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Abstract. Setting up and deploying complex applications on a grid infrastructure
is still challenging and the programming models are rapidly evolving. Efficiently
exploiting grid parallelism is often not straight forward. In this paper, we report
on the techniques used for deploying applications on the EGEE production grid
through four experiments coming from completely different scientific areas: nuclear
fusion, astrophysics and medical imaging. These applications have in common the
need for manipulating huge amounts of data and all are computationally intensive.

All the cases studied show that the deployment of data intensive applications
require the development of more or less elaborated application-level workload man-
agement systems on top of the gLite middleware to efficiently exploit the EGEE
grid resources. In particular, the adoption of high level workflow management sys-
tems eases the integration of large scale applications while exploiting grid paral-
lelism transparently. Different approaches for scientific workflow management are
discussed. The MOTEUR workflow manager strategy to efficiently deal with com-
plex data flows is more particularly detailed. Without requiring specific application
development, it leads to very significant speed-ups.
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1. Introduction

Scientific applications are often characterized by the large amount of
data to be analyzed in order to produce relevant results. For the needs
of scientific analysis, large data sets are processed through multiple data
analysis codes, assembled in more or less elaborated chains of process-
ings also known as workflows or pipelines among different communities.
The EGEE grid infrastructure, composed of standard PCs intercon-
nected through high performance links on the Internet, is providing a
suitable infrastructure for handling the large number of computation
tasks resulting from the execution of multiple-data workflows. In many
cases when data segments can be processed independently, concurrent
data processing is a massive, coarse grain parallelism that can effi-
ciently be exploited to improve applications performances. The grid
middleware is thus expected to provide a support for data parallelism
but also a flexible workload management system addressing bulk jobs
submission, group monitoring and workflows execution.

This paper focuses on the strategies explored for porting applica-
tions with different degrees of computation flow complexity on the
EGEE grid infrastructure. The 4 applications presented are coming
from 3 different scientific areas: nuclear fusion, astronomy and medical
imaging. Although tackling very different problems, these applications
exhibit common needs for intensive data processing. These applications
properties and their performance on the EGEE grid infrastructure are
described in section 2. The approaches adopted to address the appli-
cation data parallelism needs and to control the computation flows
on top of the EGEE workload management system are discussed in
section 3. Section 4 discusses with more details the need for express-
ing and controlling complex application data flows. A review of well-
known scientific workflow managers is made and the focus is put on
the MOTEUR workflow manager designed to efficiently enact flows of
application services.

2. Scientific Applications Description

The applications considered in this paper come from 3 different areas.
First, two applications in the field of nuclear fusion relating to the
simulation of plasma and confinement devices are presented. They are
embarrassingly parallel kind of problems using the grid for its large
scale data parallelism capability. The Planck experiment dedicated
to cosmic background measurements is then introduced. It requires to
process huge amounts of data in an application-specific workflow. The
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last application presented is a medical image registration algorithm
assessment method called Bronze Standard. It requires the execution
of a complex application workflow and the manipulation of large input
data sets. The grid parallelism is exploited through a generic workflow
manager designed to efficiently handle such data-intensive applications.

2.1. Nuclear Fusion

Among the open theoretical problems in fusion plasmas, we are consid-
ering two different problems related to the confinement of fusion plas-
mas in specific devices called stellarators: kinetic transport of charged
particles and stellarator optimization. These problems, in which a single
particle or the microscopic scale is dominant, can be addressed by the
kinetic theory using Monte Carlo techniques. This coarse grain paral-
lelism makes efficient implementation on the EGEE grid infrastructure
possible.

Kinetic Transport Simulation
Kinetic transport simulation aims at statistically estimating the

properties of confinement from a large amount of charged particles
considered [6]. The analysis of the results would proportionate an ac-
curate description of what is happening in the stellarator as illustrated
in Figure 1. A common approximation is to simulate individual par-
ticles without interaction between them, to introduce the electric and
magnetic fields as effective fields, using as input the real measurements
in the magnetic confinement device. The initial position in phase space
of a large number of particles and the collisions with the background
plasma can be estimated randomly.

We target the Spanish stellarator TJ-II [2], which is a medium size
device of the ”Heliac” type in operation in Madrid (Spain) since 1997.
Its complex geometry makes difficult the development of numerical
tools to study it. Since there are collective effects inside the plasma,
producing physically meaningful results (as illustrated in Figure 1)
require to consider a large number of particles. Our estimate is that
an order of 107 particles need to be simulated. To give an order of
magnitude, a run of 1000 particle trajectories on the TJ-II Stellarator
produces about 1.5 GB of raw data. Currently, ions trajectories are
simulated, but electrons should also be considered. Due to their mass
(2000 times lower than ion ones), electron trajectories are more difficult
to estimate and computations are expected to be 2000 times longer.

On the EGEE grid, the problem is tackled by sending similar jobs
with different seeds for the Monte Carlo algorithm that distributes
particles according to the given density and temperature. All jobs
share common information (TJ-II geometry and background plasma
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Figure 1. Particle trajectories in the TJ-II Stellarator

characteristics) stored in a fusion file catalog. This is a typical embar-
rassingly parallel kind of problem. The EGEE grid would permit to
launch simultaneously a high enough number of interacting particles
to produce relevant results.

Stellarators Optimization
Due to the large freedom in designing stellarators, it is necessary

to optimize the 3D geometry of these devices [23] to determine the
one with the best confining properties. The concrete output of an opti-
mization process is a design in which neoclassical transport should be
minimized, strategies for turbulence control should be available, and
plasma equilibrium and stability should exist for high pressure plas-
mas. These requirements are sometimes contradictory and a trade-off
must be reached by weighting them in the multi-criteria optimization
process.

The plasma equilibrium in the stellarator can be found if the shape
of the boundary plasma surface and the radial profiles of plasma pres-
sure and toroidal current are prescribed. The boundary surface may
be characterized by a set of Fourier harmonics that give the shape
of the surface, the magnetic field, and the electric current. The TJ-II
boundary is thus described by more than 150 harmonics. The resulting
objective function to optimize takes about 20 minutes of computation
time on a conventional PC.

Genetic algorithms have been chosen as optimization method. They
consider the solution of the objective function as a variable ”genome”.
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Figure 2. Genetic algorithm convergence.

At each iteration the algorithm proceeds with the selection of ”par-
ents”, their breeding, and compute target function values for each
”child” genome. Initial pools of genomes can be generated randomly
inside the optimization parameters variation domain defined by the
user. In the case of stellarators, two coefficients f and m for each
one of the 150 Fourier harmonics from every parent vectors pair were
bred separately. Every new coefficient is a random number of Gaussian
distribution with mean (f + m) /2 and standard deviation |f −m| /2.

The genetic algorithms behave well for grid computations because
genome pools can be processed asynchronously. Pools may be appended
by grid job results sporadically, so aborting or delaying several jobs
completion would not affect the overall optimization process badly. The
parallelization resumes to a data parallel problem again.

A sample stellarator optimization task composed of 7.500 variant
jobs has been executed on the EGEE infrastructure. About 1.500 of
them were discarded since no equilibrium was found. The remaining
6.000 provided a parameter set solution. The overall computation took
less than two days. Up to 70 variants were computed in parallel. The
first, second, third, fourth and sixth thousand of the results in order
of their return were aggregated into histograms (see Figure 2). The
histograms represent the number of results falling into a given range
of the target function value. The minimum of the target function used
in the test is believed to have a value of several units. The sets of best
values converge to the believed optimum value exponentially fast.
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2.2. Planck Experiment: Cosmic Background Measurement

In recent years, large improvements have been carried out in Cosmic
Background (CMB) detection. The ESA Planck satellite mission that
will fly in 2007 [22, 28] aims at mapping the microwave sky with an
unprecedented combination of sky and frequency coverage, accuracy,
stability and sensitivity. Planck is composed of a number of microwave
and sub-millimeter detectors grouped into a High Frequency (HFI)
and a Low Frequency Instrument (LFI). Two Data Processing Centers
(DPCs) are in charge of processing Planck data: one for HFI co-
located in Paris (France) and Cambridge (UK), and one for LFI located
in Trieste (Italy).

This space mission is extremely demanding in terms of storage and
computational needs [3]. The LFI DPC has in charge the processing of
approximately 100MB of compressed data each day for a total amount
of approximately 100GB of raw data at the end of the mission. Starting
from the raw data, the final product is a set of sky maps in the different
wavelengths of the CMB and other important astrophysical data. One
of the primary issues for the DPCs is to run a complete simulation
of the Planck mission to test the data analysis pipeline. The simula-
tion software must mimic the Planck observation procedure and any
source of systematic effect. Moreover, it must cover all the aspects of
the microwave sky [21].

The processing workflow, called LevelS pipeline [29], is depicted
in figure 3. Only the main processing steps are shown: each step is
composed by more than one pipeline stage sequentially linked and in
total, 19 different algorithms are applied onto each input data set.
Stages are chained by data dependencies (e.g. the output of stage A
is used as input for stage B). At any given time, each detector ob-
serves the sky signal composed of a mixture of CMB (from the CMB
power spectrum generated [34], a CMB map [16] is computed), galactic
and extra-galactic foreground emissions convolved with the detector
beam pattern. Instrumental noise is added according to detector char-
acteristics. To simulate observations, a set of pointing directions for
each mission simulation is generated according to the selected scanning
strategy and satellite dynamical parameters. Finally, a Time Ordered
Data (TOD) consisting of the time sequence of detector outputs is
produced. The TOD is finally processed to extract the sky map of the
CMB emission.

This workflow only represents the processings required to simulate
one detector: for the LFI composed by 22 detectors (4 detectors at 30
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Figure 3. Level-S architecture.

GHz, 6 at 44 GHz and 12 at 70 GHz), 22 runs of this workflow with
different input parameters are needed. In addition, the raw input data is
made of circular samples acquired by the detectors during the rotation
of the spacecraft around its spin axis. As a first approximation, we
assume a perfect overlap between samples in two consecutive scan cir-
cles for a given pointing position. This reduces the number of sky signal
simulation computations and results in a short run. However, the reality
is more complex with no perfect overlaps (long run). The simulation
time on a standard PC and the amount of data produced are reported
in Table I: a sequential run takes more than 10 days (255.7 hours) to
complete and produces 7 TB of uncompressed data. Furthermore, it is
commonly necessary to explore the large space of parameters involved
in each simulation (beam pattern, instrumental noise, foregrounds, the
extragalactic point sources, the scanning strategies, etc).

A script-based workflow enactment procedure described in section 3.2
has been set up to control the execution of the Planck multi-data
processing pipeline.

2.3. Bronze Standard: Medical Image Registration
Assessment

Medical image registration algorithms are playing a key role in a large
number of medical image analysis procedures and therefore their ac-
curacy is critical. Image registration consists in estimating the 3D
transformation between two images, so that the first one can superim-
pose on the second one in a common 3D frame. A difficult problem, as
for many other medical image analysis procedures, is the assessment of
these algorithms robustness, accuracy and precision [17]. Indeed, there
is no well established gold standard to compare to the algorithm results.
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Table I. Computational time and data produced by the short
and long LevelS simulations.

LFI 30GHz LFI 44GHz LFI 70GHz

short long short long short long

12min 389min 13min 623min 17min 834min

0.9GB 34.2GB 1.2GB 45.3GB 1.7GB 75GB

Total (4 30GHz + 6 44GHz + 12 70GHz)

short long

5.5h 31GB 255.7h 1.3TB

The Bronze Standard algorithm [11, 14, 25] is a statistical procedure
that aims at estimating the accuracy of a given number of algorithms.

The idea is to compute the registration of a maximum number of
image pairs with a maximum number of registration algorithms in order
to obtain a largely overestimated system of transformation estimates
(observations). From this redundant system, the Bronze Standard can
be estimated by minimizing a specific criterion in the space of trans-
formations to determine the transformations that better explains the
observations. The accuracy of a given algorithm is then computed as
the distance between its results and the Bronze Standard. The higher
the number of independent registration algorithms considered and the
number of images processed, the more accurate the procedure. It makes
this application very data-intensive.

The Bronze Standard procedure exhibits the complex workflow il-
lustrated in Figure 4. On this figure, each box represents an application
service to be executed for every image in the tested database. In addi-
tion to registration algorithms themselves, additional processing stages
are needed for pre-processing the images, initializing the computations,
making format conversions and quantitatively analyzing the registra-
tion results. Box colors represent the current execution status in the
graphical user interface for a workflow being executed. The arrows
between services represent either data dependencies (the output of a
service is piped into the input of the following one) or temporal depen-
dencies (synchronization barriers) as detailed in section 4.2. In addition
to the computational services, the diagram represents data sources
(two triangles representing two input image sets to be registered) and
sinks (output collectors, diamonds). The graph represents the flow of
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processings, described in the Scufl XML-based language [26]. The data
to process is described independently. To efficiently exploit the EGEE
grid parallel capability, we implemented the MOTEUR workflow en-
actor1 [9, 10], an optimized manager for Scufl workflows. From the
application graph of processings and given input data sets, the engine
dynamically determines the data flows to be processed. Using the rich
semantics of the Scufl data composition operators discussed in sec-
tion 4.3 [24, 26], this results in the production of a very large number of
computation tasks, many of which can be executed in parallel although
some dependencies have to be taken into account in the scheduling.

Figure 4. Bronze Standard application workflow: each box represents an image
processing service and arrows show dependencies.

In a typical run, the computation flow has to be reiterated over
hundreds of image pairs. This causes the submission of thousands of
computation tasks to the grid. The sequential computation time of a
typical run that would be in the order of 3 days on a regular PC is thus
reduced to approximately 3 hours on the EGEE grid.

3. Computation Flows Description and Management

All applications presented exhibit a large data parallelism and various
degrees of computation flow complexity. Depending on the application
characteristics, different strategies have been adopted for porting it on

1 MOTEUR workflow enactor, http://egee1.unice.fr/MOTEUR
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the EGEE grid infrastructure. This section describes the application
layers developed to deal with the data parallel jobs.

3.1. Fusion applications: Data Parallel Jobs

Both fusion applications (kinetic transport simulation and stellarator
optimization) are typical examples of embarrassingly parallel problems:
a very large number of jobs involving the same processing but on
independent data sets can be triggered.

In the case of the kinetic transport problem, hundreds of particle
trajectory simulation jobs can be executed concurrently. On each run,
a different initialization random seed indicates essentially the starting
position and momentum of the particles in the magnetic confinement
device, but the computations remain identical. A strategy to submit,
control and retrieve the results from hundreds of jobs that do not
require tedious user intervention is needed.

Similarly, genetic algorithms used for stellarator optimization are
producing identical computations on different input “genes”. The model
implemented in this case is slightly more complex since all genes cannot
be generated at once at the beginning of the execution. Starting from
a pool of initial genes, new genes have to be generated during the
execution that will be used for initializing new computing tasks.

A set of Python scripts as been set up for this purpose. One of
them generates an initial genome pool, another one spawns new jobs,
the third gathers already computed results from the grid and the fourth
generates new part of genome pools from the existing ones. The number
of concurrently spawned jobs is kept below a given threshold. The iter-
ation is realized by a master bash script which loops over the different
steps.

The current EGEE production middleware describes computation
tasks through a CONDOR ClassAds-based Job Description Language
(JDL). Each JDL file specifies both the binary to execute (the pro-
cessing to perform) and the input/output files (the data to process)
either directly (explicit mention of the input and output data files) or
indirectly (through the job input sandbox, command line parameters
etc). This job description technique is shared with many middlewares
exploiting a global computing approach such as GLOBUS2, CONDOR3

or LCG/gLite4. As a consequence, hundreds of similar job description
files are generated by the application layer. They only differ in the input
data (different seeds in this case), but not in the kind of processings

2 GLOBUS Toolkit, http://www.globus.org
3 CONDOR, http://www.cs.wisc.edu/condor
4 gLite middleware, http://www.glite.org
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described. Alternatively, a different approach is exploited by applica-
tions structured as architectures of services. This metacomputing model
is implemented in middlewares which invoke application codes instru-
mented with a standard interface. For instance, the DIET [5], Ninf [30]
or Netsolve [1] middlewares use the GridRPC remote invocation stan-
dard. The service Interface Description Language (IDL) enables the
description of the service invocation method (processing) independently
from the data to process. Data is delivered by the application dynam-
ically, at execution time. An intermediate task description file is thus
not needed for each processing with the same pattern.

In a near future, the gLite v3.1 middleware is announced to support
a new parametric kind of job in the JDL. A parametric JDL is a job
template where a specific parametric field (e.g. a counter numbering
input data segments) can be used inside the JDL. The parameter is
variable and will take any value in a user specified range with a given
increment. At job execution time, the job template is instantiated into
as many jobs as the parameter value can take and a group of jobs with
similar processings but differing in their parameters will be submitted.
Although less flexible than the metacomputing model (in particular,
only a single parameter is accepted), this strategy will significantly
tighten the gap between both approaches from an application point
of view. Besides, it enables performance optimization through bulk
submission of all jobs. It will lighten the application code by handling
more complex job descriptions at the middleware level.

In the case of kinetic transport application, parametric jobs can
directly be used to describe computations needed. For stellarators op-
timization, all jobs cannot be described at once but gene pools can be
described in a single parametric job.

3.2. Planck Simulations: Script-based Pipeline

A single Planck run involves 22 detector simulations. The application
was ported to the EGEE grid using an interactive configuration and
submission program that produces JDLs automatically. Each JDL de-
scribes a complete pipeline: the workflow structure is embedded inside
an execution script that is sequentially executed on an EGEE Worker
Node (WN). The configuration program can produce a single job that
chains all the 22 simulations on a single WN, a swarm of 22 independent
jobs (one for each detector) to be executed on different WNs, or any
intermediate degree of parallelization. It creates all the input config-
uration files needed by the pipeline stages and the pipeline execution
script accordingly. It also tunes the execution for the set of cosmological
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and instrumental parameters, the set of radiometers and the kind of
detectors requested by the user.

The application script was designed to be modular and to ease the
integration of new pipeline stages when some upgrade is needed. The
performance of the application was measured by running 20 simulation
runs and averaging the total execution time (including submission time,
execution time and data saving time). With maximum parallelization
(22), the grid average execution time is 1355 minutes for long runs (30
minutes for short runs respectively). Compared to the 255.7 hours (resp.
5.5 hours) workstation execution time, this leads to a speed-up of 11 in
both cases. This number is only half of the ideal speed-up that could be
expected in this case (22 independent data parallel jobs) but this is not
surprising: the EGEE grid is under permanent load and job submissions
are delayed by variable batch queuing times and middleware overhead.
The measures were averaged over 20 different runs to reduce the effect of
variable load conditions on the infrastructure. They thus give a realistic
speed-up in production conditions. A much higher degree of parallelism
can be expected as many independent Planck runs will be needed for
exploring the ranges of parameters and tuning the pipeline.

By embedding the pipeline execution script into a single job, it is not
possible to process the different stages of the pipeline independently,
possibly concurrently. This reduces the level of parallelism that can
potentially be achieved. However, this also drastically reduces the grid
payoff in the execution. Indeed, running independent stages would lead
to independent job submissions, each of them being queued and delayed
before their execution. Given that the LevelS pipeline is sequential,
these delays accumulate before the completion of a single detector sim-
ulation. On the EGEE production infrastructure, the payoff observed
for each job submission in commonly in the order of 5 minutes. A single
detector simulation takes in the order of 15 minutes for short runs on
a workstation and 11.6 hours for long runs. Clearly, splitting a short
run in independent stages would introduce a total payoff in the order
of 100 minutes (19 sequential stages times the payoff) far too high
compared to the application execution time. For a long run, the payoff
is proportionally lower, although not negligible. In addition, chaining
the stages of the pipeline on a single WN saves data transfers. Indeed,
all data outputs of a given stage can be stored into local files and read
as inputs of the following stage directly. Splitting the execution of the
pipeline would lead to penalizing large data transfers between each
stage and a data transfer manager would be needed in the workflow
management system.

It should be noted that the above discussion on parametric jobs
holds for the Planck pipeline as well: the gLite 3.1 parametric job de-



Workflow-based data parallel applications on the EGEE grid 13

scription system would help in generating and executing the 22 similar
pipelines composing a single data parallel run.

3.3. Bronze Standard: Data Intensive Workflow Engine

We adopted a service-based approach for the Bronze Standard applica-
tion as it provides a high degree of flexibility and standard code invoca-
tion procedures. The MOTEUR workflow engine invokes Web-Services
containing the application code. The Scufl description language defines
a link to a WSDL document for each service node in the workflow
graph. In theory, any Web-Service can thus be enacted. However, only
specifically instrumented Web-Services will trigger an execution on the
EGEE grid infrastructure. In a classical Service-Oriented Architecture,
services are black boxes and there is no information on the way the
service is executed. In the case of the Bronze Standard application,
we are interested in a remote execution of all services to the grid.
Since application services cannot directly be deployed on the EGEE
grid infrastructure, we use a specific submission service that interfaces
Web-Service invocations with the EGEE workload management sys-
tem. Furthermore, all application codes reused to compose the Bronze
Standard workflow are standard executables that were not specifically
instrumented with a Web-Service interface. The submission service acts
as a Web-Service wrapper for legacy codes. It does not require any
modification nor recompilation of application codes. Only a small XML
document describing the code invocation command line is requested
from the developer [8].

Similarly to the other applications reported in this manuscript, data
parallelism plays a predominant role in the application performance
optimization. However, the Bronze Standard workflow also exhibits two
other levels of code parallelism. The first one is the workflow graph
parallelism that can be seen on the graph displayed in figure 4: two
branches of the graph with no dependencies can be executed in par-
allel. In addition, the multi-data nature of this representation enables
services parallelism, also known as pipelining : two sequential services
can process two different data segments independently. The MOTEUR
workflow manager is optimized to transparently exploit these three
levels of parallelism (data, workflow and service parallelism) [9]. Given
the workflow description graph defined in Scufl and given input data
sets, MOTEUR services dynamically generate jobs to be executed on
the EGEE infrastructure. Each job is described through a classical JDL
corresponding to the execution of a given image processing algorithm
on a given input data segment. The services use the EGEE workload
management interface to submit and monitor it. As many parallel jobs
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as possible are submitted. On completion of one computing task, the
resulting data is piped into following services and new tasks are created.
The process finishes when no more data is produced by any service in
the workflow.

Note that each job submitted by MOTEUR is impacted by the
grid payoff as discussed in the case of the Planck experiment. The
workflow engine maximizes the parallelism achievable but as a con-
sequence, the number of jobs increases and the latencies for each of
them accumulate in the sequential branches of the workflow. In order
to optimize the application execution time, a non trivial trade-off has
to be found between the granularity of the tasks submitted. Earlier
attempts have been made to optimize the data granularity of data
parallel tasks on a grid infrastructure, either considering experimental
data [32] or modeling the grid infrastructure through a probabilistic
approach [12]. Adapting these methods to workflows is made complex
due to dependencies between tasks and new execution models are being
considered [13]. In MOTEUR, a heuristic based on a jobs grouping
strategy has been implemented to lower this grid payoff [8]. The idea is
that in the case of sequential branches in the workflow, one always gain
to group several stages in a single job (Planck strategy) as they will
be executed sequentially anyway, but the lesser the number of jobs, the
lower the latency paid and the lower the intermediate data transfers
needed. Grouping two services in a single one for the execution on a
grid infrastructure is not a straight forward problem. In the case of real
black-box services, it is generally not possible to combine the code of
the services in a single execution chunk. This is only feasible in our case
thanks to the use of the generic submission Web-Service: the specific
knowledge on this service enables the codes sequential grouping.

Figure 5 illustrates the benefits of MOTEUR optimization strategies
on the Bronze Standard application. The abscissa represents the scale
of the problem (the number of pairs of input images to process). The
ordinate gives the corresponding execution time (in hours). The highest
NOP (No OPtimization) curve represents the time needed for a naive
grid execution. Naive execution means that only workflow parallelism
is exploited (this correspond to the baseline functionality available in
every workflow managers). The execution requires more than 35 hours
to process a 126 image pairs data set. The JG curve correspond to the
gain obtained by job grouping: the latency reduction saves a couple of
hours on the complete workflow. The DP curve corresponds to the data
parallelism. This is the highest performance improvement as expected.
The slope of the DP curve being smaller than the slope of the NOP curve,
the speed-up increases with the number of data segments. Finally, the
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SP (service parallelism) and JG optimizations are added to provide the
lowest curve. The total execution time falls down to less than 3 hours.
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Figure 5. Bronze Standard application performance improvement using MOTEUR
optimization strategies

MOTEUR is a generic workflow manager not bound to the Bronze
Standard specific application. This extra layer between the application
and the EGEE middleware fully hides the middleware to the appli-
cation developer by taking care of jobs submission and middleware
feedback interpretation. It transparently enables parallel execution of
the application. It thus provides a flexible and evolutive framework for
efficiently porting a data-intensive application workflow on the EGEE
grid. MOTEUR has also been interfaced to DIET GridRPC services
and the OAR batch scheduler [4].

4. Scientific workflows
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4.1. Application Workload Management

The applications presented in this paper are all characterized by the
need for processing large and independent data sets using a single
computation flow. They exhibit different levels of workflow description
and management needs:

− In the simplest case (kinetic transport) the application is a pure
embarrassingly parallel problem. The tools needed are concerning
the submission, monitoring, and data collection for hundreds to
thousands of concurrent jobs. Most of this work is still handled
at the application level today. The EGEE grid proposes tools for
grouping jobs submission, monitoring and fetching data but little is
done for error recovery and execution completion in case of partial
failure. The parametric job type introduced in gLite 3.1 should
facilitate the development process of this kind of application in
the future.

− When several computation steps are needed for data preparation,
processing and analysis (stellarator optimization, Planck experi-
ment), scripting is an easy way of prototyping and enabling the ap-
plication on the grid infrastructure although it is very application-
specific (static description of an application workflow). It requires
significant effort for each new application. Furthermore it only
provides the limited quality of service that could be implemented
at this level. Parallelization of an application script may be non
trivial.

− Finally, the execution of complex, data parallel workflows which
can benefit from other levels of parallelism (Bronze Standard) are
better handled by a generic workflow engine. It provides a flex-
ible and extensible framework for describing an application flow
and controlling its execution. The workflow manager decouples
the application description from its grid execution. It provides
transparent parallelization of the application and hides the middle-
ware technical details. High level workflow enactors are therefore
expected to provide a generic solution for easing multiple scientific
applications development and grid deployment.

Workflow managers are the subject of extensive studies inside and
outside the grid community. The next session discusses different ap-
proaches and identifies the key points concerning scientific applications
according to our experience.
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4.2. Scientific workflows description

Workflow managers have been developed in very different contexts.
Seminal workflow managers were designed for describing complex busi-
ness processes. The flagship business workflow description language is
BPEL [19] which can be enacted through a large armada of workflow
engines. Such managers are characterized by a strong focus on the
control flow. In fact, they are complete programming languages with
typed variables, expressions, conditional and loop control structures.
With a graphical design interface they offer a high level programming
environment for non specialists. There is a priori no parallelism possible
with these languages, although a for-all kind of loop is planed in the
next BPEL standard release. The JOpera tool [27] is another recent
example of a business workflow manager supporting complex parallel
structures.

In the scientific area, more data-centric managers have been pro-
posed. They usually provide a more limited panel of control structures
as they rather focus on the execution of heavy-weight algorithms de-
signed to process large amounts of data. The complex application logic
is supposed to be embedded inside the basic application components.
The scientific workflow description languages are not so rich but the
execution engines are better taking into account execution efficiency
and data transfer requirements.

A detailed taxonomy of scientific workflow systems is proposed by
Yu and Buyya [33]. The authors characterize the workflows managers
according to their design method, scheduling strategy, fault tolerance
and data transfer capabilities. Despite this detailed classification, they
do not distinguish workflow managers exploiting the global computing
model versus the metacomputing model.

The emblematic global computing workflow manager is the Directed
Acyclic Graph Manager (DAGMan5) that is available in the latest
version of the gLite middleware. This system basically allows the de-
scription of precedence constraints between Condor jobs. It is the basis
for several higher level layers dealing with optimization of tasks submis-
sion such as the Pegasus [7] system. A DAGMan workflow is composed
of computing tasks and temporal dependencies between tasks. There is
no notion of data flows in DAGMan: the output of a job A happens to
be reused by a job B only if A and B’s JDL are written so that there
respective output and input data files match. There is no data transfer
handled by the manager itself. As a secondary consequence, there are
no possible loops in DAGs (hence the name: Directed Acyclic Graph).
A loop would create an endless chain of temporal dependencies.

5 Condor DAGMan, http://www.cs.wisc.edu/condor/dagman/
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The metacomputing approach applied to workflows provides more
flexibility in the sense that the graph of dependencies represents either
data dependencies between processes or control dependencies. Control
links impose temporal dependencies between workflow processes. They
can be used to implement data synchronization barriers which might
become necessary for some applications due to the parallel execution
of multiple data flows. There may not be loops on control links just
as with DAGs but nothing prevents loops on data links. Furthermore,
all services are not necessarily invoked: only branches receiving data
are executed. Therefore it is straight forward to describe conditional
and looping control structures. The data parallelism is implicit in this
model: data is described independently from the computational ser-
vices. Therefore, two different invocations with two different data sets
do not require any modification of the computational graph but they
lead to different data flows. Data transfers can be handled at the work-
flow management level since data sets are known from the workflow
enactor. Well known examples of scientific workflow managers exploit-
ing the metacomputing model are the Kepler system [20], the Taverna
workbench [26] and the Triana workflow manager [31]. However, they
are not natively interfaced to a grid infrastructure and they require
adaptations to exploit parallel grid resources. The P-GRADE por-
tal [18] workflow manager is a grid-enabled workflow manager which
aims at exploiting both approaches: originally interfaced to DAGMan,
it has recently been extended to support so called parametric stud-
ies [15]. A parametric workflow is a template-based workflow for which
multiple tasks will be instantiated similarly to the way the gLite para-
metric jobs produce multiple task executions. P-GRADE parametric
studies are more flexible though, as multi-dimensional parameter spaces
can be explored and complex data flows can be described. Parametric
workflows are enacted either through MOTEUR or through a DAG
generator which automatically instantiates all tasks corresponding to
a given parametric workflow once the input data set is known.

4.3. Data flows description

Data flows description plays a major role in scientific workflows, as
illustrated by the four applications introduced in this paper, for several
reasons. The problems addressed are massively parallel and the max-
imum performance improvement can be expected from data parallel
execution. Furthermore, the data location and transfer strategies have a
significant impact on the application performances: the workflow graph
topology is not a sufficient input to minimize execution time.
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Figure 6. Action of the one-to-one (left) and all-to-all (right) operators on the input
data sets

By decoupling data and computation flows, the metacomputing ap-
proach enables the definition of very interesting data composition strate-
gies. In the metacomputing model, a service receives data segments
on all its inputs periodically (and asynchronously in case of parallel
execution) for processing. Data composition patterns are used to de-
scribe how different data inputs are combined for processing. There
are two basic data composition patterns, very frequently encountered
in scientific applications, that were first introduced in the Scufl lan-
guage. They are illustrated in figure 6. Let A = {A0,A1, . . . ,An} and
B = {B0,B1, . . . ,Bm} be two input data sets.

The one-to-one composition pattern (left of figure 6) is the most
common. It consists in processing two input data sets pairwise in their
order of arrival. This is the classical case where an algorithm needs to
process every pair of input data independently. An example is a matrix
addition operator: the sum of each pair of input matrices is computed
and returned as a result. Usually, the two input data sets have the same
size (m = n) when using the one-to-one operator, and the cardinality
of the results set is m = n. If m 6= n, a semantics has to be defined
(e.g. process the min(m,n) first pairs).

The all-to-all composition pattern (right of figure 6) corresponds
to the case where all inputs in one data set need to be processed
with all inputs in the other data set. A common example is the case
where all pieces of data in the first input set have to be processed
with all parameter configurations defined in the second input set. The
cardinality of the processed data set is m× n.

Combining the two operators introduced above enables very com-
plex data composition patterns. The pairwise one-to-one and all-to-all
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operators can be combined to compose data patterns for services with
an arbitrary number of input ports. In this case, the priority of these
operators needs to be explicitly provided by the user. By assigning data
composition operators to all pairs of inputs in the workflow services,
users can describe non trivial data flows whose exact topology depends
on the variable workflow input data sets. Composition operators are
a powerful tool for data-intensive application developers who can rep-
resent complex data flows in a very compact format. Although the
one-to-one operator preserves the input data sets cardinality, the all-
to-all operator may lead to drastic increases in the number of data to
be processed. It may lead to the production of enormous amounts of
tasks despite the apparently simple topology of the application work-
flow graph. The Bronze Standard application make intensive use of the
data composition patterns to describe its data flow. The fully deployed
graph of the application, a thousands node graph, would not be dis-
playable. Thanks to the compact representation provided, it resumes
to the rather simple graph displayed in figure 4.

Handling the data composition strategies in a service and data paral-
lel workflow is not straightforward. Indeed, the data composition results
for a given service cannot be computed once for all the data sets. Indeed,
due to service parallelism, the input data segments of a service are
received one by one. The data composition thus has to be recomputed
each time a new data segment is received and the service has to record
the data sets it has already processed. Moreover, data provenance has
to be properly tracked in order to compute one-to-one composition
operators. Indeed, due to data parallelism, a piece of data is able to
overtake another one during the processing and this disordering could
lead to a causality problem. Besides, due to service parallelism, several
data sets are processed concurrently and one cannot number all the
produced data once computations completed. MOTEUR implements
a data provenance strategy to sort out the causality problems that
may occur. Attached to each processed data segment is a history tree
containing all the intermediate results computed to process it. This tree
unambiguously identifies the data. This data provenance information
is also often of high interest in a scientific data analysis context.

5. Conclusions

This paper detailed the design and deployment of four scientific ap-
plications from different scientific areas with a common need for large
data sets analysis. Grids are naturally very well suited for process-
ing data intensive parallel applications (embarrassingly, coarse-grain
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parallel problems). The EGEE grid middleware provides a foundation
layer for implementing such applications but it still delegates to the
application the handling of complete data sets. Higher level workload
management is expected to further ease data-intensive applications de-
velopment. Recent development in the gLite workload management sys-
tem show that these requirements are progressively taken into account
and integrated at the level of the middleware.

Workflow managers provide a generic way of dealing with scientific
application requirements: they enable transparent parallelization of the
application execution, they provide an interface layer hiding the grid
complexity to the application developer and they can address com-
plex data flows description and management problems. There exists a
wide variety of workflow managers adopting different approaches, from
extensions of traditional batch systems (graphs of tasks) to service-
based composition. All workflow representation frameworks do not pro-
vide the same flexibility nor expressiveness and application developers
should carefully look at their application data flow needs and the kind
of application design they are targeting.

We are developing the MOTEUR workflow enactor. Based on the
Scufl scientific workflow description language, it targets high perfor-
mance while taking advantage of the flexibility provided by data com-
position operators to describe complex data flows in a compact format.
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Montbéliard-Sochaux, France, pp. 231–238.

13. Glatard, T., J. Montagnat, and X. Pennec: 2007b, ‘Optimizing jobs timeouts
on clusters and production grids’. In: International Symposium on Cluster
Computing and the Grid (CCGrid). Rio de Janeiro.

14. Glatard, T., X. Pennec, and J. Montagnat: 2006e, ‘Performance evaluation
of grid-enabled registration algorithms using bronze-standards’. In: Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI’06).
Copenhagen, Denmark.

15. Glatard, T., G. Sipos, J. Montagnat, Z. Farkas, and P. Kacsuk: 2007c, Work-
flow Level Parametric Study Support by MOTEUR and the P-GRADE Portal,
Chapt. 18. Springer.

16. Gorski, K. M. et al : 1998, ‘Analysis issues for large CMB data sets’. In:
Evolution of large scale structure : from recombination to Garching. Garching,
Germany : ESO, p. 37.

17. Jannin, P., J. Fitzpatrick, D. Hawkes, X. Pennec, R. Shahidi, and M. Vannier:
2002, ‘Validation of Medical Image Processing in Image-guided Therapy’. IEEE
Transactions on Medical Imaging (TMI) 21(12), 1445–1449.

18. Kacsuk, P. and G. Sipos: 2005, ‘Multi-Grid, Multi-User Workflows in the P-
GRADE Grid Portal’. Journal of Grid Computing (JGC) 3(3-4), 221 – 238.



Workflow-based data parallel applications on the EGEE grid 23

19. Khalaf, R., N. Mukhi, and S. Weerawarana: 2003, ‘Service-Oriented Composi-
tion in BPEL4WS’. In: International World Wide Web Conference (WWW).
Budapest, Hungary.
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