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In the context of fibre bundles theory, there exist some differential operators of order 2, called generalized Laplacians, acting on sections of vector bundles over Riemannian manifolds, and generalizing the Laplace-Beltrami operator. Such operators are determined by covariant derivatives on vector bundles. In this paper, we construct a class of generalized Laplacians, devoted to multi-channel image processing, from the construction of optimal covariant derivatives. The key idea is to consider an image as a section of an associate bundle, that is a vector bundle related to a principal bundle through a group representation. In this context, covariant derivatives are determined by connection 1-forms on principal bundles. We construct optimal connection 1-forms by the minimization of a variational problem on principal bundles. From the heat equations of the generalized Laplacians induced by the corresponding optimal covariant derivatives, we obtain diffusions whose behaviours depend of the choice of the group representation. We provide experiments on color images.

Introduction

Laplacians are widely used in image processing/analysis and computer vision. For instance, linear scale-space theory [START_REF] Lindeberg | Scale-Space Theory in Computer Vision[END_REF] is related to the heat equation of the Euclidean Laplacian. It is a fact that the isotropic behaviour of the linear scale-space is not well-adapted in many problems like denoising or contrast enhancement. Since then, many techniques of anisotropic diffusion of images have been employed (see e.g. [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF], [START_REF] Chan | Image Processing and Analysis: Variational, Pde, Wavelet, and Stochastic Methods[END_REF], [START_REF] Sapiro | Geometric Partial Differential Equations and Image Analysis[END_REF], [START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF] and references therein). Some of them are based on the Laplace-Beltrami operator, a generalization of the Euclidean Laplacian on Riemannian manifold (see e.g. [START_REF] Rosenberg | Laplacian on a Riemannian Manifold[END_REF] for details about this operator). In [START_REF] Sochen | A general framework for low level vision[END_REF] was introduced the Beltrami framework, an efficient tool for anisotropic regularization of fields. Mathematically speaking, it is related to the heat equation of the Laplace-Beltrami operator. The Beltrami framework has been applied on different kinds of fields: vectorvalued field (see e.g. [START_REF] Sochen | A general framework for low level vision[END_REF], [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF] for multi-channel image regularization), group-valued field (see [START_REF] Gur | Regularizing Flows over Lie Groups[END_REF] for SO(n)valued field regularization), symmetric space-valued field (see [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF] for regularization of field of symmetric definite positive matrices). It has also been applied as preprocessing for motion segmentation [START_REF] Rosman | Group-Valued Regularization Framework for Motion Segmentation of Dynamic Non-Rigid Shapes[END_REF] or regularizing term for optical flow estimation [START_REF] Ben-Ari | A Geometric Framework and a New Criterion in Optical Flow Modeling[END_REF]. There exist other uses of the Laplace-Beltrami operator. For instance, techniques for approximating its spectrum have been employed recently in the context of shape analysis (see e.g. [START_REF] Bronstein | A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Nonrigid Shape Matching[END_REF], [START_REF] Ovsjanikov | One Point Isometric Matching with the Heat Kernel[END_REF], [START_REF] Reuter | Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions[END_REF], [START_REF] Vallet | Spectral Geometry Processing with Manifolds Harmonics[END_REF]). Fiber bundles theory provides a geometric framework generalizing the notion of manifold (see [START_REF] Husemöller | Fiber Bundles[END_REF] for an introduction to fiber bundles theory). In this context, there exists a class of differential operators of order 2 called generalized Laplacians, and acting on sections of vector bundles. They are determined by two geometric data: a Riemannian metric on the base manifold and a covariant derivative on the vector bundle. In particular, the Euclidean Laplacian and Laplace-Beltrami operators are generalized Laplacians on vector bundles of rank 1 equipped with the trivial connection. We refer to [START_REF] Berline | Heat Kernels of Dirac Operators[END_REF] for more details about generalized Laplacians. Applications of generalized Laplacians for vector-valued field regularization were introduced in [START_REF] Batard | Clifford Bundles: A Common Framework for Images, Vector Fields and Orthonormal Frame Fields Regularization[END_REF], [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF]. In [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF], it is shown that some standard methods of color image regularization, i.e. the Beltrami flow in [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF], trace-based PDEs [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's: A Common Framework for Different Applications[END_REF], curvature-preserving PDEs [START_REF] Tschumperlé | Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE[END_REF], and divergencebased PDEs (see [START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF] and the references therein) may be viewed as heat equations of generalized Laplacians.

In [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF], we introduced the concept of (ρ, G)-equivariance on principal bundles for color images, where (ρ, G) is a Lie group representation (see e.g. [START_REF] Vilenkin | Special Functions and the Theory of Group Representations[END_REF] for an introduction to groups representations theory). We considered a Polyakov action measuring the energy of the graph of functions on principal bundles. We performed applications to image processing from the minimization of the functional with respect to the embedding. However, by the Riemannian metric we constructed on the principal bundle, it is not guaranteed that the gradient descent flow preserves the (ρ, G)-equivariance property of the initial condition, i.e. the original image. In this paper, we modify the Polyakov action in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] in order to obtain a gradient descent flow that preserves the (ρ, G)equivariance property of the initial condition:

1. We introduce an extra term involving the Casimir operator. 2. We construct the metric of the principal bundle from a metric on the base manifold and a horizontal bundle.

Under the identification between sections of associate bundles and (ρ, G)-equivariant functions on principal bundles, we show that the gradient descent flow of the new functional (that we call twisted Polyakov action) with respect to the embedding corresponds to the heat equation of a generalized Laplacian. In particular, the covariant derivative is determined by the horizontal bundle (or equivalently the connection 1-form) involved in the metric of the principal bundle.

The modification 2. of the Polyakov action raises the issue of the choice of the horizontal bundle involved in the metric of the principal bundle. By definition, horizontal bundles satisfy a G-equivariance property, meaning that they are completely determined by their values along a section of the principal bundle. Taking this property into account, we restrict the twisted Polyakov action along a section and minimize it with respect to the horizontal bundle for fixed embedding and metric of the base manifold. We obtain a unique solution. Then, by the choice of a group representation, we obtain the expression of the corresponding covariant derivative on the associated bundle. The notions of covariant derivative and connection 1form are at the core of the differential geometry of fibre bundles [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF], [START_REF] Spivak | A Comprehensive Introduction to Differential Geometry[END_REF]. Whereas they are involved in many mathematical models in theoretical physics, as in general relativity and Gauge fields theories [START_REF] Göckeler | Differential Geometry, Gauge Theories, and Gravity[END_REF], they are involved in very few works in image processing: besides [START_REF] Batard | Clifford Bundles: A Common Framework for Images, Vector Fields and Orthonormal Frame Fields Regularization[END_REF], [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF] and this paper, we may refer to the work of Duits et al. with applications to crossing-preserving smoothing [START_REF] Duits | Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images[END_REF] as well as contour enhancement and completion [START_REF] Duits | Left-Invariant Parabolic Evolutions on SE(2) and Contour enhancement via Invertible Orientation Scores Part I: Linear Left-Invariant Diffusions on SE(2)[END_REF], [START_REF] Duits | Left-Invariant Parabolic Evolutions on SE(2) and Contour enhancement via Invertible Orientation Scores Part II: Nonlinear Left-Invariant Diffusions on Invertible Orientation Scores[END_REF]. Both approaches deal with evolution equations associated with operators constructed from covariant derivatives but the geometric contexts are different. In our work the original field is a section of a vector bundle over a Riemannian manifold and the operator is a generalized Laplacian. In the work of Duits et al., the original field is a function defined on the Lie group SE(2) [START_REF] Duits | Left-Invariant Parabolic Evolutions on SE(2) and Contour enhancement via Invertible Orientation Scores Part I: Linear Left-Invariant Diffusions on SE(2)[END_REF], [START_REF] Duits | Left-Invariant Parabolic Evolutions on SE(2) and Contour enhancement via Invertible Orientation Scores Part II: Nonlinear Left-Invariant Diffusions on Invertible Orientation Scores[END_REF] or SE(3) [START_REF] Duits | Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images[END_REF], and the differential operator is determined by left-invariant tangent vector fields, the left-invariance being related with a suitable covariant derivative constructed on the tangent bundle of the manifold SE [START_REF] Batard | Clifford Bundles: A Common Framework for Images, Vector Fields and Orthonormal Frame Fields Regularization[END_REF] or SE(3). This paper is organized as follows. We first remind the main points of our former work [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] in Sect. 2. We discuss the (ρ, G)-equivariance property of color images and introduce a Polyakov action on principal bundles. In Sect. 3, we introduce the twisted Polyakov action that extends the Polyakov action in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF]. We first consider the minimization problem with respect to the embedding and show that the gradient descent flow preserves the (ρ, G)-equivariance property. In particular, we show that it can be identified with the heat equation of a generalized Laplacian. Then, we construct optimal horizontal fields from the minimization of the twisted Polyakov action with respect to the horizontal bundle along a section of the principal bundle. We give the expressions of the corresponding covariant derivatives on the associated vector bundles for the groups representations presented in Sect. 2. Details of computations are given in Appendices B and C. In Sect. 4, we present applications to image processing. We first compare the heat diffusions of generalized Laplacians constructed in Sect. 3 with results obtained in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF]. Then, we focus on the Lie group SO [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF]. We show that the heat diffusion of the generalized Laplacian preserves edges and colors better than the heat diffusion of the Laplace-Beltrami operator. Definitions of the geometric concepts used throughout the paper are given in Appendix A.

2 Images as (ρ, G)-equivariant functions on principal bundles

Construction

The key idea in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] was to consider an image as a (ρ, G)equivariant function on a principal bundle. In this paper, we make use of the identification between (ρ, G)equivariant functions on principal bundles and sections of associated bundles.

Definition 1 A smooth principal bundle is a quadruplet (P, π, M, G) where M and P are two C ∞ manifolds, G is a Lie group, π : P -→ M is a surjective map such that for all x ∈ M , the preimage π -1 (x) is diffeomorphic to G and there is an action

• of G on P satisfying: -π(p • g) = π(p) for p ∈ π -1 (x) and g ∈ G. -the restriction • : G × π -1 (x) -→ π -1 (x) is free and transitive.
The principal bundle is said to be trivial if there exists a diffeomorphism Φ : M × G -→ P satisfying π • Φ(x, g) = x, and such that the restriction

Φ x : G -→ π -1 (x) is compatible with the action • : G × π -1 (x) -→ π -1 (x).
See Appendix A.2 for more details about principal bundles.

Definition 2 Let G be a Lie group and V a vector space. A representation ρ of G on V is a group morphism ρ : G -→ GL(V ). The representation ρ determines a group representation ρ C on the dual space V * of V called the dual representation of ρ, and defined by ρ C (g) = ρ(g -1 ) where denotes the transpose.

Definition 3 Let (P, π, M, G) be a principal bundle and ρ a representation of G on a finite dimensional vector space V . A function

J : P -→ V is called (ρ, G)- equivariant if it satisfies J(p • g) = ρ(g -1 )J(p) (1) 
Given a n-channels image I : Ω ⊂ R 2 -→ R n , we construct a (ρ, G)-equivariant function on a principal bundle as follows.

Let (e 1 , • • • , e n ) be a basis of the vector space R n . Let (ρ, G) be a Lie group representation on R n , and e be the neutral element of G. Under its action on R n , the group G acts on the basis (e 1 , • • • , e n ). Let P be the set of bases obtained by the transformations of (e 

π(x 1 , x 2 , g • (e 1 , • • • , e n )) = (x 1 , x 2 ),
the quadruplet P = (Ω × P, π, Ω, G) is a trivial principal bundle, where the global diffeomorphism Φ : Ω × G -→ Ω × P is given by

Φ(x 1 , x 2 , g) = (x 1 , x 2 , g • (e 1 , • • • , e n )). (2) 
Then, we construct a (ρ, G)-equivariant function J on P defined by

J(x 1 , x 2 , g • (e 1 , • • • , e n )) = ρ(g -1 )I(x 1 , x 2 ) (3) 
In particular we have

J(x 1 , x 2 , (e 1 , • • • , e n )) = I(x 1 , x 2 ) ( 4 
)
since ρ(e) = Id by property of a group representation.

We construct the associated bundle

E = P × (ρ,G) R n .
Under the correspondance between (ρ, G)-equivariant functions on P and sections of E, J is a section of E of the form

J(x 1 , x 2 ) = [(x 1 , x 2 , (e 1 , • • • , e n )), I(x 1 , x 2 )], (5) 
and I the realization of J under the trivializing section s of P defined by

s(x 1 , x 2 ) = (x 1 , x 2 , (e 1 , • • • , e n )) = Φ(x 1 , x 2 , e). (6) 
See Appendix A.3 for details about associated bundles.

Interpretation of the (ρ, G)-equivariance property for color images

Dealing with color images, we interpret the fomula (4) as the assignment of the basis (e 1 , e 2 , e 3 ) to the light source of the image I. Then, we assimilate a basis change, given by the action g -→ g • (e 1 , e 2 , e 3 ), to a modification of the light source. By (3), the representation ρ encodes the way the pixels of the image change under this basis change, namely under the corresponding modification of the light source. Hence, by the (ρ, G)equivariant function J that we construct, we take into account that some modifications of the light source induce transformations of the pixels. Note that the use of the fiber bundle context allows the modification of the light source to change with respect to the points of Ω.

Increase resp. decrease the intensity of the light source makes increase resp. decrease the intensity of the pixels. Under the identification between modifications of the light source and transformations of the basis (e 1 , e 2 , e 3 ) that we made above, it means that color pixels transformations follow the basis transformations. From a mathematical viewpoint, this interpretation makes the color pixels behave as covectors.

In what follows, we give some examples of groups representations acting on the dual R 3 * , i.e. the space of covectors, of the vector space R 3 .

The HSL color space

Besides the RGB (Red,Green,Blue) color space, we consider a HSL (Hue,Saturation,Luminance) color space defined as follows. We set first

  Y C 1 C 2   =   1/3 1/3 1/3 1 -1/2 -1/2 0 - √ 3/2 √ 3/2     r g b  
Then the luminance l, the saturation s and the hue h components are respectively given by

l = Y s = C 2 1 + C 2 2 h = arccos(C 2 /s) if C 2 > 0 2π -arccos(C 2 /s) otherwise
Embedding RGB into the quadratic space (R 3 * , 2 ) of basis (e 1 , e 2 , e 3 ), we can decompose any color α = α 1 e 1 + α 2 e 2 + α 3 e 3 with respect to its projection L(α) and its rejection V (α) along the axis (e 1 + e 2 + e 3 ). The axis (e 1 + e 2 + e 3 ) is called the luminance axis, it encodes the luminance information of a color. Indeed, the luminance of α corresponds to the norm of its projection on the luminance axis. The orthogonal of the luminance axis in (R 3 * , 2 ) is called the chrominance plane, and encodes the saturation and hue information. The saturation of a color corresponds to the norm of its projection on the chrominance plane (up to multiplication by the scalar 3/2), and the hue corresponds to the angle it forms with the projection of the covector e 1 on this plane.

Dual representation of

R + * Let v ∈ R 3 * . The dual representation of R + * on R 3 * is the map R + * -→ GL(R 3 * ) ρ C : b -→ v -→ 1/b v (7) 
Simple computations lead to

l(ρ C (b) α) = ρ C (b) l(α) (8) 
s(ρ C (b) α) = ρ C (b) s(α) (9) 
h(ρ C (b) α) = h(α) (10) 
The hue component is invariant under the action of the dual representation of R + * on R 3 * whereas the luminance and saturation components are modified.

Dual representations of SO(2)

Let v ∈ R 3 * . The dual representations of SO(2) on R 3 * are the maps

SO(2) -→ GL(R 3 * ) ρ C P :
θ -→ rotation of angle -θ in the plane P [START_REF] Duits | Left-Invariant Parabolic Evolutions on SE(2) and Contour enhancement via Invertible Orientation Scores Part I: Linear Left-Invariant Diffusions on SE(2)[END_REF] where P is a 2-dimensional subspace of R 3 * .

For P being the chrominance plane Chr, we have

l(ρ C Chr (θ)α) = l(α) s(ρ C Chr (θ)α) = s(α) (12) 
h(ρ C Chr (θ)α) = h(α) -θ (13) 
The luminance and saturation components are invariant under the action of the representation (ρ C Chr ,SO(2)), whereas the hue component is modified. 

DC(3) -→ GL(R 3 * ) ρ C : diag(b 1 , b 2 , b 3 ) -→ v -→ diag(1/b 1 , 1/b 2 , 1/b 3 ) v (14)
All the components luminance, saturation and hue are modified under the action of the representation (ρ C , DC(3)) on R 3 * .

Dual representation of SO(3)

Let v ∈ R 3 * and R θ1,θ2,θ3 be the rotation associated to the Euler angles θ 1 , θ 2 , θ 3 . The dual representation of SO(3) on R 3 * is the map

SO(3) -→ GL(R 3 * ) ρ C : R θ1,θ2,θ3 -→ v -→ R θ1,θ2,θ3 v (15) 
All the components luminance, saturation and hue are modified under the action of the representation (ρ C , SO(3)) on R 3 * .

Polyakov action on principal bundles

We introduced in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] a color image regularization method from variational problems on principal bundles. The geometric context is the following. Let (Ω × P, π, Ω, G) be a principal bundle constructed in Sect. 2.1, for some Lie group G studied in Sect. 2.2, and ρ C be the dual representation of G on R 3 * . Let h resp. Q be a Riemannian metric on Ω × P resp. Ω × P × R 3 * . Let J = (J 1 , J 2 , J 3 ) : Ω×P -→ R 3 * be a (ρ, G)-equivariant function and ϕ its graph. We considered the Polyakov action of the embedding ϕ :

(Ω × P, h) -→ (Ω × P × R 3 * , Q) S(h, ϕ, Q) = Ω×P h µν ∂ϕ i ∂x µ ∂ϕ j ∂x ν Q ij d(Ω × P) (16) 
Assuming that Q is of the form H ⊕ κI 3 for a Riemannian metric H on Ω × P and κ a strictly positive constant, where I 3 is the 3 × 3 Identity matrix, we showed that the Euler-Lagrange equations of ( 16) with respect to the components J i are

∆ h J i = 0, i = 1, 2, 3 (17) 
where ∆ h is the Laplace-Beltrami operator of the Riemannian manifold (Ω × P, h).

If the embedded manifold is of dimension 2, it is wellknown that the metric h minimizing the Polyakov action for fixed embedding ϕ and metric Q is the metric h ind induced by Q on Ω × P through ϕ. Based on this fact, we took the induced metric in our experiments, i.e. the metric h ind given by

h ind µν = ∂ϕ i ∂x µ ∂ϕ j ∂x ν Q ij (18) 
Then, we showed that the gradient descent flow

∂J i t ∂t = ∆ h ind J i t , J i 0 = J i i = 1, 2, 3 (19) 
provides a regularization of the initial condition J whose behaviour depends of the chosen group representation.

The work in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] raises the following two issues:

1. For embedded manifold of dimension greater than 2, is it not guaranteed that the induced metric minimizes the Polyakov action. 2. It is not guaranteed that the flow [START_REF] Kodak | [END_REF] preserves the (ρ C , G)-equivariance property of the initial condition.

In this paper, we present the following three modifications of the work in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF].

i. We introduce an extra term in the functional [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF] involving the Casimir operator Cas ∈ End(R 3 * ).

ii. We assume that the Riemannian metric h of the principal bundle Ω × P is constructed from the data of a Riemannian metric g on Ω, a horizontal bundle on Ω × P, and a bi-invariant Riemannian metric B on G.

iii. The metrics h we consider in our experiments minimize a variational problem (Sect. 3.2).

The first two modifications make the gradient descent flow preserve the (ρ C , G)-equivariance property of the initial condition (Sect. 3.1). The modification iii. makes the metrics involved in the experiments be optimal, unlike the ones used in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF].

3 Twisted Polyakov action on principal bundles Let (P, π, M, G) be a principal bundle, where the base manifold M is of dimension m and the Lie group G is of dimension n. Let g and B be respectively a Riemannian metric on M and a bi-invariant Riemannian metric on G. Let V P be the vertical bundle of P and HP be a horizontal bundle of P (see Definitions 10,11 in Appendix A.2). Let ρ be a representation of G on a finite dimensional vector space V of dimension d equipped with the standard scalar product ( , ). Let J : P -→ V be a (ρ, G)-equivariant function and ϕ its graph.

Let Cas ∈ End(V ) be the Casimir operator, defined by

Cas = ρ * (g i ) 2 (20) 
for any orthonormal basis (g We denote by S the Polyakov action of the embedding ϕ : (P, h) -→ (P × V, Q) twisted by an action of the Casimir operator

S(h, ϕ, Q) = P h µν ∂ϕ i ∂x µ ∂ϕ j ∂x ν Q ij + 1 2 (Cas J, J) dP (21) 
In what follows, we consider two minimization problems derived from the functional (21).

3.1 Minimization with respect to the embedding

Riemannian metric on principal bundle induced by a horizontal bundle

We construct a Riemannian metric h on P from g, B and HP as follows.

Let (e 1 , • • • , e m ) be an orthonormal frame of T M , the tangent bundle of M , with respect to g. Let (e h 1 , • • • , e h m ) be the horizontal lift of (e 1 , • • • , e m ) on T P , the tangent bundle of P , with respect to HP (see Definition 12 

in Appendix A.2). Let (X 1 , • • • , X n ) be an orthonormal basis of T e G = g with respect to B. Let (X v 1 , • • • , X v n ) be the frame of V P , defined for i = 1, • • • , n by X v i (p) = d dt p • exp(tX i ) |t=0
where • denotes the action of G on the fibers of P . Then, considering the metric h on P given by the Identity matrix field in the frame (e h 1 ,

• • • , e h m , X v 1 , • • • , X v n ) of T P turns (P, h) into a Riemannian manifold.
Remark 1 The construction makes the bundles HP and V P be orthogonal with respect to h.

Remark 2 By the G-equivariance property of the bundles HP and V P (see Definitions 10,11 in Appendix A.2), the metric h is completely determined by its values along a section of P .

A gradient descent flow preserving the (ρ, G)-equivariance property

Fixing h and Q, we aim at minimizing the functional [START_REF] Lawson | Spin Geometry[END_REF] with respect to the (ρ, G)-equivariant function J. We obtain the following result.

Proposition 1 The gradient descent flow for reaching the function J opt whose graph ϕ opt minimizes the functional [START_REF] Lawson | Spin Geometry[END_REF] preserves the (ρ, G)-equivariance property of the initial condition.

Proof Let ψ be the embedding of a Riemannian manifold (M 1 , g 1 ) into a Riemannian manifold (M 2 , g 2 ), and X the corresponding Polyakov action, i.e.

X = M1 g 1 µν ∂ψ i ∂x µ ∂ψ j ∂x ν g 2ij dM 1 (22) 
From [START_REF] Sochen | A general framework for low level vision[END_REF], we know that the Euler-Lagrange equations of ( 22) with respect to ψ are

- 1 2 √ g 1 g 2 il ∂X ∂ψ l = ∆ g1 ψ i + Γ i jk ∂ µ ψ j ∂ ν ψ k g 2 µν = 0 (23)
where ∆ g1 is the Laplace-Beltrami operator on (M 1 , g 1 ) and Γ i jk are the symbols of the Levi-Civita connection on (M 2 , g 2 ) (see Appendix A.1 for details about vector bundles, and Definition 7 in particular for the definition of covariant derivative, the case of the Levi-Civita connection being treated in Example 4).

Hence, taking a metric Q of the form H ⊕ κ I d , the Euler-Lagrange equations of ( 21) with respect to J are

(-∆ h ⊗ 1 + 1 ⊗ Cas) J = 0 ( 24 
)
The gradient descent flow for reaching the solution of ( 24) is

∂J t ∂t = (∆ h ⊗ 1 -1 ⊗ Cas)J t (25) 
Under the identification between (ρ, G)-equivariant functions on P and sections of P

× (ρ,G) V (see Appendix A.3.1), the operator (∆ h ⊗ 1 -1 ⊗ Cas) writes ∆ A := ij g ij ∇ A ∂x i ∇ A ∂x j - k Γ k ij ∇ A ∂x k (26) 
The operator∆ A is a generalized Laplacian onP × (ρ,G) V, where the covariant derivative ∇ A is induced by HP (see Appendix A.3.2). We refer to Prop. 5.6 p. 172 in [START_REF] Berline | Heat Kernels of Dirac Operators[END_REF] for the proof of the identification between the operators (∆ h ⊗ 1 -1 ⊗ Cas) and ∆ A .

Then, taking the (ρ, G)-equivariant function J as initial condition, the gradient descent flow (25) may be identified with the heat flow of

∆ A ∂J t ∂t = ∆ A J t , J 0 = J (27) 
As the flow ( 27) preserves the structure of section of associated bundle of the initial condition, we deduce that the flow (25) preserves the (ρ, G)-equivariance property of the initial condition.

Minimization with respect to the horizontal bundle

Fixing J, Q, g and B, we aim at computing the horizontal bundles H s P opt minimizing the energy (21) along a section s of P , i.e. minimizing the energy

S |s (h, ϕ, Q) = s h µν ∂ϕ i ∂x µ ∂ϕ j ∂x ν Q ij + 1 2 (Cas J, J) dM (28) 
Then, H s P opt extends to a horizontal bundle HP opt by G-equivariance property. However, this construction does not prove that HP opt minimizes the energy [START_REF] Lawson | Spin Geometry[END_REF].

In what follows, we first remind the relation between horizontal bundle and covariant derivative on associated bundle. Then, we restrict to the case of base manifolds of dimension 2 and s being the section defined by s(x) = Φ(x, e) where Φ is a trivialization of P . We give explicit expressions of the covariant derivatives ∇ A opt induced by H s P opt for the dual representations of the group R + * , SO(2), DC(3) and SO(3) on R 3 * (see Sect. 2.2). We refer to Appendices B and C for details of computations.

From horizontal bundles to covariant derivatives on associated bundles: the general case

Let (P, π, M, G) be a principal bundle, ρ a representation of G on a finite dimensional vector space V , and

E = P × (ρ,G) V the associated bundle. Let S ∈ Γ (E)
and f S be the corresponding (ρ, G)-equivariant function on P . Let HP be a horizontal bundle of P . Let X ∈ Γ (T M ) and X h ∈ Γ (T P ) be the horizontal lift of X with respect to HP .

Then, there exist a covariant derivative ∇ A on E such that the following correspondance holds

d X h f S ←→ ∇ A X S (29) 
A proof of the correspondance (29) can be found p. 24 in [START_REF] Berline | Heat Kernels of Dirac Operators[END_REF].

Let ω be the connection 1-form induced by HP (see Definition 13 Appendix A.2). Let s be a section of P and A be the g-valued 1-form on M given by

A = s * ω
where * denotes the pull-back map.

Then, relatively to the local frame of E induced by s, the covariant derivative is given by

∇ A X = d X + ρ * (A)(X)
where d X denotes the differential with respect to X ∈ Γ (T M ).

Explicit expressions of covariant derivatives induced by optimal horizontal fields

Let (x 1 , x 2 ) resp. (a 1 , • • • , a n ) be a coordinates system of M resp. G. Dual representation of R + * on R 3 * Proposition 2
The field of horizontal spaces H s P opt of (P, π, M, R + * ) minimizing ( 21) is unique. Moreover, the nonzero symbols of the corresponding covariant derivative ∇ A opt in the associated bundle P × (ρ C ,R + * ) R 3 * are given, relatively to the frame (∂/∂x 1 , ∂/∂x 2 ) of T M and the frame of P × (ρ C ,R + * ) R 3 * induced by s, by

Υ k lk (x) = ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 ∂ϕ i ∂x l ∂ϕ j ∂a Q ij (x, e) (30) 
for l = 1, 2 and k = 1, 2, 3.

Dual representations of SO(2) on R 3 *
The dual representations of SO(2) on R 3 * are parametrized by 2-dimensional subspaces of R 21) is unique. Moreover, the nonzero symbols of the corresponding covariant derivative ∇ A opt in the associated bundle P × 

(ρ C P ,SO(2)) R 3 * are given, relatively to the frame (∂/∂x 1 , ∂/∂x 2 ) of T M and the frame of P × (ρ C P ,SO(2)) R 3 * induced by s, by Υ k lp (x) = -Υ p lk (x) = (-1) l+1 γ kp ∂ϕ i ∂θ ∂ϕ j ∂θ Q ij -1 ∂ϕ i ∂x l ∂ϕ j ∂θ Q ij (x, e) (31 
Υ 1 l1 (x) = 1 c 1 c 2 c 3 c 2 c 3 ∂ϕ i ∂x l ∂ϕ j ∂a 1 Q ij (x, e) (32) 
Υ 2 l2 (x) = 1 c 1 c 2 c 3 c 1 c 3 ∂ϕ i ∂x l ∂ϕ j ∂a 2 Q ij (x, e) (33) 
Υ 3 l3 (x) = 1 c 1 c 2 c 3 c 1 c 2 ∂ϕ i ∂x l ∂ϕ j ∂a 3 Q ij (x, e) (34) 
for l = 1, 2, where

c k = ∂ϕ i ∂a k ∂ϕ j ∂a k Q ij , k = 1, 2, 3 (35) 
Dual representation of SO(3) on R 3 * Proposition 5 The field of horizontal spaces H s P opt of (P, π, M, SO(3)) minimizing ( 21) is unique. Moreover, the nonzero symbols of the corresponding covariant derivative ∇ A opt in the associated bundle P × (ρ C ,SO(3)) R 3 * are given, relatively to the frame (∂/∂x 1 , ∂/∂x 2 ) of T M and the frame of P × (ρ C ,SO(3)) R 3 * induced by s, by

Υ 1 l2 (x) = -Υ 2 l1 (x) = λ (be -dc) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (bc -ae) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(ad -b 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) (36) 
Υ 1 l3 (x) = -Υ 3 l1 (x) = λ (ce -f b) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (af -c 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(bc -ae) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) (37) 
Υ 2 l3 (x) = -Υ 3 l2 (x) = λ (f d -e 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (ce -f b) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(be -dc) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) (38) 
for l = 1, 2, where

a = ∂ϕ i ∂θ 1 ∂ϕ j ∂θ 1 Q ij b = ∂ϕ i ∂θ 1 ∂ϕ j ∂θ 2 Q ij (39) c = ∂ϕ i ∂θ 1 ∂ϕ j ∂θ 3 Q ij d = ∂ϕ i ∂θ 2 ∂ϕ j ∂θ 2 Q ij (40) e = ∂ϕ i ∂θ 2 ∂ϕ j ∂θ 3 Q ij f = ∂ϕ i ∂θ 3 ∂ϕ j ∂θ 3 Q ij ( 41 
)
and

λ = 1 2bce + adf -ae 2 -b 2 f -c 2 d (42) 4 Experiments 4.
1 Some heat diffusions applied on color images

The geometric framework

Let I : Ω -→ RGB ⊂ R 3 * be a color image, and (ρ, G) be a Lie group representation on R 3 * . Following Sect. 2.1, we construct a (ρ, G)-equivariant function J on a trivial principal bundle diffeomorphic to (Ω × G, π, Ω, G) such that J(x 1 , x 2 , e) = I(x 1 , x 2 ) (up to the trivialization Φ). Moreover, we construct a Riemannian metric on the space Ω × G × R 3 * . We consider the following three groups representations and Riemannian metrics: i. the dual representation ρ C of R + * on R 3 * : we have

J : (x 1 , x 2 , exp(a)) -→ (exp(a)I 1 (x 1 , x 2 ), exp(a)I 2 (x 1 , x 2 ), exp(a)I 3 (x 1 , x 2 )) (43)
The graph of the function J, defined by

ϕ : (x 1 , x 2 , exp(a)) -→ (x 1 , x 2 , exp(a), J(x 1 , x 2 , exp(a))), (44) realizes an embedding of Ω × R + * into Ω × R + * × R 3 * .
We equip the embedding space Ω × R + * × R 3 * of the Riemannian metric Q given by

I 2 ⊕ δ ⊕ κ I 3 , δ, κ > 0 (45) in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂a, ∂/∂z 1 , ∂/∂z 2 , ∂/∂z 3 ).
ii. the dual representation ρ C of DC(3) on R 3 * : we have

J : (x 1 , x 2 , exp(a 1 ), exp(a 2 ), exp(a 3 )) -→ (exp(a 1 )I 1 (x 1 , x 2 ), exp(a 2 )I 2 (x 1 , x 2 ), exp(a 3 )I 3 (x 1 , x 2 )) (46) 
The graph of the function J, defined by

ϕ : (x 1 , x 2 , exp(a 1 ), exp(a 2 ), exp(a 3 )) → (x 1 , x 2 , exp(a 1 ), (exp(a 2 ), exp(a 3 ), J(x 1 , x 2 , exp(a 1 ), exp(a 2 ), exp(a 3 ))), (47) 
realizes an embedding of Ω×DC(3) into Ω×DC(3)×R 3 * .

We equip the embedding space Ω×DC(3)×R 3 * of the Riemannian metric Q, given by

I 2 ⊕ δ I 3 ⊕ κ I 3 , δ, κ > 0 (48) in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂a 1 , ∂/∂a 2 , ∂/∂a 3 , ∂/∂z 1 , ∂/∂z 2 , ∂/∂z 3 ).
iii. the dual representation ρ C of SO(3) on R 3 * : we have

J(x 1 , x 2 , θ 1 , θ 2 , θ 3 ) = R θ1,θ2,θ3 T (I 1 (x 1 , x 2 ), I 2 (x 1 , x 2 ), I 3 (x 1 , x 2 )) T (49) where R θ1,θ2,θ3 =           cos θ 2 cos θ 3 cos θ 2 sin θ 3 sin θ 2 -cos θ 1 sin θ 3 cos θ 3 cos θ 1 cos θ 2 sin θ 1 -cos θ 3 sin θ 2 sin θ 1 -sin θ 2 sin θ 3 sin θ 1 -cos θ 3 cos θ 1 sin θ 2 -cos θ 1 sin θ 2 sin θ 3 cos θ 2 cos θ 1 + sin θ 3 sin θ 1 -cos θ 3 sin θ 1          
The graph of the function J, defined by

ϕ : (x 1 , x 2 , θ 1 , θ 2 , θ 3 ) -→ (x 1 , x 2 , θ 1 , θ 2 , θ 3 , J(x 1 , x 2 , θ 1 , θ 2 , θ 3 ))), (50) realizes an embedding of Ω×SO(3) into Ω×SO(3)×R 3 * .
We equip the embedding space Ω× SO(3)×R 3 * of the Riemannian metric Q of the form

Q = I 2 ⊕       δ 0 δ sin θ 2 0 δ 0 δ sin θ 2 0 δ       ⊕ κ I 3 , δ, κ > 0 (51) in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂θ 1 , ∂/∂θ 2 , ∂/∂θ 3 , ∂/∂z 1 , ∂/∂z 2 , ∂/∂z 3 ).
Then, for each group representation (ρ C , G) and metric Q on Ω ×G×R 3 * given above, we compute the gradient descent flows for reaching the functions J minimizing the following functionals with respect to the graph ϕ :

1. The Polyakov action [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF] where the metric h of the principal bundle is induced by the metric Q of the embedding space. It corresponds to what it is done in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF].

2. The twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF] where the metric h of the principal bundle is induced by the metric Q of the embedding space.

3. The twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF] where the metric h of the principal bundle is constructed from a metric g on the base manifold and an optimal horizontal field H s P opt along the section s (see Sect. 3.2).

Details of computations are given in what follows.

Polyakov action with metric h induced by the metric of the embedding space

Taking a metric Q constructed in Sect. 4.1.1, the minimization of the Polyakov action ( 16) with respect to the graph ϕ yields the heat equations

∂J k t ∂t = ∆ h J k t , k = 1, 2, 3 (52) 
(see Sect. 2.3 for details). These are heat equations of the Laplace-Beltrami operator ∆ h , defined by

∆ h := 1 √ h ∂ µ √ h h µν ∂ ν , µ, ν = 1, • • • , 2 + dim G
The general expression for the induced metric h ind is

h ind µν = ∂ϕ i ∂x µ ∂ϕ j ∂x ν Q ij (53) for µ, ν = 1, • • • , 2 + dim G and i, j = 1, • • • , 5 + dim G.
The explicit expressions of h ind for the groups representations and metrics Q of Sect. 4.1.1 are given in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF].

We perform an experiment in the end of the paper where we compute a discrete approximation of the solutions of (52) for h = h ind , at the points (x 1 , x 2 , e), with the following scheme

J k t+dt (x 1 , x 2 , e) = J k t (x 1 , x 2 , e) + dt ∆ h ind J k t (x 1 , x 2 , e) (54) 
of initial condition

J k 0 (x 1 , x 2 , e) = I k (x 1 , x 2 ).
In order to discretize the terms ∆ h ind J k in (54), we extend the method in [START_REF] Sochen | A general framework for low level vision[END_REF] to manifolds of dimension greater than 2. This method holds for any metric h. In the case of the manifold is of dimension 3, with coordinates system (x 1 , x 2 , x 3 ), the algorithm is the following:

1. Compute the matrices p k , q k , r k given by

p k = (h 22 h 33 -(h 23 ) 2 ) ∂ x1 J k t + (h 13 h 23 -h 12 h 33 ) ∂ x2 J k t +(h 12 h 33 -h 13 h 22 ) ∂ x3 J k t q k = (h 13 h 23 -h 12 h 33 ) ∂ x1 J k t + (h 11 h 33 -(h 13 ) 2 ) ∂ x2 J k t +(h 13 h 12 -h 11 h 23 ) ∂ x3 J k t r k = (h 12 h 23 -h 13 h 22 ) ∂ x1 J k t + (h 12 h 13 -h 11 h 23 ) ∂ x2 J k t +(h 11 h 22 -(h 12 ) 2 ) ∂ x3 J k t 2. Compute ∆ h J k t := 1 h (∂ x1 p k +∂ x2 q k +∂ x3 r k )- 1 2 h 2 (p k ∂ x1 h+q k ∂ x2 h+r k ∂ x3 h)
See Fig. 1 for results and Sect. 4.2.1 for an interpretation of the results.

Twisted Polyakov action with metric h induced by the metric of the embedding space

Taking a metric Q constructed in Sect. 4.1.1, the minimization of the twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF] with respect to the graph ϕ yields the gradient descent flow

∂J t ∂t = (H h -Cas)J t ( 55 
)
where H h stands for the operator acting as the Laplace-Beltrami operator ∆ h on each component of the section. Formula (55) is a direct consequence of formula (52).

The definition of the Casimir operator is given in [START_REF] Lindeberg | Scale-Space Theory in Computer Vision[END_REF].

In what follows we give the explicit expressions of the Casimir operators for the Lie groups representations of Sect. 4.1.1.

Dual representation of R + * on R 3 * Let B be a Riemannian metric on R + * given by the strictly positive constant δ in the frame (∂/∂a) at the point 1. Let

E ∈ T 1 R + * of component 1/ √ δ in the frame (∂/∂a). We have E B = 1 and ρ C * (E) = 1 √ δ   -1 0 0 0 -1 0 0 0 -1   It gives Cas : = ρ C * (E) 2 = (1/δ)Id ( 56 
)
Dual representation of DC(3) on R 3 * Let B be a Riemannian metric on DC(3) given by δ I 3 in the frame (∂/∂a 1 , ∂/∂a 2 , ∂/∂a 3 ) at the neutral element e of DC [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF].

Let

E 1 resp. E 2 resp. E 3 ∈ T e DC(3) of components (1/ √ δ, 0, 0) resp. (0, 1/ √ δ, 0) resp. (0, 0, 1/ √ δ) in the frame (∂/∂a 1 , ∂/∂a 2 , ∂/∂a 3 ). The set (E 1 , E 2 , E 3
) forms an orthonormal basis of T e DC(3) for the metric B and we have

ρ C * (E 1 ) = 1 √ δ   -1 0 0 0 0 0 0 0 0   ρ C * (E 2 ) = 1 √ δ   0 0 0 0 -1 0 0 0 0   ρ C * (E 3 ) = 1 √ δ   0 0 0 0 0 0 0 0 -1   It gives Cas : = ρ C * (E 1 ) 2 + ρ C * (E 2 ) 2 + ρ C * (E 3 ) 2 = (1/δ)Id (57)
Dual representation of SO(3) on R 3 * Let B be a Riemannian metric on SO(3) given by δ I 3 in the frame (∂/∂θ 1 , ∂/∂θ 2 , ∂/∂θ 3 ) at the neutral element e of SO [START_REF] Batard | Heat Equations on Vector Bundles-Application to Color Image Regularization[END_REF].

Let E 1 resp. E 2 resp. E 3 ∈ T e SO(3) of components (1/ √ δ, 0, 0) resp. (0, 1/ √ δ, 0) resp. (0, 0, 1/ √ δ) in the frame (∂/∂θ 1 , ∂/∂θ 2 , ∂/∂θ 3 ). The set (E 1 , E 2 , E 3 ) forms an orthonormal basis of T e SO(3) for the metric B and we have

ρ C * (E 1 ) = 1 √ δ   0 0 -1 0 0 0 1 0 0   ρ C * (E 2 ) = 1 √ δ   0 0 0 0 0 -1 0 1 0   ρ C * (E 3 ) = 1 √ δ   0 -1 0 1 0 0 0 0 0   It gives Cas : = ρ C * (E 1 ) 2 + ρ C * (E 2 ) 2 + ρ C * (E 3 ) 2 = (-2/δ)Id (58)
We perform an experiment in the end of the paper where we compute a discrete approximation of the solutions of (55) for h = h ind (see ( 53)), at the points (x 1 , x 2 , e), with the following scheme

J t+dt (x 1 , x 2 , e) = J t (x 1 , x 2 , e)+dt (H h ind -Cas)J t (x 1 , x 2 , e) (59) 
of initial condition J 0 (x 1 , x 2 , e) = I(x 1 , x 2 ).

We discretize the term H h ind following the method in Sect. 4.1.2.

See Fig. 1 for results and Sect. 4.2.1 for an interpretation of the results.

Twisted Polyakov action with metric h

contructed from a metric on the base manifold and an optimal horizontal field Taking a metric Q constructed in Sect. 4.1.1, the minimization of the twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF] with respect to the graph ϕ yields the heat equation

∂J t ∂t = ∆ A opt J t ( 60 
)
of the generalized Laplacian ∆ A opt associated to the covariant derivative ∇ A opt induced by the optimal horizontal field H s P opt (see Sect. 3).

We perform experiments in the end of the paper where we compute a discrete approximation of the solution of (60) in the frame induced by the trivializing section s, taking I as initial condition. We consider the scheme

J t+dt = J t + dt ∆ A opt J t , J 0 = I (61) 
We compute the term ∆ A opt J t in (61) from the formula

∆ A opt := g ij ∇ A opt ∂x i ∇ A opt ∂x j - 2 k=1 Γ k ij ∇ A opt ∂x k , i, j = 1, 2 (62) 
and the terms in (62) as follows:

1. We compute the covariant derivatives ∇ A opt ∂x l J t , l = 1, 2, from the explicit expressions of the symbols Υ k ij , given in the Appendix:

-dual representation of R + * on R 3 * : Appendix B.1.2 -dual representation of DC(3) on R 3 * : Appendix B.2.2 -dual representation of SO(3) on R 3 * : Appendix B.2.3.
and the formula

∇ A opt ∂x l J t = 3 i=1 3 k=1 ∂ x l J i t e i + J i t Υ k li e k (63) 
2. We take g given by the matrix representation

   1 + κ 3 k=1 I k x1 2 κ 3 k=1 I k x1 I k x2 κ 3 k=1 I k x1 I k x2 1 + κ 3 k=1 I k x2 2    (64) 
in the frame (∂/∂x 1 , ∂/∂x 2 ), where κ is the constant that appears in the expression of Q (see Sect. 4.1.1).

3. We compute the symbols Γ k ij of the Levi-Civita connection associated to g from the formula

Γ k ij = 1 2 g kl (∂ xj g li + ∂ xi g lj -∂ x l g ij ) (65) 
See Fig. 

Induced metrics and Casimir operators

As mentioned in Sect. 2.3, we provide two modifications of the work in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF]. The first one concerns the introduction of a term involving the Casimir operator, that gives the twisted Polyakov functional [START_REF] Lawson | Spin Geometry[END_REF].

On Fig. 1, we compare the gradient descent flow (55) of the twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF] with the gradient descent flow (52) of the Polyakov action [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF]. We compute 20 iterations of the numerical schemes (59) and (54), for κ = 0.0001, δ = 2, dt = 0.1, tested on the image 'kodim07' (Fig. 1(a)) taken in the kodak database [START_REF] Kodak | [END_REF]. As we can observe in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF], the diffusion (54) combines the anisotropic smoothing of the heat diffusion of the Laplace-Beltrami operator ∆ g , for g given in (64) (see Fig. 1(b)), and a global transformation of colors that depends of the Lie group involved. More precisely, these global transformations are related with the actions of the representations ρ C on the color space RGB (see Sect. 2.2). Indeed, for G = R + * , both components luminance and saturation are increased. This is typically what happens when R + * acts on RGB with a parameter greater than 1. The reddish aspect of the diffusion for G =SO(3) (see Fig. 1(g)) results from the fact that rotations in RGB modify the hue of colors. At last, as the action of DC(3) on RGB is transitive, the behaviour in (Fig. 1(e)) might be described by an element of DC(3). We claim that such behaviours come from the choice of the metrics h in the heat diffusions (54), which are induced metrics through the graphs of (ρ C , G)-equivariant functions.

We observe that the Casimir operator has an impact on the global behaviour of the diffusion but not on its local behaviour. This is a consequence of the fact that the Casimir operators are zero order operators for the Lie groups representations of Sect. 4.1.1. In particular, the constrast decreases for G = R + * (see Fig. 

Optimal covariant derivatives

The second modification concerns the metric of the principal bundle. We replace the induced metric by a metric constructed from an optimal connection 1form and a metric on the base manifold in the twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF].

On Fig. 2, we compute the gradient descent flow (60) of the twisted Polyakov action [START_REF] Lawson | Spin Geometry[END_REF]. We compute 200 iterations of the numerical scheme (61) with κ = 0.0001, dt = 1 and δ = 1.

Unlike to the case of the induced metric (see Fig. 1 and comments in Sect. 4.2.1), the heat diffusions for metrics given by optimal connection 1-forms do not provide global actions of the Lie groups on the colors. However, we observe that the behaviour of a diffusion depends of the Lie group involved too. Indeed, for G = R + * (see Fig. 2(c,d)), the edges of the origi-nal images (Fig. 2(a,b)) are still well preserved, despite the large number of iterations. However, the saturation components of the initial conditions, i.e. the original images, have decreased. Dealing with the group SO(3) (see Fig. 2(g,h)), the edges of the original images have been smoothed, but their saturation components have been preserved. The heat diffusion for the group DC(3) might be viewed as an intermediate between the two others ones (see Fig. 2(e,f)).

Optimal covariant derivative for the group SO(3)

The heat diffusion of the generalized Laplacian associated to the optimal covariant derivative for the group representation (ρ C , SO(3)) is the only diffusion on Fig. 2 that behaves like standard regularization methods, e.g. heat diffusions of the Laplace-Beltrami operator and Euclidean Laplacian. We claim that this is a typical behaviour of heat diffusion of generalized Laplacian where the connection 1-form is so(n)-valued. Indeed, in a very recent paper of one of the author [START_REF] Batard | Generalized Gradient on Vector Bundle -Application to Image Denoising[END_REF], the following result has been used (this is a direct consequence of Prop. 8.1 p.154 [START_REF] Lawson | Spin Geometry[END_REF]):

Proposition 6 Let E be a vector bundle over a compact Riemannian manifold (X, g). Let h be a definite positive metric on E, and H be the definite positive metric on the space Γ (T * X ⊗ E) determined by g and h. Let ∇ A be a covariant derivative on E whose connection 1-form is so(h)-valued. Then, the Euler-Lagrange equation of the functional

E(I) = X ∇ A I H 2 dX ( 66 
)
is ∆ A I = 0 were ∆ A is the generalized Laplacian associated to the covariant derivative ∇ A . Moreover, ∆ A I = 0 if and only if ∇ A I = 0.

Hence, heat equations of generalized Laplacians whose connection 1-forms are so(n)-valued are gradient descent flows for reaching the solution of the variational problem (66).

Taking the covariant derivative ∇ A of connection 1form A ≡ 0 in (66), we obtain the minimization problem of the Riemannian gradient L2 norm, whose gradient descent flow is the heat equation of the Laplace-Beltrami operator. Moreover, we obtain the Euclidean gradient and the heat equation of the Euclidean Laplacian if the metric g of the base manifold is Euclidean. We claim that the heat diffusion of the generalized Laplacian associated to the optimal covariant derivative for the group representation (ρ C , SO(3)) behaves like standard regularization methods because it is the gradient descent flow for the minimization problem of a (generalized) gradient L2 norm too.

On Fig. 3, we compare the heat diffusion of the generalized Laplacian ∆ A opt associated to the optimal covariant derivative ∇ A opt for the group representation (ρ C , SO(3)) (see Fig. 3 (c,f)) with the heat diffusion of the Laplace-Beltrami operator ∆ g (Fig. 3(b,e)). The parameters we take for both numerical schemes are κ = 0.0005, dt = 0.1 and 50 iterations. Moreover, we take δ = 1. Results show that the heat diffusion of the "optimal" generalized Laplacian preserves more colors and edges of the original images (Fig. 3(a,d)) than the heat diffusion of the Laplace-Beltrami operator .

By Prop. 6, both diffusions tend to sections J ∞ satisfying ∇ A J ∞ = 0 for the covariant derivatives ∇ A associated to the diffusions. As the Laplace-Beltrami operator is given by the covariant derivative of connection 1-form 0, the heat diffusion of the Laplace-Beltrami operator tends to a constant function. It explains why the diffusion smoothes edges (Fig. 3(b,e)). On the other hand, it is not guaranteed that the heat diffusion of the "optimal" generalized Laplacian tends to a constant section since it is not guaranteed that the sections J ∞ satisfying ∇ A opt J ∞ = 0 are constant. This might explain why this heat diffusion preserves colors and edges better (Fig. 3 (c,f)).

The parameter δ

Dealing with the heat diffusion of the Laplace-Beltrami operator ∆ g , for g given in (64), it is well-known that the parameter κ controls the anisotropy of the diffusion. In particular, for κ = 0, we obtain the isotropic diffusion of the Euclidean Laplacian.

The heat diffusions of the generalized Laplacians contructed in this paper involve an extra parameter δ that controls the influence of the Lie group in the diffusion. Indeed, δ appears in the expression of the Casimir operator (see Sect. 4.1.3) and in the Lie group component of the metric Q (see ( 45),( 48),( 51)). From the explicit expressions of the symbols Υ k ij in the Appendix B., we have lim δ→+∞ Υ k ij = 0. Hence

lim δ→+∞ ∆ A opt = ∆ g , (67) 
which means that the diffusions tend to the heat diffusion of the Laplace-Beltrami operator when δ -→ +∞.

On Fig. 4, we compare the heat diffusions of the generalized Laplacians constructed in this paper with the heat diffusion of the Laplace-Beltrami operator, for the following values of the parameter δ : 1, 50. We compute 50 iterations of the scheme (61) with κ = 0.001 and dt = 0.1. The heat diffusion of the Laplace-Beltrami operator (Fig. 4(b)) smoothes the original image (Fig. 4 

Conclusion

In this paper, we extended our former work from a twofold modification of the Polyakov action in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF]. First, we added an extra term involving the Casimir operator. Then, we assumed that the metric on the embedded manifold is constructed an optimal horizontal field. We showed that the gradient descent flow for reaching the functions minimizing the functional correponds to the heat equation of a generalized Laplacian on an associated bundle relatively to a group representation (ρ, G). Whereas the behaviours of the diffusions in [START_REF] Batard | Polyakov Action on (ρ, G)-Equivariant Functions -Application to Color Image Regularization[END_REF] are related with the actions of the representations (ρ, G) on the color space, the metrics constructed in this paper make the groups affect the behaviours of the diffusions in a different way. In particular, for G=SO(3), the diffusion has a smoothing behaviour comparable to the Laplace-Beltrami heat diffusion, but preserving more colors and edges. We showed that the heat equation of the corresponding generalized Laplacian corresponds to the gradient descent flow for reaching the sections minimizing the L2 norm of a generalized gradient. Hence, it is a straighforward generalization of the Riemannian approach. We are currently working on the minimization of generalized gradients L1 norm for applications to image denoising.

The vector bundle is said to be locally trivial if the following conditions hold: for each x ∈ M , there is a neighborhood U of x and a diffeomorphism φ :

U × R n -→ π -1 (U ) satisfying π • φ(x, f ) = x ∀f ∈ R n ,
and such that the restriction φ x : R n -→ E x is a vector space isomorphism. The couple (U, φ) is called a local trivialization.

The vector bundle is said to be trivial if there exists a diffeomorphism Φ :

M × R n -→ E satisfying π • Φ(x, f ) =
x, and such that the restriction Φ x : R n -→ E x is a vector space isomorphism.

For shortness, (E, π, M ) is sometimes denoted by E.

Example 1 Let M be a C ∞ manifold of dimension m.

The disjoint union of tangent spaces T M := T x M for x ∈ M , is the total space of a vector bundle (T M, π, M ) of rank m called the tangent bundle of M .

Definition 5 A metric h on a vector bundle is the assigment of a scalar product h x on each fiber π -1 (x).

Example 2 A Riemannian metric on a manifold is a positive definite metric on its tangent bundle.

Definition 6 A section of a smooth vector bundle

(E, π, M ) is a differentiable map S : M -→ E such that π • S = Id M . Let (f 1 , • • • , f n ) be a basis of R n .
In a local trivialization (U, φ) of (E, π, M ), any section may be written

S(x) = n i=1 s i (x)φ(x, f i ) for some functions s i ∈ C ∞ (U ). The set {φ(•, f 1 ), • • • , φ(•, f n )} is called a local frame of (E, π, M ).
The set of sections of (E, π, M ) is denoted by Γ (E).

Example 3 Tangent vector fields on M are the sections of the tangent bundle (T M, π, M ).

Definition 7 A covariant derivative on (E, π, M ) is a map ∇ E : Γ (T M )×Γ (E) -→ Γ (E) satisfying the following axioms:

-

∇ E f X+gY S = f ∇ E X S + g∇ E Y S -∇ E X f S = (d X f )S + f ∇ E X S for f, g ∈ C ∞ (M ), X, Y ∈ Γ (T M ) and S ∈ Γ (E).
Hence, a covariant derivative on (E, π, M ) may written as d + ω for some ω ∈ Γ (T * M ⊗ End(E)).

In local frames (e

1 , • • • , e n ) of E and (X 1 , • • • , X m ) of T M , a covariant is determined by n 2 × m functions Υ k ij such that ∇ E Xi e j = n k=1 Υ k ij e k Example 4
The Levi-Cevita connection is the covariant derivative on the tangent bundle of a Riemannian manifold (M, g) determined by the m 3 functions

Γ k ij = 1 2 g kl (∂ j g li + ∂ i g lj -∂ l g ij )
with respect to the local frame (∂/∂x 1 , • • • , ∂/∂x m ) of T M given by a local coordinates system (x 1 , • • • , x m ) on M .

A.2. Differential geometry of principal bundles

Definition 8 A smooth principal bundle is a quadruplet (P, π, M, G) where M and P are two C ∞ manifolds, G is a Lie group, π : P -→ M is a surjective map such that for all x ∈ M , the preimage π -1 (x) is diffeomorphic to G and there is an action

• of G on P satisfying: -π(p • g) = π(p) for p ∈ π -1 (x) and g ∈ G.
-the restriction

• : G × π -1 (x) -→ π -1 (x) is free and transitive.
M is called the base manifold, P the total space and G the Lie group structure of the principal bundle. The set π -1 (x) is called the fiber over x, and is denoted by P x .

The principal bundle is said to be locally trivial if the following conditions hold: for each x ∈ M , there is a neighborhood U of x and a diffeomorphism φ : U × G -→ π -1 (U ) satisfying π • φ(x, g) = x, and such that the map φ x : G -→ P x is compatible with the restriction • : G×P x -→ P x , i.e. φ x (ga) = φ x (g)•a. The couple (U, φ) is called a local trivialization.

The principal bundle is said to be trivial if there exists a diffeomorphism Φ : M × G -→ P satisfying π • Φ(x, g) = x, and such that the restriction Φ x : G -→ P x is compatible with the action • : G × P x -→ P x .

For shortness, (P, π, M, G) is sometimes denoted by P .

Example 5 Let (M, g) be a Riemannian manifold of dimension m and T M its tangent bundle. The disjoint union of oriented orthonormal bases of T x M with respect to g(x), for x ∈ M , forms the total space of a principal bundle P SO(T M ) over M of structure Lie group SO(n) called the bundle of orthonormal frames of T M .

Definition 9 A section of a smooth principal bundle

(P, π, M, G) is a differentiable map S : M -→ P such that π • S = Id M .
Let (U, φ) be a local trivialization of (P, π, M, G), and s : U -→ P defined by s(x) = φ(x, e). The section s is called a local trivializing section of P and any local section S of P takes the form

S(x) = s(x) • g(x)
for some function g : U -→ G.

The function g is called the local trivialization of the section S.

The set of sections of (P, π, M, G) is denoted by Γ (P ).

Definition 10 Let (P, π, M, G) be a principal bundle. Let T p π : T p P → T π(p) M be the linear tangent map of π at p ∈ P . A tangent vector X ∈ T p P is called vertical if T p π(X) = 0. We denote by V p the set of vertical vectors at the point p. It is the vector space generated by vectors X v p of the form

X v p = d dt p • exp(tX) |t=0
, for X ∈ g.

The set V P = p∈P V p forms the total space of a vector bundle over P called the vertical bundle of P . It is a subbundle of the tangent bundle of P .

Let R g : p -→ p • g. The map T p R g : T p P -→ T p•g P maps V p on V p•g . This property is called G-equivariance.

Definition 11 Let (P, π, M, G) be a principal bundle and V P the vertical bundle bundle of P . Let x ∈ M and p ∈ P x . Let H p be a subspace of T p P such that T p P = H p ⊕ V p . A vector X h p ∈ H p is called horizontal. We extend H p on P x by setting a G-equivariance property, i.e. we put

H p•g = T p R g H p
Repeating the construction for each x ∈ M (under an assumption of smoothness of the sets H p with respect to x) turns the set HP : = p∈P H p into the total space of a vector bundle over P called a horizontal bundle of P . It is a subbundle of the tangent bundle of P .

Definition 12 Let (P, π, M, G) be a principal bundle, V P its vertical bundle and HP a horizontal bundle of P . Let x ∈ M and p ∈ P x . From the surjectivity of the projection π, the map T p π is surjective too. Moreover, as V p = Ker T p π and dim H p P = dim T x M , we deduce that the map

T p π : H p -→ T x M is an isomorphism. Given X x ∈ T x M , the unique vector X h p ∈ H p such T p π(X h p ) = X x is called horizontal lift of X x with respect to HP .
Definition 13 Let (P, π, M, G) be a principal bundle, V P its vertical bundle and HP a horizontal bundle of P . The g-valued 1-form ω defined on P by

       ω p (X p ) = 0 for X p ∈ H p P ω p (X p ) = A for X p = d dt p • exp(tA) |t=0 ∈ V p P is called a connection 1-form.
As a consequence of the G-equivariance of the vertical and horizontal bundle, the connection 1-form satisfies

ω p•g (T p R g X p ) = g -1 ω p (X p ) g
when G is a matrix Lie group.

A.3. From principal to vector bundles

A.3.1. Definitions
Definition 14 Let G be a Lie group and V a vector space. A representation ρ of G on V is a group morphism ρ : G -→ GL(V ). The representation ρ determines a group representation ρ C on the dual space V * of V called the dual representation of ρ, and defined by ρ C (g) = ρ(g -1 ) where denotes the transpose.

Definition 15 Let (P, π, M, G) be a principal bundle, ρ a representation of G on V of dimension n, and E = (P × V )/G, i.e. a point in E is of the form

[p, f ] := {(p • g, ρ(g -1 )f ) , g ∈ G} where p ∈ P and f ∈ V . Let π E : E -→ M given by π E [p, f ] = π(p).
Then, the triplet (E, π E , M ) forms a vector bundle of rank n, called vector bundle associated to P and denoted by P × (ρ,G) V .

Let (U, φ) be a local trivialization of (P, π, M, G) and s the local trivializing section of P given by s(x) = φ(x, e). Then, the map

χ s : U × V -→ π E -1 (U ) (x, f ) -→ [s(x), f ] is a local trivialization of P × (ρ,G) V . Let (f 1 , • • • , f n ) be a basis of V . Then, the set (χ s (•, f 1 ), • • • , χ s (•, f n )) determines a lo- cal frame of (E, π E , M ).
Example 6 Let (M, g) be a Riemannian manifold of dimension m, and (P SO(T M ), π, M, SO(m)) be the principal bundle of orthonormal frames of T M . The tangent bundle of M is a vector bundle associated to P SO(T M ) under the natural representation ρ of SO(m) on R m , and might be written

P SO(T M ) × (ρ,SO(m)) R m .
Definition 16 Let (P, π, M, G) be a principal bundle and ρ a representation of G on a finite dimensional vector space V . A function

J : P -→ V is called (ρ, G)- equivariant if it satisfies J(p • g) = ρ(g -1 )J(p)
We denote by C ∞ (P, V ) (ρ,G) the set of smooth (ρ, G)equivariant functions on P .

There is a correspondance between sections of associated bundles and (ρ, G)-equivariant functions on principal bundles. Indeed, given f ∈ C ∞ (P, V ) (ρ,G) , we put S f (x) = [p, f (p)] for any p ∈ π -1 (x). By the (ρ, G)equivariance property of f , the map S f is independant of the choice of p. Hence, S f is a section of

E = P × (ρ,G) V . Conversely, for S ∈ Γ (E), we puf f S (p) = v such that S • π(p) = [p, v]. We observe that f S is (ρ, G)- equivariant.

A.3.2. From horizontal bundles on principal bundles to covariant derivatives on associated bundles

Let (P, π, M, G) be a principal bundle, ρ a representation of G on a finite dimensional vector space V , and E = P × (ρ,G) V the associated bundle. Let S ∈ Γ (E) and f S the corresponding (ρ, G)-equivariant function. Let HP be a horizontal bundle of P . Let X ∈ Γ (T M ) and X h ∈ Γ (T P ) be the horizontal lift of X with respect to HP . Then, there exist a covariant derivative ∇ A on (E, π E , M ) such that the following correspondance holds d X h f S ←→ ∇ A X S Let ω be the connection 1-form induced by HP . Let s be a section of P and A be the g-valued 1-form on M given by A = s * ω where * denotes the pull-back map.

Then, relatively to the local frame of (E, π E , M ) induced by s, the covariant derivative is given by

∇ A X = d X + ρ * (A)(X)
where ρ * : g -→ End(V) is the Lie algebra representation induced by ρ.

Appendix B. Optimal connection 1-forms and corresponding covariant derivatives

Let us assume that the base manifold M is of dimension 2. Let (x 1 , x 2 ) be a coordinates system of M and (a 1 , • • • , a n ) be a coordinates system of G. By definition, a horizontal bundle HP is a subbundle of rank 2 of the tangent bundle T P of P such that T P HP ⊕g. Hence, along the section s, it is of the form

H s P = V ect {α 1 ∂/∂x 1 + β 1 ∂/∂x 2 + n k=1 γ 1k ∂/∂a k , α 2 ∂/∂x 1 + β 2 ∂/∂x 2 + n k=1 γ 2k ∂/∂a k } (68) 
for some functions

α 1 , α 2 , β 1 , β 2 , γ 11 , • • • , γ 2n on M such that α 1 β 2 -α 2 β 1 never vanish.
B.1. The case of Lie groups of dimension 1

B.1.1. Construction of optimal connection 1-forms

Computing the Euler-Lagrange equations of ( 28) with respect to the functions α k , β k , γ k for k = 1, 2, we obtain

γ k = ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 α k ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij +β k ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij .
It defines a unique horizontal field H s P along s whose expression is obtained from (68). We refer to Appendix C.1 for more details.

Let X be a tangent vector field on P along the section s of the form α ∂/∂x 1 + β ∂/∂x 2 + γ ∂/∂a for some functions α, β, γ on M . The connection 1-form ω induced by

HP is given along s by ω(X) = γ + ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 × -α ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij -β ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij ∂/∂a The 1-form A = s * ω on M is given by A(α ∂/∂x 1 + β ∂/∂x 2 )(x) = ω(α ∂/∂x 1 + β ∂/∂x 2 + 0 ∂/∂a)(x, e).
B.1.2. Corresponding covariant derivative for the unique dual representation ρ C of R + * on R 3

Writing the 1-form A as A 1 ∂/∂a, we have

ρ C * (A) = -A 1 I 3 .
Hence, the nonzero symbols of the corresponding covariant derivative ∇ A are given in the frames (∂/∂x 1 , ∂/∂x 2 ) of T M and (χ s (•, e 1 ), χ s (•, e 2 ), χ s (•, e 3 )) of P × (ρ C ,R + * ) R 3 by 

Υ k lk (x) = (ρ C * A) kk (∂/∂x l )(x) = ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 ∂ϕ i ∂x l ∂ϕ j ∂a Q ij (x,
Υ k lp (x) = (ρ C P * A) kp (∂/∂x l )(x) = -Υ p lk (x) = (-1) l+1 γ kp ∂ϕ i ∂θ ∂ϕ j ∂θ Q ij -1 ∂ϕ i ∂x l ∂ϕ j ∂θ Q ij (x, e)
for l = 1, 2 and k, p = 1, 2, 3 with k = p.

Taking a metric Q of the form I 2 ⊕ δ ⊕ κI 3 in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂θ, e 1 , e 2 , e 3 ), we obtain

∂ϕ i ∂θ ∂ϕ j ∂θ Q ij (x, e) = δ+ κ (γ 12 I 2 +γ 13 I 3 ) 2 +(γ 12 I 1 -γ 23 I 3 ) 2 +(γ 13 I 1 +γ 23 I 2 ) 2 (x)
and

∂ϕ i ∂x l ∂ϕ j ∂θ Q ij (x, e) = -κ × I 1 x l (-γ 12 I 2 -γ 13 I 3 ) + I 2 x l (γ 12 I 1 -γ 23 I 3 ) + I 3 x l (γ 13 I 1 + γ 23 I 2 ) (x)
B.2. The case of Lie groups of dimension 3

B.2.1. Construction of optimal connection 1-forms

Computing the Euler-Lagrange equations of (28) with respect to the functions α l , β l , γ lj for l = 1, 2 and j = 1, 2, 3, we obtain

γ l1 = λ α l (f d-e 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij +(ce-f b) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij +(be -dc) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β l (f d -e 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(ce -f b) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij + (be -dc) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij γ l2 = λ α l (ce-f b) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij +(af -c 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij +(bc -ae) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β l (ce -f b) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(af -c 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij + (bc -ae) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij γ l3 = λ α l (be-dc) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij +(bc-ae) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij +(ad -b 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β l (be -dc) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(bc -ae) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij + (ad -b 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij where λ = 1/(2cbe + f ad -e 2 a -f b 2 -c 2 d) and a = ∂ϕ i ∂a 1 ∂ϕ j ∂a 1 Q ij b = ∂ϕ i ∂a 1 ∂ϕ j ∂a 2 Q ij c = ∂ϕ i ∂a 1 ∂ϕ j ∂a 3 Q ij d = ∂ϕ i ∂a 2 ∂ϕ j ∂a 2 Q ij e = ∂ϕ i ∂a 2 ∂ϕ j ∂a 3 Q ij f = ∂ϕ i ∂a 3 ∂ϕ j ∂a 3 Q ij
It defines a unique horizontal field H s P along s whose expression is obtained from (68). We refer to Appendix C.2 for more details.

Let X be a tangent vector field on P along the section s of the form α ∂/∂x 1 + β ∂/∂x 2 + 3 k=1 γ k ∂/∂a k for some functions α, β, γ k on M . The connection 1-form ω induced by HP is given along s by ω(X) =

γ 1 -λ (f d -e 2 ) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(ce-f b) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij +(be-dc)× α ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij ∂/∂a 1 + γ 2 -λ (ce -f b) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(af -c 2 ) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij +(bc-ae)× α ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij ∂/∂a 2 + γ 3 -λ (be -dc) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij +(bc-ae) α ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij +(ad-b 2 )× α ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij + β ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij ∂/∂a 3
The 1-form A = s * ω on M is given by A(α ∂/∂x 

(A) = -diag(A 1 , A 2 , A 3 ).
Hence, the nonzero symbols of the corresponding covariant derivative ∇ A are given in the frames (∂/∂x 1 , ∂/∂x 2 ) of T M and (χ s (•, e 1 ), χ s (•, e 2 ), χ s (•, e 3 )) of P × (ρ C ,DC(3)) R 3 by

Υ 1 l1 (x) = (ρ * A) 11 (∂/∂x l )(x) = λ d f ∂ϕ i ∂x l ∂ϕ j ∂a 1 Q ij (x, e) Υ 2 l2 (x) = (ρ * A) 22 (∂/∂x l )(x) = λ a f ∂ϕ i ∂x l ∂ϕ j ∂a 2 Q ij (x, e) Υ 3 l3 (x) = (ρ * A) 33 (∂/∂x l )(x) = λ a d ∂ϕ i ∂x l ∂ϕ j ∂a 3 Q ij (x, e) for l = 1, 2.
Taking a metric Q of the form I 2 ⊕ δ I 3 ⊕ κ I 3 in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂a 1 , ∂/∂a 2 , ∂/∂a 3 , e 1 , e 2 , e 3 ), we obtain Writing the 1-form A as

∂ϕ i ∂x l ∂ϕ j ∂a k Q ij (x, e) = -κ I k x l I k (x) for k = 1, 2,
A 1 ∂/∂θ 1 +A 2 ∂/∂θ 2 +A 3 ∂/∂θ 3 , we have ρ C * (A) =       0 -A 3 -A 2 A 3 0 -A 1 A 2 A 1 0      
Hence the nonzero symbols of the corresponding covariant derivative ∇ A are given in the frames (∂/∂x 1 , ∂/∂x 2 ) of T M and (χ s (•, e 1 ), χ s (•, e 2 ), χ s (•, e 3 )) of P × (ρ C ,SO(3)) R 3 by

Υ 1 l2 (x) = (ρ C * A) 12 (∂/∂x l )(x) = -Υ 2 l1 (x) = λ (be -dc) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (bc -ae) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(ad -b 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) Υ 1 l3 (x) = (ρ C * A) 13 (∂/∂x l )(x) = -Υ 3 l1 (x) = λ (ce -f b) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (af -c 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(bc -ae) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) Υ 2 l3 (x) = (ρ C * A) 23 (∂/∂x l )(x) = -Υ 3 l2 (x) = λ (f d -e 2 ) ∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij + (ce -f b) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij +(be -dc) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) for l = 1, 2.
Taking a metric Q of the form

I 2 ⊕       δ 0 δ sin θ 2 0 δ 0 δ sin θ 2 0 δ       ⊕ κ I 3
in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂θ 1 , ∂/∂θ 2 , ∂/∂θ 3 , e 1 , e 2 , e 3 ), we obtain 

∂ϕ i ∂x l ∂ϕ j ∂θ 1 Q ij (x, e) = -κ(I 2 x l I 3 -I 3 x l I 2 )(x) ∂ϕ i ∂x l ∂ϕ j ∂θ 2 Q ij (x, e) = -κ(I 1 x l I 3 -I 3 x l I 1 )(x) ∂ϕ i ∂x l ∂ϕ j ∂θ 3 Q ij (x, e) = -κ(I 1 x l I 2 -I 2 x l I 1 )(x) and a(x, e) = δ + κ(I 2 2 + I 3 2 )(x) b(x, e) = κ I 1 I 2 (x) c(x, e) = -κ I 1 I 3 (x) d(x, e) = δ + κ(I 1 2 + I 3 2 )(x) e(x, e) = κ I 2 I 3 (x) f (x, e) = δ + κ(I 1 2 + I 2 2 )(x)
= 0 ⇐⇒ (β 2 γ 1 -β 1 γ 2 ) (α 1 β 2 -α 2 β 1 )(g 12 α 2 -g 22 β 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 2 -g 11 α 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 2 -g 12 β 2 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 2 -g 12 α 2 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 * ∂S |s ∂α 2 = 0 ⇐⇒ (β 2 γ 1 -β 1 γ 2 ) (α 1 β 2 -α 2 β 1 )(g 12 α 1 -g 22 β 1 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 1 -g 11 α 1 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 1 -g 12 β 1 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 1 -g 12 α 1 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 * ∂S |s ∂β 1 = 0 ⇐⇒ (α 2 γ 1 -α 1 γ 2 ) (α 1 β 2 -α 2 β 1 )(g 12 α 2 -g 22 β 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 2 -g 11 α 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 2 -g 12 β 2 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 2 -g 12 α 2 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 * ∂S |s ∂β 2 = 0 ⇐⇒ (α 2 γ 1 -α 1 γ 2 ) (α 1 β 2 -α 2 β 1 )(g 12 α 1 -g 22 β 1 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 1 -g 11 α 1 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 1 -g 12 β 1 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 1 -g 12 α 1 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 * ∂S |s ∂γ 1 = 0 ⇐⇒ (α 1 β 2 -α 2 β 1 )(g 12 α 1 -g 22 β 1 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 1 -g 11 α 1 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 1 -g 12 β 1 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 1 -g 12 α 1 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 * ∂S |s ∂γ 2 = 0 ⇐⇒ (α 1 β 2 -α 2 β 1 )(g 12 α 1 -g 22 β 1 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 1 -g 11 α 1 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 1 -g 12 β 1 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 1 -g 12 α 1 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0
Finally, the Euler-Lagrange equations reduce to the equations ∂S |s ∂γ 1 = 0 and ∂S |s ∂γ 2 = 0, i.e. to the following system

                                     (α 1 β 2 -α 2 β 1 )(g 12 α 1 -g 22 β 1 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 1 -g 11 α 1 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 1 -g 12 β 1 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 1 -g 12 α 1 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0 (α 1 β 2 -α 2 β 1 )(g 12 α 2 -g 22 β 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij + (α 1 β 2 -α 2 β 1 )(g 12 β 2 -g 11 α 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij + (α 1 γ 2 -α 2 γ 1 )(g 11 α 2 -g 12 β 2 ) + (β 1 γ 2 -β 2 γ 1 )(g 22 β 2 -g 12 α 2 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij = 0
We obtain a linear system with respect to γ 1 and γ 2 of the form

D   γ 1 γ 2   = (α 1 β 2 -α 2 β 1 ) ×       (α 2 g 12 +β 2 g 22 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij -(β 2 g 12 +α 2 g 11 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij (α 1 g 11 +β 1 g 12 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij -(β 1 g 22 +α 1 g 12 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij       (69) 
where the coefficients of the matrix D are

D 11 = α 2 (α 2 g 11 + β 2 g 12 ) + β 2 (β 2 g 22 + α 2 g 12 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij D 12 = -α 1 (β 2 g 12 + α 2 g 11 ) + β 1 (α 2 g 12 + β 2 g 22 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij D 21 = -α 1 (β 2 g 12 + α 2 g 11 ) + β 1 (α 2 g 12 + β 2 g 22 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij D 22 = α 1 (α 1 g 11 + β 1 g 12 ) + β 1 (β 1 g 22 + α 1 g 12 ) ∂ϕ i ∂a ∂ϕ j ∂a Q ij
The solution of the system (69) is

γ 1 = ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 α 1 ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij +β 1 ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij γ 2 = ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 α 2 ∂ϕ i ∂x 1 ∂ϕ j ∂a Q ij +β 2 ∂ϕ i ∂x 2 ∂ϕ j ∂a Q ij Conclusion: H s P = V ect α 1 ∂/∂x 1 + β 1 ∂/∂x 2 + ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 -α 1 ∂ϕ i ∂x 1 ∂ϕ j ∂a + β 1 ∂ϕ i ∂x 2 ∂ϕ j ∂a ∂/∂a, α 2 ∂/∂x 1 + β 2 ∂/∂x 2 + ∂ϕ i ∂a ∂ϕ j ∂a Q ij -1 -α 2 ∂ϕ i ∂x 1 ∂ϕ j ∂a + β 2 ∂ϕ i ∂x 2 ∂ϕ j ∂a ∂/∂a C.2

. The case of Lie groups of dimension 3

As for the case of Lie groups of dimension 1, the Euler Lagrange equations of the functional (28) with respect to  The solution of the system (70) is 

    (α 2 g 12 +β 2 g 22 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij -(β 2 g 12 +α 2 g 11 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij (α 2 g 12 +β 2 g 22 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij -(β 2 g 12 +α 2 g 11 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij (α 2 g 12 +β 2 g 22 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij -(β 2 g 12 +α 2 g 11 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij (α 1 g 11 +β 1 g 12 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij -(β 1 g 22 +α 1 g 12 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij (α 1 g 11 +β 1 g 12 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij -(β 1 g 22 +α 1 g 12 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij (α 1 g 11 +β 1 g 12 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij -(β 1 g 22 +α 1 g 12 ) ∂ϕ i ∂x 1 a = ∂ϕ i ∂a 1 ∂ϕ j ∂a 1 Q ij b = ∂ϕ i ∂a 1 ∂ϕ j ∂a 2 Q ij c = ∂ϕ i ∂a 1 ∂ϕ j ∂a 3 Q ij d = ∂ϕ i ∂a 2 ∂ϕ j ∂a 2 Q ij e = ∂ϕ i ∂a 2 ∂ϕ j ∂a 3 Q ij f = ∂ϕ i ∂a 3 ∂ϕ j ∂a 3 Q ij E = α 1 (g 11 α 1 + g 12 β 1 ) + β 1 (g 22 β 1 + g 12 α 1 ) F = -[α 1 (
γ 11 = 1 2cbe + f ad -e 2 a -f b 2 -c 2 d α 1 (f d -e 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij + (ce -f b) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij + (be -dc) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij +β 1 (f d -e 2 ) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij + (ce -f b) ∂ϕ i ∂x 2 ∂ϕ j ∂a 2 Q ij + (be -dc) ∂ϕ i ∂x 2 ∂ϕ j ∂a 3 Q ij γ 12 = 1 2cbe + f ad -e 2 a -f b 2 -c 2 d α 1 (ce -f b) ∂ϕ i ∂x 1 ∂ϕ j ∂a 1 Q ij + (af -c 2 ) ∂ϕ i ∂x 1 ∂ϕ j ∂a 2 Q ij + (bc -ae) ∂ϕ i ∂x 1 ∂ϕ j ∂a 3 Q ij +β 1 (ce -f b) ∂ϕ i ∂x 2 ∂ϕ j ∂a 1 Q ij + (

2. 2 . 4

 24 Dual representation of DC(3) The group DC(3) is the set of 3×3 diagonal matrices of strictly positive coefficients. We denote by diag(b 1 , b 2 , b 3 ) the element of DC(3) of coefficients b 1 , b 2 , b 3 . Let v ∈ R 3 * . The dual representation of DC(3) on R 3 * is the map

) for l = 1 , 2 Proposition 4

 124 and k, p = 1, 2, 3 with k = p. Dual representation of DC(3) on R 3 * The field of horizontal spaces H s P opt of (P, π, M, DC(3)) minimizing (21) is unique. Moreover, the nonzero symbols of the corresponding covariant derivative ∇ A opt in the associated bundle P × (ρ C ,DC(3)) R 3 * are given, relatively to the frame (∂/∂x 1 , ∂/∂x 2 ) of T M and the frame of P × (ρ C ,DC(3)) R 3 * induced by s, by

  1(d)) and G =DC(3) (see Fig. 1(f)) because the corresponding Casimir operators are of the form k Id for k > 0 (see expressions (56) and (57)), and the constrast increases for G=SO(3) (see Fig. 1(h)) because the corresponding Casimir operator is of the form k Id for k < 0 (see expression (58)).

  (a)) by preserving the strong edges. Taking δ = 1, the heat diffusion only preserves the strong edges for G = SO(3) (see Fig.4(e)), whereas more edges are preserved for G = R + * (see Fig.4(c)) and G =DC(3) (see Fig.4(d)). As expected, the diffusions are getting close to the Beltrami diffusion taking δ = 50. However, the speed of the convergence varies with the Lie group involved. Indeed, the smoothing is stronger for G =DC(3) (see Fig.4(g)) than for G = R + * (Fig.4(f)). For G=SO(3), the diffusion (Fig.4(h)) is close to the Beltrami diffusion (Fig.4(b)).

3 k=1I k 2 B. 1 . 3 . 3 Let P be a 2 -γ 12 e 1 e 2 + γ 13 e 1 e 3 + γ 23 e 2 e 3 for γ 2 12 + γ 2 13 +γ 2 23 = 1 .

 32133223231 e) for l = 1, 2 and k = 1, 2, 3.Taking a metric Q of the form I 2 ⊕ δ ⊕ κI 3 in the frame (∂/∂x 1 , ∂/∂x 2 , ∂/∂a, e 1 , e 2 , e 3 ), we obtain∂ϕ i ∂a ∂ϕ j ∂a Q ij (x, e) = δ + κ (x)and∂ϕ i ∂x l ∂ϕ j ∂a Q ij (x, e) = -κ 3 k=1 I k x l I k (x)Corresponding covariant derivative for a class of unitary dual representations ρ C of SO(2) on R dimensional subspace of R 3 , and the corresponding bivector Writing the 1-form A as A 1 ∂/∂θ, we haveρ C P * (A) = A 1Hence, the nonzero symbols of the corresponding covariant derivative ∇ A are given in the frames (∂/∂x 1 , ∂/∂x 2 ) of T M and (χ s (•, e 1 ), χ s (•, e 2 ), χ s (•, e 3 )) of P × (ρ C ,SO(2)) R 3 by

B. 2 . 3 .

 23 3, and a(x, e) = δ + κ I 1 2 (x) d(x, e) = δ + κ I 2 2 (x) f (x, e) = δ + κ I 3 2 (x) Corresponding covariant derivative for the unique dual representation ρ C of SO(3) on R 3

( a )Fig. 1

 a1 Fig. 1 Gradient descent flows for reaching the functions minimizing the Polyakov action (16) and twisted Polyakov action (21), for induced metrics and different groups G. Comparison with the heat diffusion of the Laplace-Beltrami operator (LBO).

Fig. 2

 2 Fig.2Comparison between the heat diffusions of generalized Laplacians ∆ A opt for different Lie groups G.

( a )Fig. 3

 a3 Fig. 3 Heat diffusions of generalized Laplacians. Comparison between the operator ∆ A opt for G=SO(3) and the Laplace-Beltrami operator ∆g.

Fig. 4

 4 Fig. 4 Heat diffusions of the generalized Laplacians ∆ A opt for different Lie groups G and values of the parameter δ. Comparison with the heat diffusion of the Laplace-Beltrami operator ∆g satisfying ∆g = lim δ→+∞ ∆ A opt .

  , • • • , g n ) of the Lie algebra g of G, where ρ * : g -→ End(V) is the Lie algebra representation induced by ρ.

	We assume that P is equipped with a Riemannian met-
	ric h induced by a Riemannian metric g on M , a bi-
	invariant Riemannian metric B on G, and a horizontal
	bundle HP (see the construction in Sect. 3.1.1). More-
	over, we assume that P ×V is equipped with a Rieman-
	nian metric Q of the form H ⊕ κ I d , for a Riemannian
	metric H on P and strictly positive constant κ, where
	I d denotes the d × d Identity matrix.

  1 + β ∂/∂x 2 )(x) = ω(α ∂/∂x 1 +β ∂/∂x 2 +0 ∂/∂a 1 +0 ∂/∂a 2 +0 ∂/∂a 3 )(x, e)B.2.2. Corresponding covariant derivative for the unique dual representation ρ C of DC(3) on R 3Writing the 1-form A as A 1 ∂/∂a 1 +A 2 ∂/∂a 2 +A 3 ∂/∂a 3 , we have ρ C *

  Appendix C. Solutions of Euler-Lagrange EquationsC.1. The case of Lie groups of dimension 1The Euler-Lagrange equations of the functional[START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF] with respect to H s P are * ∂S |s ∂α 1

  g 12 β 2 + g 11 α 2 ) + β 1 (g 12 α 2 + g 22 β 2 )] G = α 2 (g 11 α 2 + g 12 β 2 ) + β 2 (g 22 β 2 + g 12 α 2 )

  af -c 2 ) f ad -e 2 a -f b 2 -c 2 d α 2 (f d -e 2 ) ∂ϕ i ∂x 1 f ad -e 2 a -f b 2 -c 2 d α 2 (ce -f b) ∂ϕ i ∂x 1 V ect α 1 ∂/∂x 1 + β 1 ∂/∂x 2 + 1 2cbe + f ad -e 2 a -f b 2 -c 2 d α 1 (f d -e 2 ) ∂ϕ i ∂x 1 ∂/∂x 1 + β 2 ∂/∂x 2 -1 2cbe + f ad -e 2 a -f b 2 -c 2 d α 2 (f d -e 2 )

				+β 2 (f d -e 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij
	γ 22 =	1 2cbe + ∂ϕ j ∂a 1	Q ij + (af -c 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
				+β 2 (ce -f b)	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (af -c 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij
	γ 23 =	1 2cbe + f ad -e 2 a -f b 2 -c 2 d	α 2 (be -dc)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
				+β 2 (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij
	Conclusion: H s P =										
															∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij
	+(be -dc)	∂ϕ i ∂x 1	∂ϕ i ∂a 3	Q ij + β 1 (f d -e 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij	∂/∂a 1
				+ α 1 (ce -f b)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (af -c 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
			+β 1 (ce -f b)	∂ϕ i ∂x 2		∂ϕ j ∂a 1		Q ij + (af -c 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij	∂/∂a 2
				+ α 1 (be -dc)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
			+β 1 (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij	∂/∂a 3 ,
	α 2 ∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij
	+(be -dc)	∂ϕ i ∂x 1	∂ϕ i ∂a 3	Q ij -β 2 (f d -e 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij	∂/∂a 1
				+ α 2 (ce -f b)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (af -c 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
			+β 2 (ce -f b)	∂ϕ i ∂x 2		∂ϕ j ∂a 1		Q ij + (af -c 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij	∂/∂a 2
				+ α 2 (be -dc)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
			+β 2 (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ i ∂x 2 ∂ϕ j ∂a 2	∂ϕ j ∂a 2 Q ij + (ad -b 2 ) Q ij + (bc -ae) ∂ϕ i ∂x 2	∂ϕ i ∂x 2 ∂ϕ j ∂a 3	∂ϕ j ∂a 3 Q ij	Q ij ∂/∂a 3
	γ 13 =	1 2cbe + f ad -e 2 a -f b 2 -c 2 d	α 1 (be -dc)	∂ϕ i ∂x 1	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
				+β 1 (be -dc)	∂ϕ i ∂x 2	∂ϕ j ∂a 1	Q ij + (bc -ae)	∂ϕ i ∂x 2	∂ϕ j ∂a 2	Q ij + (ad -b 2 )	∂ϕ i ∂x 2	∂ϕ j ∂a 3	Q ij
	γ 21 =	1 2cbe + ∂ϕ j ∂a 1	Q ij + (ce -f b)	∂ϕ i ∂x 1	∂ϕ j ∂a 2	Q ij + (be -dc)	∂ϕ i ∂x 1	∂ϕ j ∂a 3	Q ij
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Appendix A. Differential Geometry of Associated Bundles

A.1. Differential geometry of vector bundles Definition 4 A smooth vector bundle of rank n is a triplet (E, π, M ) where M and E are two C ∞ manifolds, and π : E -→ M is a surjective map such that the preimage π -1 (x) of x ∈ M is endowed with a structure of vector space of dimension n. M is called the base manifold and E the total space of the vector bundle. The set π -1 (x) is called the fiber over x, and is denoted by E x .