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ABSTRACT

Using the homogenization method, we derive a macroscopic model that describes
the advective-diffusive transport of a solute within a deformable elastic saturated
porous medium. The macroscopic solute transport equation contains a coupling term
which reveals a mechanically-induced solute transport mechanism.

INTRODUCTION

A cyclic loading applied on a saturated deformable porous medium is known to
increase the solute transport [1]. This effect is of major interest when dealing for
instance with the design of drug delivery system [2]. This transport enhancement
mechanism also participates in the cell nutrients transfer through avascular biological
tissue such as articular cartilage or intervertebral disk [3; 4]. Several experimental
and numerical works have focused on the identification of the main parameters (fre-
quency, amplitude, ...) that govern this mechanism. Thus, numerical models are usu-
ally based on a poro-elastic formulation coupled to an advective-diffusive equation
both written directly at the macroscopic scale. This has been done without wonder-
ing if coupling effects between solute transport and mechanical behavior could affect
these classical macroscopic equations.

Therefore, we propose to revisit this issue by means of a theoretical upscaling
procedure to rigorously determine the macroscopic equations that describe transient
advective-diffusive solute transport in a saturated deformable elastic porous media.
To upscale the local description, we use the homogenization method for periodic
structures, also called the homogenization method of multiple scales asymptotic ex-
pansions [5], and the methodology introduced in [6] is applied.
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Figure 1 : Porous medium : (a) Macroscopic sample ; (b) Periodic unit cell.

HOMOGENEISATION

Medium under consideration

The method of multiple scales is based upon the fundamental assumption of sep-
aration of scales. The condition of periodicity is also required, which has no impact
upon the form of the macroscopic description. We thus consider a periodic porous
medium, of macroscopic characteristic size L, and made of a solid matrix and of a
fluid-saturated pore space. We further denote the periodic cell by Ω, its characteristic

length by l, and we formulate the condition of separation of scales by ε =
l
L
� 1.

Within the periodic cell, we denote by Ωf the pore domain, by Ωs the solid matrix,
and by Γ their common interface, as depicted in Fig. 1. Using the two characteristic
length, l and L, and the physical space variable, ~X , we define two dimensionless space
variables: ~y = ~X/l,~x = ~X/L

Since the condition of separation of scales (ε� 1) is supposed to be satisfied, then
variables ~y and ~x can be considered as two independent space variables: ~y describes
the local scale, while ~x is the macroscopic space variable. As a consequence, the
unknown fields (stress tensors, displacements, fluid velocity and pressure, . . . ) are, a
priori, functions of both space variables~y and~x. Invoking the differentiation rule for
multiple variables, the gradient operator with respect to the physical variable, ~X , is
written as

∇X =
1
l

∇y +
1
L

∇x (1)

Dimensionless pore-scale description

The methodology introduced in [6] firstly consists in writing the dimensionless
pore-scale description, which is the set of dimensionless equations that describe the
phenomena being considered within the periodic unit cell depicted in Fig. 1. Each
quantity in a dimensionless equation is the ratio of its physical counterpart to its
characteristic value (indexed by ∗). This writing gives rise to dimensionless num-
bers, which are defined by means of characteristic values. We consider the elasticity
equations in the solid domain Ωs, the equations of flow for a Stokesian fluid and the



convection-diffusion equation for the solute in the fluid-saturated pore domain Ωf, to-
gether with the boundary conditions over the interface Γ. The dimensionless writing
of the equations requires the choice of a characteristic length for the dimensionless
writing of space derivatives. We arbitrarily choose L as the reference characteristic
length. The dimensionless gradient operator is thus given by:

∇ = L∇X = ε
−1

∇y +∇x (2)

The dimensionless pore-scale description being considered is given by the equations
presented below.
Equations in the solid domain Ωs

∇ ·σs = ~0 (3)
σs = a : e(~us) (4)

Equations of fluid motion in Ωf

FL ∆~vf−∇pf = ~0 (5)
∇ ·~vf = 0 (6)

where FL is a dimensionless number, defined by FL =
µ v∗f
p∗f L

Advective-diffusive solute transport in Ωf

NL
∂c
∂t

+PeL∇ · (~vf c) = ∆ c (7)

where the dimensionless numbers are defined by NL =
L2

Dt
and PeL =

v∗f L
D

Conditions over the interface Γ

σf ·~n = σs ·~n (8)

~vf =
∂~us

∂t
(9)

∇c ·~n = 0 (10)

Estimation of the dimensionless numbers

The methodology introduced in [6] consists in estimating the dimensionless num-
bers with respect to ε. As we are interested in the case which leads to a diphasic
macroscopic behavior for the fluid/solid system, the case where fluid motion is gen-
erated must be considered, which corresponds to the order [6]

FL = O(ε2) (11)

It has been shown in [7] that in rigid porous media, a transient advective-diffusive
macroscopic solute transport is obtained when

NL = O(ε0) PeL = O(ε0) (12)



Homogenization procedure

The homogenization method being used is an asymptotic approach. It is there-
fore based upon the fundamental statement that the physical unknowns fields can be
written in the form of asymptotic expansions in powers of ε:

ψ = ψ
(0)(~y,~x)+ εψ

(1)(~y,~x)+ ε
2
ψ

(2)(~y,~x)+ ... (13)

in which functions ψ(i) are Ω-periodic in variable ~y, with ψ = σs, σf, pf, c, ~vf, ~us.
The method consists in incorporating the asymptotic expansions in the dimensionless
local description (Eqs. 3-10), while replacing the dimensionless numbers by their
orders of magnitude in power of ε (Eqs. 11-12) and taking into account the expression
of the dimensionless gradient operator (Eq. 2). This leads to approximated governing
equations and boundary conditions at the successive orders, which together with the
condition of periodicity define well posed boundary-value problems in the periodic
unit cell. Existence of solutions requires that volume averaged equations be satisfied.
These latter actually describe the macroscopic behavior at successive orders.

Macroscopic model for the fluid/solid system

Homogenization of the fluid/solid equations has been performed in [8]. It leads to
the following macroscopic model, which is identical to Biot’s model of consolidation:

∇x·< σ
(0) > = ~0 (14)

< σ
(0) > = C : e

(
~u(0)

s

)
−α p(0)

f (15)

∇x ·

(
<~v(0)

f >−φ
∂~u(0)

s

∂t

)
= α tr

(
ė
(
~u(0)

s

))
−β

∂p(0)
f

∂t
(16)

<~v(0)
f >−φ

∂~u(0)
s

∂t
= −K ∇x p(0)

f (17)

where < σ(0) > is the first-order averaged total stress tensor, C is the effective elastic
tensor, α represents the elasticity coefficient of Biot, β is the medium compressibility,

K denotes the permeability tensor. The term <~v(0)
f > −φ

∂~u(0)
s

∂t
is the fluid relative

velocity. The porosity φ is defined by:

φ =
|Ωf |
|Ω |

(18)

The distinct avegares being introduced are defined by:

< ψ >=< ψ >s + < ψ >f (19)

where
< ψ >s=

1
|Ω |

Z
Ωs

ψ dΩ < ψ >f=
1
|Ω |

Z
Ωf

ψ dΩ (20)

Details on the derivation of the above model can be found in [8].



Homogenization of transport equations

Determination of c(0) and c(1)

At the first two orders, we get boundary-value problems which are identical to
those obtained in a rigid porous medium [7]. They lead to:

c(0) = c(0) (~x, t) and c(1) =~χ ·∇xc(0) (21)

where~χ is defined by the local problem to be solved on the unit cell:
∇y · (∇y~χ+ I) = ~0 in Ωf

(∇y~χ+ I) ·~n = ~0 on Γ

<~χ >f = ~0 and ~χ is Ω-periodic

(22)

Determination of the first-order macroscopic description
At the third-order, transport equations lead to the following system:

∂c(0)

∂t
−∇y ·

(
∇yc(2) +∇xc(1)− c(0)~v(1)

f − c(1)~v(0)
f

)
−∇x ·

(
∇yc(1) +∇xc(0)− c(0)~v(0)

f

)
= 0 in Ωf(

∇yc(2) +∇xc(1)
)
·~n = 0 on Γ

~v(0)
f =

∂~u(0)
s

∂t
on Γ

(23)

Integrating the first equation over the period yields:

φ
∂c(0)

∂t
−∇x ·

(
De f f

∇xc(0)
)

+

(
<~v(0)

f >−φ
∂~u(0)

s

∂t

)
·∇xc(0) +

∂~u(0)
s

∂t
·T ∇xc(0) = 0

(24)
where the effective diffusion tensor De f f and the tortuosity tensor T are defined by:

T =
1
|Ω |

Z
Ωf

(∇y~χ+ I) dΩ and De f f = DT (25)

CONCLUSIONS AND PERSPECTIVES

By means of a homogenization procedure, the macroscopic solute transport equa-
tion (Eq. 24) that describe transient advective-diffusive solute transport in an elastic
porous media can be written in a simpler manner:

φ
∂c
∂t

+φ

(
~Vf−~Vs

)
·∇c+~Vs ·T ∇c = ∇ ·

(
De f f

∇c
)

(26)

where ~Vf and ~Vs denote the fluid and solid intrinsic macroscopic velocities. Besides
the usual accumulation, advection and effective diffusion terms, the coupling term
~Vs ·T ∇c is emerging from the scale transition. This term is associated with the no-
slip boundary condition at the fluid-solid interface and characterizes a mechanically-
induced solute transport mechanism. It can be seen as a convective transport in the



boundary layer moving at the solid phase velocity. It is weighted by the tortuosity
tensor T that represent a geometrical property of the unit cell micro-structure, for
isotropic porous media it comes down to a scalar ranging from 0 to 1. An important
feature of this coupling term is that it occurs only whenever there exits macroscopic
advection: it does not appear in the case of a purely diffusive solute transport.

The influence of this additional term should be negligible in classical cases of
consolidating porous media. Nevertheless, when focusing on solute transport in
porous media submitted by cyclic loading, the cumulative effect of this mechanically-
induced transport mechanism may become predominant. Experimental evidence of
this term may be tricky to bear out. However, a numerical approach would bring
some interesting features. These development have been done with specific orders of
the dimensionless numbers FL, NL and PeL (Eqs. 11 and 12). Future works will in-
clude the analysis of different cases and particularly for higher Péclet number where
dispersive effects come up.
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