shan north of the Haiyuan fault (Gaudemer et al., 1995). Most of the elevation change of the 

Yellow River occurs between Zoige and Linxia and the steepest river gradients are found in 

the gorges across the Waligong and Kongma Shan (Figure 3).  
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At the northeastern exit of the Gonghe basin, the Yellow River crosses the Waligong 

mountains carving the 500 m-deep Longyang Gorge (Longyangxia in Chinese) (Figures 2 and 

3). Since 1986, an artificial dam has been built at the entrance of the Longyang gorges 

forming the about 100 m deep Longyangxia Reservoir (water level at 2568 m in October 

2004). The NW-SE trending Waligong Shan is composed of two massifs, the western and 

eastern Waligong, each one bounded to the east by active west- to southwest-dipping thrusts 

(Figure 2). The western Waligong thrust juxtaposes the Waligong granite on top of red 

sandstones of Late Miocene-Pliocene age (Pan, 1994; Qinghai Geological Bureau, 1988; 

Figure 4e), similarly to the thrust of the eastern Waligong at the Guide basin western margin.  

 

The most striking evidence for ongoing uplift is the impressive Longyang gorges carved by 

the Yellow River as it crosses the Waligong range (Figures 4a and 4b). The slope of the 

Yellow River increases dramatically at the entrance of the Longyang gorges to about 0.5° 

(Figure 3). The height of the bedrock cliff reaches about 300-500 m in the gorge (Figure 4). 

Other evidences for active tectonic uplift are given by the abraded bedrock abandoned above 

the gorge. At present, the bedrock slopes towards the west as expected if it were back-tilted to 

the west due to uplift of the Waligong on top of a west dipping thrust (Figure 5).  

 

2.2 The Yellow river terraces across the Gonghe Basin 

The Gonghe Basin is a northwest-southeast trending 250 x 50 km-wide sedimentary basin 

(Figures 1 and 2). It is bounded to the north by the actively growing Qinghainan Shan and to 

the south by the Ngola Shan (or Gonghenan Shan) and the Heka Shan. It is filled with up to 

1200 meters of Quaternary sediments (Qinghai Geological Bureau, 1988 ; Métivier et al., 

1998). Semi-arid climatic conditions prevail over most of the basin (annual precipitation 
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average 250-350 mm; Domroes & Peng, 1988) and sand dune fields occupy the eastern part 

of it (Figures 2 and 4c). The basin is almost entirely internally drained except in its eastern 

part where it is crossed by the Yellow River. In contrast with the Qinghai Lake basin located 

just north of the Qinghainan Shan (Figure 1) and occupied by the largest fresh water lake of 

China (4500 sq.m and about 27 m deep; Qin, 1992), only small lakes are visible across the 

Gonghe basin. Evidence for higher lake levels can be seen in abandoned lake shore lines or 

lake deposits (e.g. around Dalian lake or Chaka salt lake; Figure 6; van der Woerd, 1998). 

Despite their proximity, both basins have slightly different present climatic regimes 

characterized by dryer conditions in Gonghe (Domroes & Peng, 1988). 

 

As it crosses the Gonghe basin and incises through the sediment pile (Figure 4d), the Yellow 

River has abandoned a set of terraces that form huge fan shaped stairs across the entire 50 

km-width of the basin (Figure 2). The freshness of the terraced landscape (Figure 4c) together 

with the fact that regressive erosion from the Yellow River gorge itself has not yet captured 

the central drainage of the Gonghe basin indicate that the Yellow River incision  occurred 

recently as suggested by several authors (e.g., Li, 1991; Métivier et al., 1998; Zhang et al. 

2004; Van der Woerd, 1998). The large, up to 10 km-wide and 40-50 km long, terraces across 

the basin are mostly flat with slopes toward the north comparable to the present Yellow River 

slope (0.15-0.3°) in the same area (Figures 3a-3c). From the present river bed to the top we 

numbered the main and largest terrace levels T0 to T7 (Figures 2 and 3). We designate the 

highest and largest terrace T7 knowing that it also corresponds to the regional surface level of 

basins  around 3200-3250 m a.s.l. (Figures 2 and 3). This surface can be easily recognized on 

satellite images or on digital elevation models (SRTM DEM) as it forms flat areas that merge 

smoothly with the piedmont bajadas of the surrounding ranges (Figures 2 and 7a). A similar 

surface level correlates with the top of the sediment fill in the Guide and Tongde basin 
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(Fothergill & Ma, 1999; Fang et al., 2005; Harkins et al., 2007). Interestingly, this level is 

also the highest paleo-lake stand of the Qinghai lake basin to the north (~ 3250 m, e.g., Lister 

et al., 1991; Rhode et al., 2007, 2010; Liu et al., 2010; Fang et al., 2005).  

 

T7 is clearly recognized as a fluvial terrace deposit at the entrance of the Gonghe basin north 

of Heka Shan (Figures 2 and 7b). T7 is now covered by a 2 m-thick layer of eolian loess 

overlying a 15 cm-thick reddish paleosol (B-horizon; Figures 8a and 8b; Pan, 1994). The 

abandonment of T7 marks the onset of incision of the Yellow river in the Gonghe basin. The 

other major terrace levels (T6 to T1) are also composed of fluvial pebbles and gravels and are 

devoid or only covered by a thin loess cover across the Gonghe basin. Clear steep risers up to 

several tens of meters high separate the main terrace levels (Figures 2d and 4c). In several 

places, as can be clearly seen on satellite images (Figure 2), these risers disappear under 

wind-blown sand dune fields because of favorable accumulation at the north-south trending 

risers which are almost perpendicular to the main northwest blowing winds. 

 

For a long time the Yellow River terraces have been recognized as geomorphic markers of the 

active tectonics of northeastern Tibet during the Quaternary (e.g., Li, 1991; Lu et al., 2004; 

Sun, 2005; Li et al., 1997). From Lanzhou to Gonghe, their Early Pleistocene to late 

Pleistocene ages (e.g., Li et al., 1997) have been interpreted to represent phases of regional 

plateau uplift. In contrast, Harkins et al. (2007) have recently proposed, from a 

geomorphological analysis of the upper Yellow River gorge and its tributaries between 

Tongde and Zoige basins that the Yellow river propagated upstream due to headward incision. 

From OSL and C-14 ages of low terraces 10 to 140 m above the present river bed in Tongde 

and upstream that range from 9 to 140 ka, (Figure 3), they infer an onset of incision from the 

top of the basin fill in Tongde at  about 400-500 ka (Craddock et al., 2010). In more details, 
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their results imply the upward propagation of a wave of incision starting around 500 ka in 

Tongde with incision rates of about 2.5 mm/yr that slowed down as incision progressed to less 

than 1 mm/yr at present  (Harkins et al., 2007; Figure 3). 

 

The terraces in Gonghe have not been directly dated so far. Thermoluminescence (TL) dating 

of loess covering 7 terraces in Linxia give ages that range from 10 to 160 ka (Li et al., 1997) 

and due to the similar setting of terraces in Gonghe, the oldest of these ages has been 

attributed to the highest terrace in Gonghe (Li, 1991; Li et al., 1997; Zhang et al., 2004; 

Fothergill & Ma, 1999). However, from paleomagnetostratigraphic studies in Guide and 

Linxia, it has been argued that the highest terrace in Guide postdates closely the shallowest 

dated sediments at 1.8 Ma (Fang et al., 2005), and that the Yellow river started incising in 

Gonghe at about 1.1 Ma (Yan et al., 2004), in agreement with the inference of a post 500 ka 

incision of the Yellow River in Tongde and the upward propagation of a wave of incision 

(Harkins et al., 2007). 

 

It is thus necessary to directly date the terraces, to determine their age of deposition and 

abandonment to constrain the incision history of the Yellow River and the rates of tectonic 

uplift of the narrow ranges cross-cut by the river. 

 

3) Terrace dating, results and interpretation 

3.1 Cosmogenic nuclide dating method 

Cosmogenic nuclides are produced in situ by the interactions between secondary cosmic ray 

particles and surface rocks. Cosmogenic nuclides accumulate in rocks as long as they stay 

at/near to the surface of the Earth. 10Be and 26Al are mainly produced in quartz from O and Si 

by spallation and muonic capture, and the ubiquity of this mineral makes it a favoured target. 
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where 
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N0(z,"t)  is the inherited component, (n,m) subscripts for spallation by neutron and 

muons, respectively. 

 

Samples were processed in the Cosmogenic Nuclides Laboratory of the University of 
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Strasbourg following standard methods described in Kohl and Nishiizumi (1992). 10Be/9Be 

and 26Al/27Al ratios were determined by accelerator mass spectrometry (AMS) at the ASTER 

(CEREGE, Aix-en-Provence) facility except two samples (Qi4-29-1 and Qi4-29-19, Table 1), 

which were measured at the Center for Accelerator Mass Spectrometry at Lawrence 

Livermore National Laboratory (Table 1). Natural 9Be has been assumed to be not present in 

our samples after a set of samples has been checked by ICP-MS. The total 9Be concentration 

is thus determined by the amount of carrier added to the sample.  

 

The 26Al concentrations were measured in a subset of samples to better constrain the exposure 

history of the terraces. As the stable isotope 27Al is naturally present in quartz minerals, 

sample content of natural 27Al was measured by ICP-MS before addition of 27Al carrier. 10Be 

and 26Al have different decay constants and production rates, but the same production profiles. 

They can thus be analysed together and compared. In case of a simple exposure history, 

without a period of burial, the 26Al/10Be nuclide ratio approximates 6.75 (Balco, 2009).  

 

Nuclide concentrations were determined from the AMS measurements and the amount of 

corresponding stable isotope (Table 1). Ages were modelled using the CRONUS online 

calculator (Balco et al., 2008) version 2.2 (April 2009). Sub-surface sample concentrations 

have been modelled by fitting the sample concentrations following equation (2) (see also, 

Granger & Smith, 2000) and using the constant surface production rate determined by the 

CRONUS calculator (see details below). We used the revised 10Be decay constant of 5.1± 

0.26 × 10-7 a-1 of Nishiizumi et al. (2007) and the 26Al decay constant of 9.83 ×10-7 a-1, 

following Balco et al. (2008). Penetration depths used for depth profiles ages calculation are 

160 g.cm-2 for neutrons and 1500 g.cm-2 for muons (Gosse & Phillips, 2001; Granger & 

Smith, 2000). We used densities of 2.65 for quartz, 2.7 for granite, 2.5 for a mix 
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gravel/pebble/cobble deposit, 1.8 for soil, 1.4 for loess. No topographic shielding correction 

was needed given the extent and flatness of the terraces. All other data used in the calculator, 

as advised by Balco et al. (2008) and Frankel (2010), are given in Table 1. 

 

The largest analytical uncertainty comes from the production rate estimation (Gosse & 

Phillips, 2001). Balco et al. (2008) estimated this uncertainty to approximate 10%. It is 

however larger for depth samples because uncertainties on penetration depths (6%), sample 

depth (0,5%) and density of overlying material (2-3%) must be added. Final uncertainties on 

production rates are then comprised between 10 and 12%. Uncertainties from the chemical 

processing are low (1-2%). Uncertainties from the AMS measurement are comprised between 

1.8 and 3.5%. Total analytical uncertainties on ages, not considering modeling errors, thus 

range from 11% to 13% (Table 1). 

 

We sampled four different terrace levels for cosmogenic dating, T7 and T5 in the basin, and 

two strath terrace levels in the gorge, WRB (Waligong right bank) and WLB (Waligong left 

bank) (Figure 2, Table 1). 

 

 

3.2 Cosmogenic nuclide measurements 

3.2.1 Terrace T7 samples 
 

Stratigraphy 

On the southern side of the Gonghe basin, north of Heka Shan and on the right bank of the 

Yellow River, clean exposure of the top 10 m of the T7 level can be seen in a gravel quarry 

used for road constructions (Figures 2c, 7 and 8).  The terrace conglomerate is a thick fill 

deposit, composed of gravels, pebbles and cobbles with a few 5 to 50 cm-thick and several 
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meters long sand lenses (Figure 8c). It is covered by a 15 cm-thick reddish paleosol (Figure 

8b), itself covered by about 2 m of eolian loess (in the following sections, layer and sample 

depths are given relative to present ground surface, i.e., the top of the loess deposit). The 

conglomerate pile is marked by an angular unconformity at around 3.5-4 m depth. In an EW 

section, the ~5° west dipping pebble layers and sand lenses are intersected by overlying 

horizontal layers. In the NS section, the angular unconformity disappears, but a clear layer 

transition can be seen in the section approximately at the same depth (Figure 8). The two 

conglomerate units will be called C1 and C2 from bottom to top in the following sections. 

The top 20 cm of the C2 conglomerate, just below the paleosol, is marked by a visible 

increase in the amount of whitish quartz-vein centimetric pebbles (Figure 9; Table 1). Our 

field observations and inspection of the quarry cliffs have not allowed to distinguish any other 

sedimentation interruption or other unconformities. Note that the latter would be difficult to 

detect since there is no obvious change in the nature and origin of the material deposited. 

Therefore, in the following discussion, we will consider the section analyzed as a sequence of 

two depositional events (assuming that other sedimentation interruptions, if present, lasted 

only for short periods compared to the whole life time of the terrace), followed by the 

formation of a paleosol, itself followed by the deposition of loess. 

 

Sampling 

From depths of 2 to 7.5 m we collected 16 quartz-rich samples for cosmogenic exposure 

dating along two nearby vertical profiles (Figure 8, Table 1). At a depth of 2 m, a cobble was 

found above the paleosol but below the loess cover (sample Qi4-29-1). Below the paleosol, in 

unit C2, we collected a large number of centimeter-sized quartz-vein pebbles at a depth of 

2.10 ± 0.10 m. These pebbles were sorted by size and analyzed as 4 separated amalgamated 

samples (samples Qi4-29-27a, b, c and d; Table1; Figure 9). Four additional samples are 
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individual quartz-rich cobbles (quartz vein or granitoid) from 2.3 to 3.2 m. In unit C1, three 

sand lenses were sampled at 3.7, 3.9 and 7.5 m (samples Qi4-29-14, 15 and 23, respectively; 

Table 1). The 4 remaining samples are individual quartz-rich cobbles at 4.00, 4.80, 6.15 and 

6.75 m (samples Qi4-29-16, 24, 21 and 22; Table 1). Among those 16 samples, 13 were 

analyzed for 26Al (Table 1).  

 

10Be nuclide concentrations 

10Be concentrations range from 235000 to 1500000 at/g(qtz) for most of the samples, except 2 

that have highest concentrations of about 2 millions at/g(qtz) (Figure 10a, Table 1). Lowest 

concentrations are those of cobble samples Qi4-29-21 and Qi4-29-11 with, 235000 and 

405000  at/g(qtz), respectively. The sand lens samples have larger concentrations of 445000, 

505000 and 785000 at/g(qtz). The large concentrations of 1500000 at/g(qtz) is reached for 

samples right below the soil-conglomerate interface, samples Qi4-27a, b,c and d (Table 

1).The whole sequence of 10Be concentrations measured in the different samples do not show 

a monotonous exponential decrease with depth but imply either sequential deposition (e.g., 

Shaller et al., 2002; Matmon et al., 2009) or a variable inheritance between samples (e.g., 

Anderson et al., 1996; Mériaux et al., 2004, 2005; LeDortz et al., 2009). In particular the 

different type of samples collected, individual cobbles, sand lenses or amalgamated pebbles 

may have various pre-exposure components (e.g., Oskin et al., 2008). However, within each 

unit, C1 and C2, the sample concentrations show an exponential decrease with depth linked to 

their respective exposure histories (Figure 10). 

 

26Al nuclide concentrations 

The 26Al concentrations were measured in 13 samples (Table 1). The concentrations range 

from 2 to 9 millions at/g(qtz) and imply 26Al/10Be ratios that vary between 4.12 to 6.06 
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(Figures 10 and 11; Table 1). Low 26Al/10Be ratio values usually result from differential decay 

of 10Be and 26Al caused by shielding from cosmic rays after a period of nuclide accumulation 

(Bierman, 1994).  None of the samples have typical simple exposure surface 26Al/10Be ratio of 

6.75 implying either shielding of the section or a significant component of inherited nuclides. 

Disregarding a few anomalous samples, such as, Qi4-29-1 that is probably a reworked cobble 

found above the paleosol,  Qi4-29-9 and Qi4-29-22 that have high 10Be concentrations (large 

inheritance) and the sand samples, the 26Al/10Be ratio decreases slightly from 6 to 5.7 between 

2 m to 6.15 m depth (Figure 10b). The sand lenses have lower 26Al/10Be ratios of about 4.8 to 

5.06, which may indicate incorporation of material with inherited low 26Al/10Be ratios. We 

note that this might also be the case of present river sands, which have a ratio of about 5.28 

(sample Qi4-43A, Table 1). We will jointly model (see below) the 10Be concentration profile 

and the 26Al/10Be ratio to constrain the age of deposition and abandonment of the T7 level. 

 

3.2.2 Terrace T5 samples 

Geomorphic setting 

Terrace T5 is one of the largest terraces southwest of Gonghe situated about 150 m below T7 

(Figures 2, 3, 12). It is flat in its northern part where the surface is characterized by a tight 

pebble and cobble pavement (Figure 12). At places, sand dunes (barkanes) travel 

southeastwards across the terrace with the probable consequence of incorporation of modern 

sand below the pavement and abandonment of sandy patches at the terrace surface. We 

selected the wide paved surface because such surfaces are usually characterized by low 

erosion rates and are thus well suited for surface exposure dating (e.g., van der Woerd et al., 

1998, 2006; Mériaux et al., 2004; Matmon et al., 2009).  

 

Sampling and measurements 
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We sampled 7 well embedded cobbles on terrace T5 (Figure 12). The 7 samples have close 

10Be concentrations on the order of 3×106 at/g quartz (Table 1). This high nuclide 

concentration, which is twice the concentration of samples Qi4-29-27 from 2 m depth in T7, 

suggest that 1) T7 must have been shielded quite rapidly after deposition and 2) the T5 terrace 

surface has never been shielded and 3) inheritance and/or erosion, if present, have similar 

effects on the samples of T5. We will use the weighted mean of the 7 sample concentrations 

(3.21 ± 0.30 x 10e6 at/g(qtz); Table 1) as the 10Be nuclide concentration of terrace T5 surface. 

 

  

3.2.3 Waligong terrace samples 

Geomorphology 

It is across the Waligong ranges that the Yellow River has cut its most impressive gorge over 

a length of 30 km and a total drop of water level of 200 m (Figures 2 and 3). Across the 

western Waligong, the Yellow River has carved a deep gorge with walls reaching about 500 

m (Figures 3a, 3b). The flat top of the gorge mimics the overall shape of the western 

Waligong (Figures 4 and 5), and slopes towards the west into Longyangxia reservoir (Figure 

2). In fact, in more details, the top of the gorge is formed by the progressive down cutting of 

the river resulting in abandonment of a sequence of strath terraces carved in the bedrock , 

which are covered by a thin deposit of fluvial gravel and cobbles (Figures 5 and 13). These 

terraces now slope towards the west indicating that the western Waligong is actively growing 

and has progressively back tilted the terraces. While the main terrace levels can be clearly 

depicted in the landscape (Figures 5c and 5d), their shape narrows near the gorge and their 

riser join with a low angle the gorge rims so that they become unclear near the gorge and we 

were unable to number and map them precisely. 
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Sampling and measurements 

We sampled two sites on each side of the gorge (Figures 2 and 13), Waligong right bank 

(WRB) and Waligong left bank (WLB), located at 2680 and 2940 m a.s.l., respectively. Given 

the difficulties of terraces mapping near the gorge rim, these two sites are not located within 

the regional Gonghe basin terrace stratigraphy. Elevation only is not sufficient as we suspect 

uplift to have occurred since their abandonment (see below). At both sites we sampled the 

bedrock as well as the overlying cobbles, 4 samples at WLB and 8 samples at WRB (Figure 

13, Table 1).  

On terrace WLB, samples have 10Be concentrations that range from 0,56 to 2.6x106 at/g(qtz) 

(Table 1). The lowest concentration (0,561x106 at /g(qtz)) is found in a piece of a highly 

fractured quartz vein sampled near the gorge cliff edge (sample Qi4-59, Figure 13a). Qi4-60 

is a bedrock sample near the cliff edge and has a concentration of 1.82x106 at/g(qtz). Both 

remaining samples have higher concentrations, Qi4-62 is a protruding bedrock high (Figure 

13a) and Qi4-61 is a cobble from the top of the terrace conglomerate cover (Figure 13a). We 

think that the average concentration of these two latter samples of 2.57±0.11 at/g(qtz) (Table 

1) corresponds to the nuclide concentration accumulated since terrace abandonment and that 

the lower concentrations in the other samples are due to removal of the conglomerate cover 

and erosion of the fragile quartz vein outcrop.  

On WRB terrace, samples have 10Be concentrations that range from 1.2 to 1.9×106 at/g(qtz) 

(Table 1). The 35% difference in concentration among the WRB samples may be explained 

by the relative positions of the samples in the section sampled (Figures 13c and 13d). It 

appears that samples with the lowest concentration, Qi4-48 and Qi4-47 (Figure 11c) are 

bedrock samples close to the gorge cliff, which are no more covered by the terrace 

conglomerate. Sample Qi4-49 belongs to a bedrock high (Figure 13c) standing at the same 

level as the pebbly conglomerate top and show a similar 10Be concentration as the 5 surface 



 1
8 

cobbles Qi4-50 to 54 (Table 1). The distribution of concentrations of the WRB samples is 

thus best explained by removal of the conglomerate cover near the gorge cliff. The 10Be 

concentration average of 1.89±0.02e6 at/g(qtz) of the 6 samples with highest concentrations 

correspond to the nuclides accumulated since terrace abandonment.   

 

 

3.3 Age Modeling 

Model age of T7 

We modeled jointly the 10Be concentration and the 26Al/10Be ratio in the depth profiles (e.g., 

Anderson et al., 1996; Granger & Smith, 2000) considering a deposition scenario in three 

steps corresponding to the stratigraphy observed in the field (Figures 8 and 10). Modelling 

results are presented in Figure 10 and take into account progressive increase in muongenic 

production at depth following analytical solutions described in Granger & Smith (2000) and 

calibrated to our site (Table 2). Disregarding samples with large inheritance and the sand 

samples, model 1 is a best fit adjusting all the 26Al/10Be ratios, and models 2 and 3 are limiting 

models toward short and long exposure times, respectively. In general, both the 10Be 

concentration and the values of the 26Al/10Be ratio imply shielding by the loess during more 

than 150 ka (model 1). Involving fast erosion rates of the loess (0.01 cm/yr, model 3) very 

long time of loess shielding may be implied (400 ka) with the necessity to have an original 

loess thickness reaching several tens of meters. 

Because the 2 m-thick loess deposit on top of the terrace is a shielding factor for cosmic rays 

(factor of decrease in production rate amounts to about 6) (e.g., Hetzel et al., 2004; Matmon 

et al., 2008) we have to consider its mode and timing of deposition. The presence of a 

paleosol below the loess (Figure 8) implies that the terrace surface remained free of loess 

during a certain time, i.e., quasi without any shielding. Without independent chronological 
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constraints on the loess age, several loess deposition modes can be modelled. In the first 

mode, the 2 m-thick loess is deposited instantaneously (or rapidly compared to the age of the 

terrace), in the second mode it was deposited continuously during a certain time (Figure 10c). 

Some constraints can be added from additional observations in Gonghe and elsewhere. As we 

mentioned above, loess is absent on the lower Yellow River terraces across the Gonghe basin, 

particularly on T5, so that the age of T5 may be the time when loess deposition stopped in the 

area (see below). In addition, 1 to 2 m-high loess sections described in northern Tibet 

generally show progressively younger ages towards the top (e.g., Peltzer et al., 1988; van der 

Woerd et al., 2002; Hetzel et al., 2004; Rhode et al., 2007) over a time period of a few 

thousands of years. Another possible factor of shielding variation is involved if the loess 

cover is reworked by wind ablation implying a period of loess deposition followed by a 

period of loess erosion (model 3).  

Assuming that sub-surface samples cannot loose any 10Be, except by radioactive decay, the 

lowest concentrated and deepest samples in a depth-profile (below about 1.5 m, Anderson et 

al., 1996) determine the minimum inherited component of the samples. We have thus 

considered the inheritance given by sample Qi4-29-21 (i.e., 235000 at/g, Table 1) in most 

models, and show only one alternative model (model 2) with an inheritance of 445000 at/g 

fitting the profile to the two sand samples with the lowest concentration (Qi4-29-23 and 15; 

Figure 10, Table 2). Note that the present Yellow river is carrying sand that has a 10Be 

concentration of about 300000 at/g quartz (Table 1; see also Harkins et al. 2007) that may be 

considered as the average inherited 10Be component of the alluvial material transported by the 

river, assuming it is constant over time and not variable with material size.   

While below the paleosol, the fits to the data mostly depends on the choice of the inheritance 

value, above the paleosol, the fits mostly depends on the onset of loess shielding (Figure 10a, 

Table 2). These models also show that, in all cases, deposition of conglomerate C2 occurred 
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shortly after deposition of conglomerate C1 (10 to 15 ka). Similarly, deposition of the loess 

cover occurred shortly (0 to 25 ka) after deposition of conglomerate C2.  

As shown in Figure 10c (Table 2), when a long-lasting loess deposition process is considered, 

shielding starts to be efficient when this process last less than 20 ka. This implies, that 

shielding by the loess must have started a few thousands of years after the terrace has been 

abandoned and that the loess must have been deposited in a short time. Note that this is fully 

in agreement with the observation, that the terraces below T7 are not loess covered, so that 

they must have been abandoned after the loess deposition process ceased in the region and on 

T7 in particular.   

Sample Qi4-29-1, sampled above the paleosol and below the loess may be used as an 

additional constraint. It is clearly a reworked cobble as it is not emplaced in a fluvial deposit, 

but it must have been reworked at the time of the formation of the paleosol and before being 

capped by the loess. As can be seen in Figure 10a, models that are adjusted to this sample 

imply a minimum exposure of C2 of 10-15 ka. The same duration would be needed to account 

for soil formation above C2 and some surface reworking. The 10Be concentration of this 

sample implies exposition under the loess during 150 ka.  

To summarize, T7, or more precisely the top C2 conglomerate may have been deposited about 

200 ka, and definitively incised by the Yellow River after 150 ka, some time before the 2 m 

loess cap accumulated on top of C2. 

 

Model age of T5 

Without independent constraints on erosion and inheritance for terrace T5, these parameters 

have to be estimated. Inheritance may be taken similar as for terrace T7 (235000 to 445000 

at/g quartz) or similar to the present Yellow River sand 10Be concentration of about 300000 

at/g quartz (Table 1). Regarding erosion, studies have been carried out in the Gonghe basin 
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following intensification of agriculture and its consequence on desertification. Using the 137Cs 

technique to assess erosion in drylands and sand shifting areas, erosion rates of about 1-2 

mm/yr have been estimated over the last ~40 years (Yan et al., 2002; Zhang et al., 2003). 

These values of erosion are rather high (Lal et al., 2003) and may only reflect the 

consequence of human activities. Lower values of 0.003-0.01 mm/yr were estimated for 

bedrock outcrops throughout Tibet (Lal et al., 2003).  Again these values should be taken as 

maximum erosion rates for a flat alluvial terrace. 

The average age of T5 calculated from 3.04±0.17×106 atoms/g is 106 ± 6 ka. Both the 

inheritance of 300000 at/g quartz and a maximum erosion rate of 0.002 mm/yr (Figure 14) 

imply subtractive and additive corrections of 15-20%, respectively. Without evidence that 

erosion rates may be larger, we thus conclude that the minimum age of T5 is 106 ± 15 ka.  

 

Age model of Waligong 

To calculate the age of the terraces we need to take into account the change in elevation due 

to their tectonic uplift (e.g., Hetzel et al., 2004; Ruszkiczay-Rüdiger et al., 2005a, 2005b) 

(Figure 15). Waligong Shan is composed of two sub-parallel ranges at the junction between 

the eastern termination of the Qinghainan and the Laji Shan closing the northeastern corner of 

the Gonghe basin (Figure 2). The western Waligong is a 15 km-wide and 50 km-long arcuate 

range trending roughly northwest-southeast (Figures 1 and 2). Its asymmetric topographic 

shape, with a steep northeast and eastern flank under the summital crest that reaches 3500 m 

a.s.l. above a west dipping thrust and a western flank that slopes about 3.5° westward,  

(Figure 4e) indicate that it is an east-vergent crustal anticline. The eastern Waligong is less 

elevated but larger (20-30 km), trends northwest –southeast and makes up the western limit of 

the Guide basin. Similarly to the western Waligong, it has a steep eastern rim marked by a 

thrust at its base (Pan, 1994) and grows as an east-vergent anticline (Figure 2). As can be seen 
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in the field (Figure 13) the strath terraces are carved into the Waligong Mesozoic granodiorite 

(Geological map of Qinghai, 1988). 

A simple model (Figure 15) accounting for the tilt of the Waligong Shan and uplift of the 

terraces implies possible changes in elevation of 80 m for WRB terrace and of about 300 m 

for WLB terrace (Figure 15). For WRB, the in-situ production rate changes from 25.73 at/g/yr 

at 2600 m to 27.04 at/g/yr at 2680 m. This change in production rate of about 10 % remains 

small with regard to other uncertainties and may be neglected. For WLB the production rate 

change is more significant, varying from 26.6 at/g/yr at 2640 m to 31.93 at/g/yr at 2940 m, i.e. 

a change of 20 %. The real mean production rate of this terrace lies certainly between these 

end-values and we will take the mean between these bounds with a large error of 15%. The 

terrace ages are thus 74±10 ka for WRB and 90±15 ka for WLB. The maximum changes in 

elevation mentioned above imply maximum uplift rates for Waligong Shan between 1 and 3 

mm/year.   

However, this model does not take into account the low 26Al/10Be ratio (5.23±0.27) obtained 

for sample Qi4-62 (WRG), which is a bedrock sample near the gorge cliff (Figure 13). This 

ratio implies that the surface bedrock needs to be exposed a first time (first cosmonuclide 

accumulation), then shielded during several hundred thousands years (ratio decreases; Figure 

11) and then re-exposed until present. The cobble cover, likely deposited by the river, covered 

the surface before being progressively eroded to the present state (Figure 13). The beryllium 

concentrations of the cobbles would thus reflect the exposure duration since the river left, but 

bedrock concentrations are not totally related to this last phase of aggradation and erosion. 

The surface would thus be exposed since ∼80 ka. Initiation of uplift likely began shortly 

afterwards at a minimum rate of 0.2 mm/year. Despite the fact that the 10Be concentrations of 

the cobbles are higher on WLB than on WRB because of their higher elevation and 

production rate, simple calculations show that this scenario would lead to 10Be concentrations 
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close to 2.0×106 at both sites, with a difference of ∼2.0×105 atoms instead of the ∼6.0×105 

measured (Table 1).  

 

4) Discussion 

4.1 Onset age of incision in the Gonghe Basin 

Whether the beginning of river incision corresponds to the first appearance of the Yellow 

River in the basin is an open question. Terrace sequences along the Yellow River differ 

markedly from Gonghe to Lanzhou. As explained above, terraces in the different basins seem 

completely unrelated to each other (ages, loess thickness, elevations). We cannot simply rely 

on these terraces to compare our chronology in the Gonghe Basin, but the timing of river 

incision should be coherent between the different basins (Harkins et al., 2007). 

Several authors have proposed that incision in the Gonghe Basin began at around 150 ka. 

(e.g., Li, 1991; Pan, 1994). Evidences for a major change along the Yellow River 150 ka ago 

have been summarized by Zhang et al. (2004). Periods of high regressive erosion from the 

Longyang gorges and the Sanmen gorges (in the middle reaches of the Yellow River north of 

the Ordos plateau, inset, Figure 1) are reported around that time (Zhang et al., 2000; Wang et 

al., 2002). This period of erosion in the Longyang gorges could have followed the folding of 

the fluvial sediments of the Gonghe formation (Li, 1991). An increased sedimentation in the 

marine delta of the river could be related to this period of high erosion and to the climate 

warming of MIS-5 (Imbrie et al., 1984).  

However, it has been proposed that incision began around 500 (±200) ka ago in the Tongde 

Basin (Harkins et al., 2007; Craddock et al., 2010), following the last 1.8 Ma lacustrine 

deposit near the top of the section in Guide (Li et al., 1997). A direct implication is that 

incision in the Gonghe Basin began at the same time or before, but not after, which means 

that T7 must be much older than results from our investigations suggest. This can only be 
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achieved if a significant amount of erosion or a long period of shielding occurred and may 

imply that all terraces are significantly older. A 140 ka (OSL) terrace located 140 m above the 

Yellow River is located at an elevation of ∼2830 m in the Tongde basin (Harkins et al., 2007; 

Craddock et al., 2010). For comparison, an equivalent terrace in the Gonghe Basin would be 

near by T1, which is expected to be much younger than 140 ka. 

 

4.2 Incision rates of the Yellow River in the Gonghe Basin  

Terrace ages are plotted against their elevation on figure 16. The minimum and maximum 

long-term incision rates are ∼2 and ∼6 mm/year, respectively, with a mean rate of ∼4 

mm/year. This mean rate fits well with the ages of T5 and T7. However, for all data it is 

needed to account for changes in the incision rate. The incision rate between the formation of 

T7 and T5 depends strongly on the age of T7, if erosion on T5 remains small. A period of 

high incision is needed between T5/WLB and WRB. The incision rate may have reached 9 

mm/yr (10 mm/year maximum, if no elevation changes are taken into account for the 

Waligong terraces). Our data suggest that incision was first slow, then accelerated between 

∼100 and 50 ka, before slowing down again. Such fast incision would have favoured the steep 

Waligong gorges formation. 

A mean incision rate of 4 mm/year is higher than those mentioned in other places along the 

Yellow River in the literature, 0.7 mm/yr since 70 ka near Lanzhou (Wang et al., 2010), 

between 0.75 and 1 mm/yr since 166 ka near Linxia (Li et al., 1997) for the downstream part,  

between 0.9 and 1.0 mm/yr for the last 140 ka in the Tongde Basin (Harkins et al., 2007). But 

it is in agreement with the 6 mm/yr since 93 ka in the Guide Basin proposed by Pan (1994). 

 

4.3 Climatic correlations and formation of the set of terraces 

It is now recognized that climatic fluctuations play a key role in shaping fluvial terraces. 
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Correlation of terrace formation periods with climatic events is however not straightforward, 

because uncertainties inherent to the cosmogenic nuclides dating method often prevent from 

determining a precise correlation. Transitional periods between glacial and interglacial 

periods seem nevertheless to play a major role in forming fluvial terraces. These periods 

would be favorable for incision, while aggradation would occur during stable climatic phases, 

possibly both glacial and interglacial (e.g., Vandenberghe, 2003).  

Loess in northeastern China was mainly deposited during glacial periods, while paleosols 

developed during interglacial phases, alternating loess and paleosol layers being correlated to 

climatic fluctuations (e.g., Ding et al., 2002). The fact that T7 gravels are directly overlain by 

a paleosol and this paleosol by a loess cover suggests that this terrace was abandoned during a 

deglaciation period and covered by loess during an aposteriori glacial event (Pan et al., 2009). 

No such climatic indicators are available for the other terraces, although it is reasonable to 

assume that their formation followed a similar process, i.e., a formation as a consequence of 

dry/cold to wet/warm climate transition.  

The terraces in the Gonghe Basin could have been formed during glacial periods and 

abandoned at the transition with warmer periods, when the river high incision power enabled 

it to break dams formed by the Waligong Shan.  

 

4.4 Evidence for a Gonghe-Guide-Qinghai paleo-lake 

Small lakes can be found in several places in the present Gonghe basin (Figure 6); Chaka 

Lake, in the northwest, has a present elevation of 3060 m; Dalian Lake, at an elevation of 

2850 m (Yan et al. 2002); Duolonggou lake, north of Gonghe city, at an elevation of 3194 m. 

Lacustrine sediments can be found at several places in the Gonghe basin and at Dalian Lake 

for instance. These small lakes and sediments may be remnants of a larger lake occupying the 

bottom of the Gonghe basin (Figure 17). Such a lake may have covered adjacent intra-
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mountainous basins. It has been reported that sedimentary sequences in the Guide Basin were 

deposited under lacustrine conditions (Parés et al., 2003; Fang et al., 2005; Li et al., 1997). 

Moreover, it is striking that the present level of the Qinghai Lake is exactly at the same 

altitude as Duolonggou lake and as T7 sampling site (3200 m). Qinghai lake exists since ~0.5 

Ma (Yuan et al., 1990) and its present maximum depth approximates 20 meters (Colman et 

al., 2007). Reconstructions of Qinghai lake water level paleo-elevations lead to various 

chronologies (Colman et al., 2007; Madsen et al., 2008; Rhode et al., 2010; Liu et al., 2010). 

The lake reached a maximum elevation of 3260 m (palaeo-shorelines older than 30 ka) and its 

level was particularly high during the penultimate glacial maximum (~150 ka). Other lakes in 

the region seemingly experienced the same high-stand event, the nearest in distance  being 

Gahai Lake in the Qaidam Basin (Fan et al., 2010). 

The Chinese literature discusses the existence of an eastern Qinghai paleo-lake covering the 

Qinghai, Gonghe, Xinghai and Xining basin (e.g., Pan, 1994). It is based on a possible 

stratigraphic continuity between sediments in the Guide and Qinghai Basin. Such a lake 

would have broken into several parts due to the recent tectonic activity. Tectonic activity 

along the Qinghainan Shan fault likely began at the end of the Miocene or at the beginning of 

the Pliocene (Métivier et al., 1998; Meyer et al., 1998; van der Woerd, 1998; Fang et al., 

2005; Lease et al., 2007) separating the Qinghai and Gonghe Basin. A connection between 

the two basins was possible at the southeastern extremity of Qinghai Lake when the pass may 

have been at a lower elevation (present elevation: 3350 m). The Qinghai Basin and the 

western Gonghe Basin are now internally drained. Madsen et al. (2008) proposed that 

Qinghai Lake began to form during the Middle or Late Pleistocene when the Riyue Shan 

uplift separated the Qinghai Basin from the Yellow River drainage system. Uplifting 

mountain ranges crossing the river course would have acted as boundaries for the eastern 

Qinghai paleo-lake, near the Longyang gorges (Gonghe Basin exit), Shanba gorges (Guide 
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Basin exit) or Jishi Gorges (Xunhua Basin exit) (Figure 17). The change from a lacustrine to a 

fluviatile environment would in this case correspond to the breaching of the topographic 

barriers and emplacement of the modern course of the Yellow River across the basins (Pares 

et al., 2003; Craddock et al., 2010). 

However, no large lacustrine deposit can be found at present to attest more clearly the 

existence of such a lake, in particular at our sampling site of T7. Processes that lead to the 

formation of the wide paleo-regional base-level around 3200 m and of lakes present at this 

elevation stills need to be investigated, as well as the possible past connections between the 

different basins. 

 

 

5) Conclusion 

The Gonghe Basin is one of the widest basins of northeastern Tibet. It contains noteworthy 

wide terraces that testify to an important and recent water level decrease. Our results indicate 

that terraces were formed at the transition between glacial and interglacial periods. The upper 

one probably dates from the penultimate glacial maximum (MIS-6; Imbrie et al., 1984). 

Obtained ages show that incision occurs at a mean rate of ∼4 mm/year. Higher incision rates 

during some periods may be related to Waligong Shan uplift, although the tectonic signal 

remains difficult to separate from the river incision. Our results highlight the consequences of 

mountain growth and the interplay between tectonic and climatic processes in building the 

Tibetan Plateau. We provide chronological constraints supporting that this part of the plateau 

evolved rapidly in recent time from an internally drained but interconnected set of closed 

basins to an externally river drained plateau margin.   
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Figures captions 

Figure 1. Sismotectonic map of the upper reaches of the Yellow River across northeastern 

Tibet. Fault modified from van der Woerd (1998), Meyer et al. (1998), Tapponnier et al. 

(2001). Seismicity from Iris catalog, focal mechanisms from Harvard. Gonghe 1990 M 7 

earthquake isoseismal from Chen et al. (1996). Topographic background is contours extracted 

from SRTM DEM with a 30sec precision.  

  

Figure 2. (a) SPOT satellite image mosaic of eastern Gonghe basin. White rectangle is figure 

2b. (b) CORONA image showing the northern part of the basin aross Yellow River terrace 

flights, Waligong Shan and Longyang gorge. c) Digital elevation model (SRTM, 90 m, 

GeomapApp) of most parts of the Gonghe, Guide and Qinghai Lake basins. Yellow River 

terraces clearly show up in central part of figure as wide fan shape stairs. Inset is elevation 

data histogram of same area. The tight peak of elevation around 3200 m a.s.l. is the wide 

plateau surface corresponding to surface elevation of the Gonghe and Qinghai Lake basins, as 

well as part of the Guide and Tongde basins. d) Geomorphological map of the Yellow River 

terraces in the eastern Gonghe basin. White filled circles are sampling site on terraces T7 and 

T5. (e) Topographic cross-section of terraces following black line of figure 2d (projection 

N85°E).  

 

Figure 3. (a) Slope variations along the Yellow River. River slope reaches its maximum 

values (>0.5°) across the Longyang and Kongma gorges. (b) Profile of Yellow River bed 

from the southern Anyemaqen to Xunhua Basin. Red lines are active faults at basin margins 

(strike-slip, normal or reverse). Vertical scale is exaggerated 100 times. Profiles were 

extracted from SRTM DEM. River profile across Longyangxia Reservoir from Chinese 

1:50000 topographic maps. Position and terrace ages upstream from Gonghe from Harkins et 
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al. (2007). (c) Enlarged Yellow River profile between Tongde and Xunhua, with projection of 

the Gonghe terraces (relative heights from figure 2), upper T7 regional top fill, and samples 

locations. Height of terraces in Guide basin from Fang et al. (2005). Colors of terrace threads 

in different basins are arbitrary. 

 

Figure 4. (a) Field photo of the Longyang gorges, view towards the east. (b) Steep gorge cliff 

on right bank of river incising flat abraded bedrock surface, view towards the south. (c) 

Terrace T7/T6 riser inside Gonghe basin (see Figure 2), view towards the north. Riser forms a 

wind shelter where dunes accumulate (barkanes). (d) Yellow river gorge in the south of the 

Gonghe basin, view towards north. River can be seen cutting trough the sediment fill and 

northern bedrock sliver of Heka Shan (e.g., Métivier et al., 1998). Flat incised surface is level 

T7. (e) View to west at the steep thrust contact between the Mesozoic granodiorite of the 

western Waligong and the Tertiary red sandstones in the Yellow River gorge. 

 

Figure 5. (a) Panoramic view of Waligong gorge. (b) View to west, towards Longyangxia 

Reservoir. In front, rim of bedrock strath can be seen. Note westward sloping flat top surface 

above the gorge. (c) View to east of stepped slope of western Waligong near the gorge that 

corresponds to the progressive entrenching and narrowing of the Yellow River bed. (d) View 

to west of the terraces in southwestern flank of Waligong Shan. 

 

Figure 6. Google Earth view of the Gonghe and Qinghai basins with present lakes or lake 

remnants (salt flats, abandoned shore lines) highlighted.  

 

Figure 7. (a) View towards south of terrace T7 surface, (see location in figure 2). Surface T7 

merges smoothly with range slopes at the margin of the basin. (b) View towards north of T7 
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on the right bank of the Yellow River, in southern Gonghe basin. In front, gravel quarry that 

allowed access to first 10 meters of terrace deposit. 

 

Figure 8. (a) The top 10 m of terrace T7 in a gravel quarry on the right bank of the Yellow 

River, north of Heka Shan (see location in figure 2). The terrace conglomerate is covered by a 

2 m-thick loess deposit. Yellow vertical line (hanging tape) shows position of depth profile. 

Schematic section is shown on left with position of samples. Single pebbles, amalgamated 

samples and sand lenses were collected from 2 to 10 m depth. (b) Detail of paleosol between 

loess cover and conglomerate. (c) Detail of sand lenses. 

 

Figure 9. Mass distribution plot (probability density function) of amalgamated pebbles of 

samples Qi4-29-27a, b, c and d collected about 2.1 ± 0.1 m deep below T7 surface. Number 

of pebbles, average mass and approximate size are indicated. Concentrations of 10Be 

measured in amalgams are shown (see Table 1) together with weighted mean. 

 

Figure 10. (a) Plot of 10Be concentrations of sub-surface samples of terrace T7 (see Table 1). 

Schematic stratigraphy of the section is shown. (b) 26Al/10Be ratio as a function of depth for a 

subset of samples of figure 10a. Models 1, 2 and 3 are fitted to both the 10Be and the 26Al/10Be 

ratio (see text and Table 2). (c) Models showing the impact of various loess accumulation 

scenarios, first number is duration of loess deposit, second number is duration of exposure at 

the end of loess deposit. Conglomerates C1 and C2 where exposed each during 15 ka (Table 

2).  

 

Figure 11. 26Al/10Be ratio versus 10Be for a subset of samples from the depth profile of terrace 

T7 (Table 1). 
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Figure 12. (a) View to east of terrace T5 surface, showing a loose pavement of gravels and 

pebbles. Note absence of loess cover (see location in figure 2). At places, terrace T5 is 

covered by sand dunes and grass patches. Surface cobbles were collected for 10Be cosmogenic 

dating in very flat areas with no sign of soil development or local incision. (b) to (h), close-up 

of cobbles sampled for surface exposure dating. 

 

Figure 13. (a) View of Waligong left bank terrace (WLB) just above Longyang gorges (see 

figure 2 for location). The terrace is a smooth strath carved in granitic bedrock of Waligong 

Shan covered by a thin layer (> 1 m) of gravels and pebbles. Both granitic bedrock strath and 

overlaying pebbles were targeted for 10Be exposure dating. (b) Schematic section with sample 

locations on WLB. (c) View of Waligong right bank (WRB) terrace with sample locations. 

Similarly to WLB, the strath terrace is smooth and covered by a thin layer of pebbles and 

cobbles. (d) Schematic section of WRB with sample locations. Samples Qi4-47 to -49 are 

bedrock, samples Qi4-50 to 54 are cobbles. 

 

Figure 14. Minimum exposure age range of T5 and influence of erosion. Erosion of about 

0.001 mm/yr cannot be excluded, but erosion of 0.003 mm/yr may be a maximum (see text 

for details). 

 

Figure 15. (a) to (d) Schematic reconstruction of progressive incision of Yellow River across 

uplifting Waligong range. Phased incision leads to the formation of large stepped terraces 

across the basin, while strath terraces formed across Waligong bedrock are progressively 

uplifted and tilted. (e) Present-day section at same scale. 
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Figure 16. Incision rate of the Yellow River deduced from terrace ages and elevations. 

Coloured boxes are allowed age and elevation ranges. Yellow River elevation taken at 

Waligong gorges entrance (= WRB site). Several scenarios and associated incision rates are 

proposed. For Waligong terraces, rates are mean rates calculated from the middle of boxes. 

Maximum and mean total incision rates 6.0 mm/year and 4.0 mm/year, in orange.  

 

Figure 17. Topographic contours at 3150, 3200 and 3250 m a.s.l. showing possible 

extensions of a regional paleolake or closed basin in the area of Qinghai and Gonghe basins 

before their separation due to lake capture by Yellow River and growth of the Qinghainan 

Shan. Lake surface elevation may have reached 3200-3250 m a.sl. This mapping, drawn from 

the present topography, does not account for large tectonic and morphologic changes. 

 

 

 

Table 1. 10Be and 26Al analytical results of surface and sub-surface samples of the Yellow 

river terraces in the Gonghe basin.. 

 

Table 2. Depth profile model parameters (see Figure 10). 
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Sample 
name

Sample description
Latitude 
(°N)

Longitude 
(°E)

Elevatio
n (m 
a.s.l.) 

Depth 
(cm) 

Sample 
thicknes
s (cm)

10Be 
concentratio

n 
(atomes/g) 

err

26Al 
concentratio

n 
(atomes/g)

err
[26Al]/[10B
e] ratio

err

Terrace T5
Qi4­30 quartz cobble 36.17584 100.52143 2920 0 3 2.98E+06 8.44E+04 na na na na

Qi4­30­2§ 3.12E+06 8.87E+04 na na na na
Qi4­33 quartz cobble 36.17567 100.52181 2920 0 4 2.98E+06 8.57E+04 na na na na
Qi4­34 quartz cobble 36.17520 100.52123 2920 0 8 3.26E+06 9.37E+04 na na na na
Qi4­36 quartz cobble 36.17532 100.521 2918 0 5.5 3.27E+06 9.27E+04 na na na na

Qi4­36­2§ 3.34E+06 9.77E+04 na na na na
Qi4­38 quartz cobble 36.17555 100.52113 2920 0 6 3.05E+06 9.43E+04 na na na na
Qi4­39 quartz cobble 36.17566 100.52179 2919 0 8 3.74E+06 1.02E+05 na na na na
Qi4­40 quartz cobble 36.17595 100.52154 2920 0 5 2.84E+06 8.52E+04 na na na na

Terrace T7
Qi4­29­1* quartz cobble 35.70043 100.29636 3196 200 5 9.55E+05 2.56E+04 4.64E+06 5.33E+05 4.86 0.57

Qi4­29­27a � 8 amalgamated pebbles 35.70043 100.29636 3194 200­220 2 1.53E+06 4.39E+04 na na na na
Qi4­29­27b � 13 amalgamated pebbles 35.70043 100.29636 3194 200­220 2 1.32E+06 4.04E+04 na na na na
Qi4­29­27c � 32 amalgamated pebbles 35.70043 100.29636 3194 200­220 1.5 1.47E+06 6.43E+04 8.88E+06 4.31E+05 6.03 0.39
Qi4­29­27d � 55 amalgamated pebbles 35.70043 100.29636 3194 200­220 1 1.54E+06 5.53E+04 9.11E+06 3.94E+05 5.91 0.33

Weighted mean : 1.4615E+06 ±0.1031E+06 

Qi4­29­19* quartz cobble 35.70043 100.29636 3194 230 4 1.07E+06 2.85E+04 6.33E+06 2.13E+05 5.89 0.25
Qi4­29­9  quartz cobble 35.70043 100.29636 3194 240 4.5 2.13E+06 7.31E+04 8.77E+06 3.80E+05 4.12 0.23
Qi4­29­13  quartz cobble 35.70043 100.29636 3194 260 5.5 7.66E+05 2.83E+04 na na na na
Qi4­29­11 quartz cobble 35.70043 100.29636 3194 320 6 3.97E+05 1.61E+04 2.43E+06 1.11E+05 6.12 0.37

Qi4­29­11­2§ 4.00E+05 1.59E+04 na na na na
Qi4­29­14 sand lens 35.70043 100.29636 3194 370 2 7.85E+05 2.74E+04 3.79E+06 1.51E+05 4.83 0.25
Qi4­29­15 sand lens 35.70043 100.29636 3194 390 2 5.05E+05 1.75E+04 2.46E+06 9.65E+04 4.87 0.26
Qi4­29­16 quartz cobble 35.70043 100.29636 3194 400 6 6.18E+05 2.45E+04 3.66E+06 1.62E+05 5.93 0.35
Qi4­29­21 quartz cobble 35.70043 100.29636 3194 615 5 2.35E+05 9.48E+03 1.34E+06 6.88E+04 5.69 0.37
Qi4­29­22 quartz cobble 35.70043 100.29636 3194 675 9 1.90E+06 6.54E+04 9.67E+06 4.12E+05 5.09 0.28
Qi4­29­23 sand lens 35.70043 100.29636 3194 750 2 4.45E+05 1.87E+04 2.25E+06 2.03E+05 5.06 0.50
Qi4­29­24 quartz cobble 35.70043 100.29636 3194 480 6 5.38E+05 2.04E+04 3.26E+06 1.35E+05 6.06 0.34

Terrace WRB
Qi4­47 granitic bedrock 36.12209 100.93520 2680 0 4 1.28E+06 3.72E+04 na na na na

Qi4­47­2§ 1.40E+06 5.74E+04 na na na na
Qi4­48  granitic bedrock 36.12221 100.93571 2680 0 3.5 1.18E+06 3.44E+04 na na na na
Qi4­49  granitic bedrock 36.12184 100.93532 2683 0 3.5 1.90E+06 7.73E+04 na na na na
Qi4­50  cobble 36.12196 100.93521 2680 0 8 1.91E+06 5.46E+04 na na na na
Qi4­51 cobble 36.12203 100.93511 2680 0 8 1.89E+06 5.43E+04 na na na na
Qi4­52  cobble 36.12212 100.93505 2682 0 8 1.85E+06 6.26E+04 na na na na
Qi4­53 cobble 36.12212 100.93505 2681 0 4 1.90E+06 6.11E+04 na na na na
Qi4­54 cobble 36.12214 100.93503 2681 0 4 1.89E+06 6.28E+04 1.17E+07 5.83E+05 6.16 0.37

Terrace WLB
Qi4­59  quartz vein in bedrock 36.13491 100.95922 2925 0 8 5.61E+05 1.91E+04 na na na na
Qi4­60  granitic bedrock 36.13455 100.95926 2934 0 3.5 1.82E+06 6.16E+04 na na na na
Qi4­61  cobble 36.13449 100.96021 2938 0 4 2.64E+06 9.86E+04 na na na na

Qi4­61­2§ 2.58E+06 8.39E+04 na na na na
Qi4­62 granitic bedrock 36.13405 100.96105 2940 0 3 2.49E+06 7.56E+04 1.30E+07 5.30E+05 5.23 0.27



Yellow river sand
Qi4­43A river sand 36.12972 100.9967 2367 0 3.09E+05 1.24E+04 1.63E+06 7.63E+04 5.28 0.32

na: not analized
*: AMS measurements at CAMS at Lawrence Livermore National Laboratory
�: see details of sample characteristics in Figure 9.
§: duplicate of the same sample after quartz leaching.

Table 1.



Table 2. Depth profile model parameters (see Figure 10).

Duration of Total duration 
Model Inheritance Exposure of C1 Erosion rate Exposure of C2 Erosion rate loess deposit Exposure loess Erosion rate of exposure

(at/g quartz) (ka) (cm/yr) (ka) (cm/yr) (ka) (ka) (cm/yr) (ka)

1 235000 15 0 45 0.005 1 150 0.0001 210
2 445000 15 0 20 0 1 80 0 115
3 235000 15 0 50 0 400 0.01 465

models of 235000 15 0 15 0 50 10 0 90
figure 10c 235000 15 0 15 0 25 70 0 125

235000 15 0 15 0 10 120 0 160
235000 15 0 15 0 1 150 0 181



Table 2.
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