
HAL Id: hal-00683953
https://hal.science/hal-00683953v2

Preprint submitted on 23 Nov 2012 (v2), last revised 6 Feb 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Class of generalized Laplacians on vector bundles
devoted to multi-channels image processing

Thomas Batard, Nir Sochen

To cite this version:
Thomas Batard, Nir Sochen. A Class of generalized Laplacians on vector bundles devoted to multi-
channels image processing. 2012. �hal-00683953v2�

https://hal.science/hal-00683953v2
https://hal.archives-ouvertes.fr


Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

A Class of Generalized Laplacians on Vector Bundles
Devoted to Multi-Channels Image Processing

Thomas Batard and Nir Sochen

Received: date / Accepted: date

Abstract In the context of fibre bundles theory, there
exist some differential operators of order 2, called gen-
eralized Laplacians, acting on sections of vector bun-
dles over Riemannian manifolds, and generalizing the
Laplace-Beltrami operator. Such operators are deter-
mined by the choice of a covariant derivative on the
vector bundle. In this paper, we construct a class of
generalized Laplacians, devoted to multi-channels im-
age processing, from the construction of optimal co-
variant derivatives. The key idea is to consider an im-
age as a section of an associate bundle, that is a vector
bundle related to a principal bundle through a group
representation. In this context, covariant derivatives are
determined by connection 1-forms on principal bundles.
We construct optimal connection 1-forms by the mini-
mization of a variational problem on principal bundles.
From the heat equations of the generalized Laplacians
induced by the corresponding optimal covariant deriva-
tives, we obtain diffusions whose behaviours depend of
the choice of the group representation. We provide ex-
periments on color images.
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1 Introduction

Laplacians are widely used for image processing/analysis
and computer vision. For instance, linear space-scale
theory [18] is related to the heat equation of the Eu-
clidean Laplacian. It is a fact that the isotropic be-
haviour of the linear scale-space is not well-adapted in
many problems like denoising or contrast enhancement.
Since then, many techniques of anisotropic diffusion
of images have been employed (see e.g. [1],[8],[23],[31]
and references therein). Some of them are based on the
Laplace-Beltrami operator, a generalization of the Eu-
clidean Laplacian on Riemannian manifold (see e.g. [21]
for details about this operator).
In [24], the authors introduced the Beltrami frame-
work, an efficient tool for anisotropic regularization of
fields. Mathematically speaking, it is related to the heat
equation of the Laplace-Beltrami operator. The Bel-
trami framework has been applied on different kinds of
fields: vector-valued fields (see e.g. [24],[25] for multi-
channels image regularization), group-valued fields (see
[14] for SO(n)-valued field regularization), symmetric
space-valued fields (see [15] for regularization of fields
of symmetric definite positive matrices). It has also
been applied as preprocessing for motion segmentation
[22] or regularizing term for optical flow estimation [5].
There exist other uses of the Laplace-Beltrami opera-
tor. For instance, approximations of its spectrum have
found recently applications in the context of shape anal-
ysis (see e.g. [7],[19],[20],[29]).
In this paper, we are interested in a generalization of
the Euclidean Laplacian and Laplace-Beltrami opera-
tors on fiber bundles. Fiber bundles theory provides a
geometric framework generalizing the notion of mani-
fold (see [16] for an introduction to fiber bundle theory).
In this context, there exist a class of differential oper-
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ators of order 2 called generalized Laplacians, and act-
ing on sections of vector bundles. They are determined
by two geometric data: a Riemannian metric on the
base manifold and a covariant derivative on the vector
bundle. The Euclidean Laplacian and Laplace-Beltrami
operators appear to be a generalized Laplacians on vec-
tor bundles of rank 1 equipped with the trivial connec-
tion. We refer to [6] for more details about general-
ized Laplacians. Applications of generalized Laplacians
for vector-valued field regularization were introduced in
[2],[3]. In [3], it is showed that some standard methods
of color image regularization, i.e. the Beltrami flow in
[25], trace-based PDEs [27], curvature-preserving PDEs
[28], and divergence-based PDEs (see [31] and the ref-
erences therein) may be viewed as heat equations of
generalized Laplacians. In the second part of the pa-
per, some covariant derivatives that take into account
the geometry of the color space RGB were constructed.
By the heat equations of the corresponding generalized
Laplacians, new diffusions of color images were per-
formed.

The aim of this paper is to construct covariant deriva-
tives that take into account not only the geometry of
the color space but also the local variations of images. In
the context of associated bundles, that are vector bun-
dles associated to principal bundles through a group
representation (ρ,G) ( see e.g. [30] for an introduction
to groups representations theory), a covariant deriva-
tive on the vector bundle is determined by a connection
1-form on the principal bundle. The notions of covari-
ant derivative and connection 1-form are at the heart
of differential geometry of manifolds and fibre bundles
[17],[26]. Whereas they play a fundamental role in the
mathematical description of physics, as in general rel-
ativity and Gauge fields theories [13], they have been
few investigated in the field of image processing. Besides
[2],[3], we may refer to the works of Duits et al. where
connections on principal bundles were constructed, with
applications to crossing-preserving smoothing [12] and
contour enhancement [10],[11].

In [4], we introduced the concept of (ρ,G)-equivariance
on principal bundles in the context of image process-
ing. We constructed a Polyakov action measuring the
energy of the graph of functions on principal bundles.
We showed that the function whose graph minimizes
the functional satisfies a Laplace equation relatively to
the Riemannian metric of the principal bundle. How-
ever, by the Riemannian metric we constructed on the
principal bundle, the Beltrami flow did not preserve the
(ρ,G)-equivariance property of the initial condition.
In this paper, we follow the approach of [4] and define

an image as a section of an associate bundle or equiv-
alently as a (ρ,G)-equivariant function on a principal
bundle. We consider the dual representations of R+∗,
the group DC(3) of 3 × 3 diagonal matrices of strictly
positive coefficients, SO(2) and SO(3) on R3 dealing
with color images. In this context, we construct covari-
ant derivatives on associated bundles from connection
1-forms on principal bundles. The main idea is to con-
truct a Riemannian metric on a principal bundle from a
connection 1-form and a Riemannian metric on the base
manifold. Then, we consider a Polyakov action measur-
ing the energy of the graph of functions on the princi-
pal bundle, with an extra term given by the action of a
zero order operator called Casimir operator. Minimiz-
ing the functional along a section with respect to the
metric of the principal bundle under the assumption
that the metric of the base manifold is fixed provides
a optimal connection 1-form. By the minimization of
the functional with respect to the embedding, we ob-
tain a flow that preserves the equivariance property of
the initial condition. Under the identification between
(ρ,G)-equivariant functions on principal bundles and
sections of associated bundles, we obtain the heat flow
of the generalized Laplacian induced by the optimal
connection 1-form constructed. Experiments show that
the flow preserves more some edges than the heat flow
of the Laplace-Beltrami operator, the type of edges de-
pending of the Lie group involved.

This paper is organized as follows. In Sect. 2, we first
show how to obtain a section of an associated bun-
dle from an image. Then, we give an interpretation
of the different groups representations used through-
out this paper. Sect. 3 is devoted to the construction
of the twisted Polyakov action and the minimization
problem with respect to the embedding, that leads to
a heat equation of generalized Laplacian. In Sect. 4, we
construct optimal connection 1-forms by restricting the
twisted Polyakov action along a section and minimizing
the functional with respect to the metric of the principal
bundle. We give the expressions of the corresponding
covariant derivatives on the associated vector bundles
for the group representations mentioned above. Sect. 5
is devoted to applications to image processing. We first
construct Riemannian metrics on the base manifold and
on the embedding spaces for the twisted Polyakov ac-
tion, from which we obtain explicit expressions of the
covariant derivatives. Then, we provide experiments on
color images. In Appendix A, we give the definitions of
the geometric concepts used throughout the paper. In
Appendices B and C, we give some details of computa-
tions related to the construction of optimal connection
1-forms and the corresponding covariant derivatives.
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2 Images as sections of associated bundles

We refer to the Appendix A for the definitions of prin-
cipal/associated bundles, and groups representations.

2.1 Construction of the geometric framework

Let I = (I1, · · · , In) : Ω ⊂ R2 −→ Rn be a n-channels
image. Let (e1, · · · , en) be a basis of the vector space
Rn. We write

I(x1, x2) = I1(x1, x2)e1 + · · ·+ In(x1, x2)en (1)

Let (ρ,G) be a Lie group representation on Rn, and e

be the neutral element of G. Under its action on Rn, the
group G acts on the basis (e1, · · · , en). Let P be the set
of bases obtained by the transformations of (e1, · · · , en)
under the action of the group G, denoted by ·. The
action of G on P is transitive and free. Denoting by π
the projection of Ω × P on Ω such that

π(x1, x2, g · (e1, · · · , en)) = (x1, x2),

the quadruplet P = (Ω × P, π,Ω,G) is a trivial prin-
cipal bundle, where the global diffeomorphism Φ : Ω ×
G −→ Ω × P is given by

Φ(x1, x2, g) = (x1, x2, g · (e1, · · · , en))

From the function I, we construct a (ρ,G)-equivariant
function J on P defined by

J(x1, x2, g · (e1, · · · , en)) = ρ(g)I(x1, x2) (2)

In particular, we have

J(x1, x2, (e1, · · · , en)) = I(x1, x2) (3)

since ρ(e) = Id by property of a group representation.

We construct the associated bundle E = P ×(ρ,G) Rn.
Under the correspondance between (ρ,G)-equivariant
functions on P and sections of E, J is a section of E of
the form J(x1, x2) = [(x1, x2, (e1, · · · , en)), I(x1, x2)],
and I the realization of J under the trivializing section
s(x1, x2) = (x1, x2, (e1, · · · , en)) = Φ(x1, x2, e) of P .

2.2 Some Lie groups representations on the color space
RGB and their interpretations

2.2.1 RGB and HSL color spaces

Besides the RGB (Red,Green,Blue) color space we con-
sider a HSL (Hue,Saturation,Luminance) color space
defined as follows. We set first Y

C1

C2

 =

 1/3 1/3 1/3
1 −1/2 −1/2
0 −

√
3/2
√

3/2

 r

g

b



Then the luminance l, the saturation s and the hue h
are respectively given by

l = Y

s =
√
C2

1 + C2
2

h =
{

arccos(C2/s) if C2 > 0
2π − arccos(C2/s) otherwise

Embedding RGB into the quadratic space (R3, ‖ ‖2)
of basis (e1, e2, e3), we can decompose any color α =
α1e1 + α2e2 + α3e3 with respect to its projection L(α)
and its rejection V (α) along the axis (e1 + e2 + e3).
The axis (e1 +e2 +e3) is called the luminance axis, it
encodes the luminance information of a color. Indeed,
the luminance of α corresponds to the norm of its pro-
jection on the luminance axis. The orthogonal of the
luminance axis in (R3, ‖ ‖2) is called the chrominance
plane, and encodes the saturation and hue informa-
tion. It is generated by the vectors (2e1 − e2 − e3) and
(−e2 + e3). The saturation corresponds to the norm of
its projection on the chrominance plane (up to multi-
plication by the scalar 3/2), and the hue corresponds
to the angle it forms with the projection of the vector
e1 on this plane.

2.2.2 Dual representation of R+∗

Let v ∈ R3. The dual representation of R+∗ on R3 is
the map

R+∗ −→ GL(R3)
ρC : b 7−→ v 7−→ 1/b v

(4)

Simple computations lead to

l(ρC(b)α) = ρC(b) l(α) (5)

s(ρC(b)α) = ρC(b) s(α) (6)

h(ρC(b)α) = h(α) (7)

2.2.3 Dual representations of SO(2)

Let v ∈ R3. The dual representations of SO(2) on R3

are the maps

SO(2) −→ GL(R3)
ρC
P

: θ 7−→ rotation of angle − θ in the plane P
(8)

where P is a 2-dimensional subspace of R3.

For P being the chrominance plane Chr, we have

l(ρC
Chr

(θ)α) = l(α) s(ρC
Chr

(θ)α) = s(α)

h(ρC
Chr

(θ)α) = h(α)− θ
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2.2.4 Dual representation of DC(3)

The group DC(3) is the set of 3×3 diagonal matrices of
strictly positive coefficients. We denote by diag(b1, b2, b3)
the element of DC(3) of coefficients b1, b2, b3.

Let v ∈ R3. The dual representation of DC(3) on R3

is the map

DC(3) −→ GL(R3)
ρC : diag(b1, b2, b3) 7−→ v 7−→ diag(1/b1, 1/b2, 1/b3) v

(9)

The representation (ρC , DC(3)) on the color spaceRGB
does not have interpretation in terms of the hue, satu-
ration and luminance components.

2.2.5 Dual representations of SO(3)

Let v ∈ R3 and Rθ1,θ2,θ3 be the matrix of the rota-
tion associated to the Euler angles θ1, θ2, θ3. The dual
representation of SO(3) on R3 is the map

SO(3) −→ GL(R3)
ρC : R θ1,θ2,θ3 7−→ v 7−→ R θ1,θ2,θ3

T v
(10)

where T denotes the transpose.

The representation (ρC , SO(3)) on the color space RGB
does not have interpretation in terms of the hue, satu-
ration and luminance components neither.

2.3 Interpretation of the notion of (ρ,G)-equivariance

By the (ρ,G)-equivariant function J we construct, we
take into account that some modifications of the light
source induce transformations of the pixels. Indeed, we
can interpret the fomula (3) as the assignement of the
basis (e1, · · · , en) to the light source of the original im-
age I. Then, we assimilate a basis change given by the
action g 7−→ g · (e1, · · · , en) to a modification of the
light source. By (2), the representation ρ tells how the
pixels of the image change under this basis change, and
consequently under the corresponding modification of
the light source. Note that the use of the fiber bundle
context allows the transformation of the light source to
change with respect to the points of Ω.

Taking ρ as the dual representation of a Lie group G

on Rn makes the (ρ,G)-equivariance encode that pix-
els transform in the same way as the basis does un-
der the action of G. From a mathematical viewpoint, it
means that pixels are treated as covectors. It is coherent
with the interpretation above where we identified bases

changes with modifications of the light source since pix-
els clearly transform in the same way as the light source
does.

The action of R+∗ on the basis (e1, e2, e3) for color
images might be interpreted as a homogeneous mod-
ification of the intensity of the light source, whereas
the action of DC(3) on the basis (e1, e2, e3) might be
interpreted as an inhomogeneous modification of the
light source in the red, green and blue components.
The actions of the groups SO(3) and SO(2) on the ba-
sis (e1, e2, e3) are more difficult to interpret in terms of
modification of the light source.

3 A variational problem related to heat
equations of generalized Laplacians

We refer to the Appendix A. for the definitions of the
concepts related to the differential geometry of fiber
bundles.

3.1 Riemannian metric on principal bundle induced by
a horizontal bundle

Let (P, π,M,G) be a principal bundle, where the base
manifold M is of dimension m and the Lie group of
structure G is of dimension n. Let g and B be respec-
tively a Riemannian metric on M and a bi-invariant
Riemannian metric on G. Let HP be a horizontal bun-
dle of P and V P be the vertical bundle of P .

We construct a Riemannian metric h on P from g,B
and HP as follows.

Let (e1, · · · , em) be an orthonormal frame of TM , the
tangent bundle ofM , with respect to g. Let (eh1 , · · · , ehm)
be the horizontal lift of (e1, · · · , em) on TP , the tangent
bundle of P , with respect to HP . Let (X1, · · · , Xn)
be an orthonormal basis of TeG = g with respect to
B. Let (Xv

1 , · · · , Xv
n) be the frame of V P , defined for

i = 1, · · · , n by

Xv
i (p) =

(
d

dt
p · exp(tXi)

)
|t=0

where · denotes the action of G on the fibers of P . Then,
considering the metric h on P given by the Identity
matrix field in the frame (eh1 , · · · , ehm, Xv

1 , · · · , Xv
n) of

TP turns (P, h) into a Riemannian manifold.

Remark 1 The construction makes the bundlesHP and
V P be orthogonal with respect to h.
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Remark 2 By the G-equivariance property of the bun-
dlesHP and V P , the metric h is completely determined
by its values along a section of P .

3.2 A twisted Polyakov action on principal bundles

Let (P, π,M,G) be a principal bundle, ρ a representa-
tion of G on a vector space V of dimension d equipped
with the standard scalar product ( , ). Let J : P −→ V

and ϕ its graph. Let h be a Riemannian metric on P

induced by a Riemannian metric g on M and a hori-
zontal bundle HP (see the construction in Sect. 3.1).
Let Q be a Riemannian metric on P × V of the form
H⊕ κ Id, for a Riemannian metric H on P and strictly
positive contant κ, where Id denotes the d× d Identity
matrix.

Let Cas ∈ End(V ) be the Casimir operator defined
by

Cas =
∑

ρ∗(gi) 2

for any orthonormal basis (g1, · · · , gn) of the Lie alge-
bra g of G, where ρ∗ : g −→ End(V) is the Lie algebra
representation induced by ρ.

Let S be the Polyakov functional of the embedding
ϕ : (P, h) −→ (P × V,Q) twisted by an action of the
Casimir operator

S(h, ϕ,Q) =
∫
P

hµν
∂ϕi

∂xµ

∂ϕj

∂xν
Qij+

1
2

(Cas J, J) dP (11)

The role of the extra term 1/2(CasJ, J) in (11) will
appear in the proof of the following Proposition.

Proposition 1 The twisted Beltrami flow for reaching
the function Jopt whose graph ϕopt minimizes the action
(11) preserves the (ρ,G)-equivariance property.

Proof Let ψ be the embedding of a Riemannian man-
ifold (M1, g1) into a a Riemannian manifold (M2, g2),
and X the corresponding Polyakov action, i.e.

X =
∫
M1

g1
µν ∂ψ

i

∂xµ

∂ψj

∂xν
g2ij dM1 (12)

From [24], we know that the Euler-Lagrange equations
of (12) with respect to ψ are

− 1
2
√
g1
g2
il ∂X

∂ψl
= ∆g1ψ

i + Γ ijk∂µψ
j∂νψ

kg2
µν = 0 (13)

where ∆g1 is the Laplace-Beltrami on (M1, g1) and Γ ijk
are the symbols of the Levi-Civita connection on (M2, g2).

Hence, taking a metric Q of the form H⊕κ Id, for a Rie-
mannian metric H on P and strictly positive constant
κ, the Euler-Lagrange equations of (11) with respect to
J are

(∆h ⊗ 1 + 1⊗ Cas) J = 0 (14)

where ∆h is the Laplace-Beltrami operator on (P, h).

The twisted Beltrami flow for reaching the solution of
(14) is

∂Jt
∂t

= (∆h ⊗ 1 + 1⊗ Cas)Jt, J0 = J (15)

Under the identification between (ρ,G)-equivariant func-
tions of P and sections of P ×(ρ,G) V (see Appendix
A.3.1), the operator (∆h ⊗ 1 + 1⊗ Cas) writes

∆A :=
∑
ij

gij
(
∇A∂i
∇A∂j
−
∑
k

Γ kij ∇A∂k

)
(16)

It is a generalized Laplacian on P×(ρ,G)V where the co-
variant derivative ∇A is induced by HP (see Appendix
A.3.2). We refer to [6] for the proof of the identification
between the operators (∆h ⊗ 1 + 1⊗ Cas) and ∆A.

Let us assume that the initial condition J is (ρ,G)-
equivariant. Then, the twisted Beltrami flow (15) may
be identified to the heat flow of ∆A

∂Jt
∂t

= ∆AJt, J0 = J (17)

Finally, as the flow (17) preserves the structure of sec-
tion of associated bundle, the flow (15) preserves the
(ρ,G)-equivariance of the initial condition. ut

4 A class of covariant derivatives on associated
bundles

4.1 From horizontal bundles on principal bundles to
covariant derivatives on associated bundles

4.1.1 The general case

Let (P, π,M,G) be a principal bundle, ρ a representa-
tion of G on a finite dimensional vector space V , and
E = P ×(ρ,G) V the associated bundle. Let S ∈ Γ (E)
and fS the corresponding (ρ,G)-equivariant function.
Let HP be a horizontal bundle of P . Let X ∈ Γ (TM)
and Xh ∈ Γ (TP ) be the horizontal lift of X with re-
spect to HP .

Then, there exist a covariant derivative∇A on (E, πE ,M)
such that the following correspondance holds

dXhfS ←→ ∇AXS (18)
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The proof of (18) appears in the proof of the identifi-
cation between (∆h ⊗ 1 + 1⊗ Cas) and ∆A [6].

Let ω be the connection 1-form induced by HP . Let
s be a section of P and A be the g-valued 1-form on M
given by

A = s∗ω

where ∗ denotes the pull-back map.

Then, relatively to the local frame of (E, πE ,M) in-
duced by s, the covariant derivative is given by

∇AX = dX + ρ∗(A)(X)

where dX denotes the differential with respect to a tan-
gent vector field X on M .

4.1.2 Covariant derivatives induced by optimal
horizontal bundles

Let (P, π,M,G) be a principal bundle and Φ a trivial-
ization of the bundle. Let ρ be a representation of G on
a finite-dimensional vector space V . Let s be the sec-
tion of (P, π,M,G) of the form s(x1, x2) = Φ(x1, x2, e)
where e is the neutral element of G.

Let J : P −→ V and ϕ its graph. Let h be a Riemannian
metric on P along s induced by a Riemannian metric
g on M and a horizontal bundle HP of P (see Sect.
3.1 for the construction of h). Let Q be a Riemannian
metric on P × V .

Let S|s be the restriction along the section s of the
twisted Polyakov action (11) of ϕ : (P, h) −→ (P×V,Q)

S|s(h, ϕ,Q) =
∫
s

hµν
∂ϕi

∂xµ

∂ϕj

∂xν
Qij+

1
2

(Cas J, J) dM

(19)

Minimizing the functional (19) with respect to the met-
ric h under the assumption that g is fixed, we obtain
the expression of optimal horizontal bundles HP opt

along the section s. Then, following the construction
of Sect. 4.1.1, we obtain the expression of the corre-
sponding covariant derivatives ∇A opt

on P ×(ρ,G) V ,
relatively to the frame induced by s.

4.1.3 A class of covariant derivatives derived from
optimal horizontal bundles

Let ωopt be a connection 1-form induced by an op-
timal horizontal bundle HsP

opt of Sect. 4.1.2. From
ωopt, we derive a class of connection 1-forms ωoptf such
that ωoptf = fωopt along the section s, for f ∈ C0(M).

Then, the g-valued 1-form Aoptf on M induced by the
section s, i.e. s∗ωoptf , is fAopt. The corresponding co-

variant derivatives ∇A
opt
f on P ×(ρ,G) V are given by

ρ∗(A
opt
f ) = f ρ∗(Aopt) in the frame induced by the sec-

tion s. Hence, if we denote by Υ kij the symbols of ∇Aopt

in the frame induced by s, the symbols of ∇A
opt
f are of

the form f Υ kij in this frame.

For f ≡ 0, we have the trivial covariant derivative,
whereas for f ≡ 1, we obtain the optimal covariant
derivatives of Sect. 4.1.2.

Remark 3 The role of the function f appears in the
experiments (Sect. 5), where we test heat diffusions of
generalized Laplacians of the form ∆Aopt

f for different
functions f . We observe that the behaviour of the diffu-
sion depends locally of the values of f . For f ≡ 0, this
is the heat diffusion of the Laplace-Beltrami operator.

4.2 Explicit expressions on some associated bundles

Let us assume that the base manifold M is of dimen-
sion 2. Let (x1, x2) be a coordinates system of M and
(a1, · · · , an) be a coordinates system of G. By defini-
tion, a horizontal bundle HP is a subbundle of rank 2
of the tangent bundle TP of P such that TP ' HP⊕g.
Hence, along the section s, it is of the form

HsP = V ect {α1 ∂/∂x1 + β1 ∂/∂x2 +
∑n
k=1 γ1k ∂/∂ak,

α2 ∂/∂x1 + β2 ∂/∂x2 +
∑n
k=1 γ2k ∂/∂ak}

(20)

for some functions α1, α2, β1, β2, γ11, · · · , γ2n onM such
that α1β2 − α2β1 never vanish.

In what follows, we give expressions of covariant deriva-
tives induced by horizontal bundles minimizing (19).
See Appendices B and C for details of computations.

4.2.1 Associated bundle given by the unique dual
representation of R+∗ on R3

Proposition 2 The field of horizontal spaces HsP
opt

of (P, π,M,R+∗) minimizing (19) is unique. Moreover,
the nonzero symbols of the corresponding covariant deriva-
tive ∇Aopt in the associated bundle P ×(ρC ,R+∗) R3 are
given, relatively to the frame (∂/∂x1, ∂/∂x2) of TM
and the frame of P ×(ρC ,R+∗) R3 induced by s, by

Υ klk(x) =
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂a
Qij (x, e)

for l = 1, 2 and k = 1, 2, 3.
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4.2.2 Associated bundles given by dual representations
of SO(2) on R3

Let P be a 2-dimensional subspace of R3. In the Clifford
algebra context, P might be described by a bivector
γ12e1e2 + γ13e1e3 + γ23e2e3, for some γ12, γ13, γ23 ∈ R
such that γ2

12 + γ2
13 + γ2

23 = 1.

Proposition 3 The field of horizontal spaces HsP
opt

of (P, π,M, SO(2)) minimizing (19) is unique. More-
over, the nonzero symbols of the corresponding covari-
ant derivative ∇Aopt in the associated bundle P×(ρC

P ,SO(2))

R3 are given, relatively to the frame (∂/∂x1, ∂/∂x2) of
TM and the frame of P ×(ρC

P ,SO(2)) R3 induced by s, by

Υ klp(x) = −Υ plk(x)

= (−1)l+1γkp

(
∂ϕi

∂θ

∂ϕj

∂θ
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂θ
Qij (x, e)

for l = 1, 2 and k, p = 1, 2, 3 with k 6= p.

4.2.3 Associated bundle given by the unique dual
representation of DC(3) on R3

Proposition 4 The field of horizontal spaces HsP
opt

of (P, π,M,DC(3)) minimizing (19) is unique. More-
over, the nonzero symbols of the corresponding covari-
ant derivative ∇Aopt in the associated bundle P×(ρC ,DC(3))

R3 are given, relatively to the frame (∂/∂x1, ∂/∂x2) of
TM and the frame of P ×(ρC ,DC(3)) R3 induced by s, by

Υ 1
l1(x) =

1
c1c2c3

[
c2c3

∂ϕi

∂xl

∂ϕj

∂a1
Qij

]
(x, e)

Υ 2
l2(x) =

1
c1c2c3

[
c1c3

∂ϕi

∂xl

∂ϕj

∂a2
Qij

]
(x, e)

Υ 3
l3(x) =

1
c1c2c3

[
c1c2

∂ϕi

∂xl

∂ϕj

∂a3
Qij

]
(x, e)

for l = 1, 2, where

ck =
∂ϕi

∂ak

∂ϕj

∂ak
Qij , k = 1, 2, 3

4.2.4 Associated bundle given by the unique dual
representation of SO(3) on R3

Proposition 5 The field of horizontal spaces HsP
opt

of (P, π,M, SO(3)) minimizing (19) is unique. More-
over, the nonzero symbols of the corresponding covari-
ant derivative ∇Aopt in the associated bundle P×(ρC ,SO(3))

R3 are given, relatively to the frame (∂/∂x1, ∂/∂x2) of
TM and the frame of P ×(ρC ,SO(3)) R3 induced by s, by

γ1
l2(x) = −γ2

l1(x)

= λ

[
(be− dc)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (bc− ae)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(ad− b2)
∂ϕi

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ1
l3(x) = −γ3

l1(x)

= λ

[
(ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (af − c2)

∂ϕi

∂xl

∂ϕj

∂θ2
Qij

+(bc− ae)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ2
l3(x) = −γ3

l2(x)

= λ

[
(fd− e2)

∂ϕi

∂xl

∂ϕj

∂θ1
Qij + (ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(be− dc)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

for l = 1, 2, where

a =
∂ϕi

∂θ1

∂ϕj

∂θ1
Qij b =

∂ϕi

∂θ1

∂ϕj

∂θ2
Qij

c =
∂ϕi

∂θ1

∂ϕj

∂θ3
Qij d =

∂ϕi

∂θ2

∂ϕj

∂θ2
Qij

e =
∂ϕi

∂θ2

∂ϕj

∂θ3
Qij f =

∂ϕi

∂θ3

∂ϕj

∂θ3
Qij

and
λ =

1
2bce+ adf − ae2 − b2f − c2d

5 Experiments

5.1 Construction of diffusion process for color image

Let I : Ω −→ RGB ⊂ R3 be a color image. Following
Sect. 2, we construct principal bundles
(P1, π1, Ω,R+∗), (P2, π2, Ω,DC(3)), (P3, π3, Ω, SO(3)),
and corresponding associated bundles P1 ×(ρC ,R+∗) R3,
P2 ×(ρC ,DC(3)) R3 and P3 ×(ρC ,SO(3)) R3, as well as a
(ρ,G)-equivariant function J such that J ◦ s = I on
each of these bundles.

We equip the base manifold Ω of the Riemannian met-
ric g given by the following matrix representation 1 + κ

∑3
k=1 I

k
x1

2
κ
∑3
k=1 I

k
x1
Ikx2

κ
∑3
k=1 I

k
x1
Ikx2

1 + κ
∑3
k=1 I

k
x2

2

 (21)
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in the frame (∂/∂x1, ∂/∂x2), for some strictly positive
constant κ.

We equip the embedding space P1 × R3 of the metric

Q = I2 ⊕ δ ⊕ κ I3, (22)

the embedding space P2 × R3 of the metric

Q = I2 ⊕ δ I3 ⊕ κ I3, (23)

and the embedding space P3 × R3 of the metric

Q = I2 ⊕


δ 0 δ sin θ2

0 δ 0

δ sin θ2 0 δ

⊕ κ I3, (24)

for some strictly positive constant δ.

From Sect. 4.2, we construct covariant derivatives∇Aopt

on P1×(ρC ,R+∗) R3,P2×(ρC ,DC(3)) R3 and P3×(ρC ,SO(3))

R3. The explicit expressions (under the trivializing sec-
tion s) of the covariant derivatives with respect to the
metrics (22), (23) and (24) are respectively given in Ap-
pendix B.1.2, B.2.2 and B.2.3. Then, we construct the
covariant derivatives ∇A

opt
f (see Sect. 4.1.3) for the fol-

lowing functions f :

- f0 ≡ 0: this is the trivial covariant derivative.

- f1 ≡ 1: these are the covariant derivatives ∇Aopt

.

- f2 defined by

f2 =


3 if

√
λ+ − λ− ≥ 0.5

0 if
√
λ+ − λ− ≤ 0.49

400
√
λ+ − λ− − 196 otherwise

(25)

where λ+ and λ− are respectively the highest and low-
est eigenvalue fields of (21).

At last, following Sect. 3, we obtain heat equations of
the corresponding generalized Laplacians ∆Aopt

f

∂Jt
∂t

+∆Aopt
f Jt = 0, J0 = J

whose solutions are approximated with the Euler scheme

Jt+dt = Jt + dt ∆Aopt
f Jt, J0 = J

Under the trivializing section s, it gives the scheme

It+dt = It + dt ∆Aopt
f It, I0 = I (26)

which provides a diffusion of the initial condition I.

5.2 Interpretation of the results

We compare the diffusions induced by generalized Lapla-
cians of the form ∆Aopt

f1 and ∆Aopt
f2 with the diffusion

induced by the Laplace-Beltrami operator ∆Aopt
f0 . By

the chosen metric g (21) of the base manifold, the dif-
fusion induced by the Laplace-Beltrami operator tends
to preserve the strong edges and smooth the small ones.

On Fig. 1, we test the diffusion induced by ∆Aopt
f1 rela-

tively to the group SO(3) on the color image ’Barbara’
(Fig. 1(c)). We apply the scheme (26) with the follow-
ing parameters: 20 iterations, dt = 0.1, κ = 0.001, and
δ = 1. We observe that the diffusion has a similar be-
haviour than the one induced by the Laplace-Betrami
operator ∆Aopt

f0 (Fig. 1(b)), in the sense that it pre-
serves the strong edges and smooth the small ones too.
However, it seems that the chromatic information (sat-
uration, hue) of the image is less smoothed by the dif-
fusion induced by ∆Aopt

f1 , and consequently some edges
are better preserved (compare the back of the chair
on Fig. 1(b) and Fig. 1(c) with the original one on
Fig. 1(a)).
On Fig. 2, we test the diffusion induced by ∆Aopt

f1 rel-
atively to the group R+∗ on the color image ’Lena’
(Fig. 2(c)). We apply the scheme (26) with the follow-
ing parameters: 50 iterations, dt = 0.1, κ = 0.001, and
δ = 50. The parameters were chosen in such a way that
the resulting image gets the same memory size than
the diffusion induced by the Laplace-Beltrami opera-
tor of parameters 20 iterations, dt = 0.1, κ = 0.001
(Fig. 2.(b)). Both diffusions tend to preserve the strong
edges and smooth the low ones. However, the texture
of the hat is better preserved by the diffusion induced
by ∆Aopt

f1 .
From the experiments on Fig. 1 and Fig. 2, we con-
clude that diffusions induced by ∆Aopt

f1 tend to better
preserve some edges of the images than the diffusion
induced by the Laplace-Beltrami operator, the type of
edges depending of the Lie group involved. However,
more experiments are required in order to get general
properties of the diffusions induced by these operators.

On Fig. 1 and Fig. 2, we have tested diffusions related
to covariant derivatives of the form ∇A

opt
f with f ≡ 1

for optimal covariant derivatives and f ≡ 0 for the
trivial covariant derivative. Then, it seems natural to
test diffusions related with covariant derivatives of the
form∇A

opt
f with f being a constant strictly greater than

1. Some experiments we made showed that the corre-
sponding diffusions enhance the contrast of the original
image; the more f is high, the more the enhancement
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is high. However, the drawback is that the noise com-
ponent is enhanced too.
In order to control the enhancement of the noise, we
propose to make f varying with the point, in such a
way that the diffusion reduces noise while enhancing
the contrast. If the noise is small enough, it might be
assimilated with the small local variations of the im-
age, and consequently the function

√
λ+ − λ− might

distinguish noise from relevant information. Following
this analysis, we construct the function f2 (25) in order
to perform a diffusion that reduces noise and enhance
contrast.
On Fig. 3 and Fig. 4, we test the diffusions induced by
∆Aopt

f2 relatively to the groups R+∗, DC(3) and SO(3) on
the color images ’Barbara’ (Fig. 3) and ’Lake’ (Fig. 4).
The experiments confirm what we were expected. In-
deed, the noise is reduced (see for instance the floor
on Fig. 3(c,d,e)), and the contrast of the image is in-
creased. Once again, the nature of the enhancement de-
pends of the Lie group involved. Dealing with the group
SO(3), it is mainly a chromatic enhancement (see for
instance the back of the chair Fig. 3(c)), whereas it
is more a enhancement in the luminance component
for the group R+∗. Regarding the group DC(3), the
enhancement is mainly in the luminance component,
but taking more into account the chromatic informa-
tion than the group R+∗(compare the color of leaves
between Fig. 4(d) and Fig. 4(e)).

6 Conclusion

We constructed a class of covariant derivatives on as-
sociated bundles from connection 1-forms on principal
bundles and Lie groups representations. The connec-
tion 1-forms we constructed are optimal in the sense
that they are solution of a minimization problem. The
covariant derivatives we obtained take into account the
local geometry of the images, as expected. The Lie
groups representations we considered are the dual rep-
resentations of groups acting on the color space RGB:
R+∗, SO(2), DC(3) and SO(3). By the heat equations
of the generalized Laplacians induced by the covariant
derivatives, we obtained diffusions that preserve strong
edges and smooth the small ones. Comparisons with
the Beltrami flow showed that our new approach bet-
ter preserve somes edges, the type of edges depending of
the Lie group involved. Then, we constructed covariant
derivatives derived from the ’optimal’ covariant deriva-
tives. By the corresponding heat equations, we obtained
diffusions that enhance the contrast of the initial image.
Once again, the characteristics of the enhancement de-
pend of the Lie group involved. Further work will be

devoted to perform a theoretical study of the gener-
alized Laplacians constructed in this paper and their
heat equations. For instance, we are interested in the
analysis of the exact role of the Lie group involved.

Acknowledgements The authors thank the anonymous re-
viewers for helpful remarks and suggestions.

Appendix A. Differential Geometry of Associ-
ated Bundles

A.1. Differential geometry of vector bundles

Definition 1 A smooth vector bundle of rank n is
a triplet (E, π,M) where M and E are two C∞ man-
ifolds, and π : E −→ M is a surjective map such that
the preimage π−1(x) of x ∈M is endowed with a struc-
ture of vector space of dimension n. M is called the
base manifold and E the total space of the vector
bundle. The set π−1(x) is called the fiber over x, and
is denoted by Ex.

The vector bundle is said to be locally trivial if the
following conditions hold: for each x ∈ M , there is
a neighborhood U of x and a diffeomorphism φ : U ×
Rn −→ π−1(U) satisfying π ◦ φ(x, f) = x ∀f ∈ Rn,
and such that the restriction φx : Rn −→ Ex is a vector
space isomorphism. The couple (U, φ) is called a local
trivialization.

The vector bundle is said to be trivial if there ex-
ists a diffeomorphism Φ : M × Rn −→ E satisfying π ◦
Φ(x, f) = x, and such that the restriction Φx : Rn −→
Ex is a vector space isomorphism.

For shortness, (E, π,M) is sometimes denoted by E.

Example 1 Let M be a C∞ manifold of dimension m.
The disjoint union of tangent spaces TM :=

⊔
TxM for

x ∈M , is the total space of a vector bundle (TM, π,M)
of rank m called the tangent bundle of M .

Definition 2 A metric h on a vector bundle is the as-
sigment of a scalar product hx on each fiber π−1(x).

Example 2 A Riemannian metric on a manifold is a
positive definite metric on its tangent bundle.

Definition 3 A section of a smooth vector bundle
(E, π,M) is a differentiable map S : M −→ E such that
π ◦ S = IdM .
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Let (f1, · · · , fn) be a basis of Rn. In a local trivial-
ization (U, φ) of (E, π,M), any section may be written

S(x) =
n∑
i=1

si(x)φ(x, fi)

for some functions si ∈ C∞(U).
The set {φ(·, f1), · · · , φ(·, fn)} is called a local frame
of (E, π,M).

The set of sections of (E, π,M) is denoted by Γ (E).

Example 3 Tangent vector fields on M are the sections
of the tangent bundle (TM, π,M).

Definition 4 A covariant derivative on (E, π,M) is
a map ∇E : Γ (TM)×Γ (E) −→ Γ (E) satisfying the fol-
lowing axioms:

-∇EfX+gY S = f∇EXS + g∇EY S
-∇EX fS = (dXf)S + f∇EXS

for f, g ∈ C∞(M), X,Y ∈ Γ (TM) and S ∈ Γ (E).

Hence, a covariant derivative on (E, π,M) may writ-
ten as d+ ω for some ω ∈ Γ (T ∗M ⊗ End(E)).

In local frames (e1, · · · , en) of E and (X1, · · · , Xm) of
TM , a covariant derivative is determined by n2 × m

functions Υ kij such that

∇EXi
ej =

n∑
k=1

Υ kij ek

Example 4 The Levi-Cevita connection is the co-
variant derivative on the tangent bundle of a Rieman-
nian manifold (M, g) determined by the m3 functions

Γ kij =
1
2
gkl(∂jgli + ∂iglj − ∂lgij)

with respect to the local frame (∂/∂x1, · · · , ∂/∂xm) of
TM given by a local coordinates system (x1, · · · , xm)
on M .

A.2. Differential geometry of principal bundles

Definition 5 A smooth principal bundle is a quadru-
plet (P, π,M,G) whereM and P are two C∞ manifolds,
G is a Lie group, π : P −→M is a surjective map such
that for all x ∈ M , the preimage π−1(x) is diffeomor-
phic to G and there is an action · of G on P satisfying:
- π(p · g) = π(p) for p ∈ π−1(x) and g ∈ G.
- the restriction · : G × π−1(x) −→ π−1(x) is free and
transitive.

M is called the base manifold, P the total space
and G the Lie group structure of the principal bun-
dle. The set π−1(x) is called the fiber over x, and is
denoted by Px.

The principal bundle is said to be locally trivial if
the following conditions hold: for each x ∈M , there is
a neighborhood U of x and a diffeomorphism φ : U ×
G −→ π−1(U) satisfying π ◦ φ(x, g) = x, and such that
the map φx : G −→ Px is compatible with the restric-
tion · : G×Px −→ Px, i.e. φx(ga) = φx(g)·a. The couple
(U, φ) is called a local trivialization.

The principal bundle is said to be trivial if there ex-
ists a diffeomorphism Φ : M × G −→ P satisfying π ◦
Φ(x, g) = x, and such that the restriction Φx : G −→ Px
is compatible with the action · : G× Px −→ Px.

For shortness, (P, π,M,G) is sometimes denoted by P .

Example 5 Let (M, g) be a Riemannian manifold of di-
mension m and TM its tangent bundle. The disjoint
union of oriented orthonormal bases of TxM with re-
spect to g(x), for x ∈M , forms the total space of a prin-
cipal bundle PSO(TM) over M of structure Lie group
SO(n) called the bundle of orthonormal frames of
TM .

Definition 6 A section of a smooth principal bundle
(P, π,M,G) is a differentiable map S : M −→ P such
that π ◦ S = IdM .

Let (U, φ) be a local trivialization of (P, π,M,G), and
s : U −→ P defined by s(x) = φ(x, e). The section s is
called a local trivializing section of P and any local
section S of P takes the form

S(x) = s(x) · g(x)

for some function g : U −→ G.
The function g is called the local trivialization of
the section S.

The set of sections of (P, π,M,G) is denoted by Γ (P ).

Definition 7 Let (P, π,M,G) be a principal bundle.
Let Tpπ : TpP → Tπ(p)M be the linear tangent map
of π at p ∈ P . A tangent vector X ∈ TpP is called
vertical if Tpπ(X) = 0. We denote by Vp the set of
vertical vectors at the point p. It is the vector space
generated by vectors Xv

p of the form

Xv
p =

(
d

dt
p · exp(tX)

)
|t=0

, forX ∈ g.
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The set V P =
⊔
p∈P Vp forms the total space of a vec-

tor bundle over P called the vertical bundle of P . It
is a subbundle of the tangent bundle of P .

Let R̃g : p 7−→ p · g. The map TpR̃g : TpP −→ Tp·gP

maps Vp on Vp·g. This property is calledG−equivariance.

Definition 8 Let (P, π,M,G) be a principal bundle
and V P the vertical bundle bundle of P . Let x ∈M and
p ∈ Px. Let Hp be a subspace of TpP such that TpP =
Hp ⊕ Vp. A vector Xh

p ∈ Hp is called horizontal. We
extend Hp on Px by setting a G-equivariance property,
i.e. we put

Hp·g = TpR̃gHp

Repeating the construction for each x ∈ M (under an
assumption of smoothness of the sets Hp with respect to
x) turns the set HP : =

⊔
p∈P Hp into the total space

of a vector bundle over P called a horizontal bundle
of P . It is a subbundle of the tangent bundle of P .

Definition 9 Let (P, π,M,G) be a principal bundle,
V P its vertical bundle and HP a horizontal bundle of
P . Let x ∈M and p ∈ Px. From the surjectivity of the
projection π, the map Tpπ is surjective too. Moreover,
as Vp = Ker Tpπ and dimHpP = dimTxM , we deduce
that the map

Tpπ : Hp −→ TxM

is an isomorphism. Given Xx ∈ TxM , the unique vector
Xh
p ∈ Hp such Tpπ(Xh

p ) = Xx is called horizontal lift
of Xx with respect to HP .

Definition 10 Let (P, π,M,G) be a principal bundle,
V P its vertical bundle and HP a horizontal bundle of
P . The g-valued 1-form ω defined on P by


ωp(Xp) = 0 for Xp ∈ HpP

ωp(Xp) = A for Xp =
(
d

dt
p · exp(tA)

)
|t=0

∈ VpP

is called a connection 1-form.

As a consequence of the G-equivariance of the vertical
and horizontal bundle, the connection 1-form satisfies

ωp·g(TpR̃gXp) = g−1 ωp(Xp) g

when G is a matrix Lie group.

A.3. From principal to vector bundles

A.3.1. Definitions

Definition 11 Let G be a Lie group and V a vector
space. A representation ρ of G on V is a group mor-
phism ρ : G −→ GL(V ). The representation ρ deter-
mines a group representation ρC on the dual space V ∗

of V called the dual representation of ρ, and defined
by ρC(g) = ρ(g−1) where denotes the transpose.

Definition 12 Let (P, π,M,G) be a principal bundle,
ρ a representation of G on V of dimension n, and E =
(P × V )/G, i.e. a point in E is of the form

[p, f ] := {(p · g, ρ(g−1)f) , g ∈ G}

where p ∈ P and f ∈ V . Let πE : E −→ M given by
πE [p, f ] = π(p). Then, the triplet (E, πE ,M) forms a
vector bundle of rank n, called vector bundle asso-
ciated to P and denoted by P ×(ρ,G) V .

Let (U, φ) be a local trivialization of (P, π,M,G) and
s the local trivializing section of P given by s(x) =
φ(x, e). Then, the map

χs : U × V −→ πE
−1(U)

(x, f) 7−→ [s(x), f ]

is a local trivialization of P ×(ρ,G) V .

Let (f1, · · · , fn) be a basis of V .
Then, the set (χs(·, f1), · · · , χs(·, fn)) determines a lo-
cal frame of (E, πE ,M).

Example 6 Let (M, g) be a Riemannian manifold of di-
mensionm, and (PSO(TM), π,M, SO(m)) be the prin-
cipal bundle of orthonormal frames of TM . The tangent
bundle of M is a vector bundle associated to PSO(TM)
under the natural representation ρ of SO(m) on Rm,
and might be written PSO(TM)×(ρ,SO(m)) Rm.

Definition 13 Let (P, π,M,G) be a principal bundle
and ρ a representation of G on a finite-dimensional vec-
tor space V . A function J : P −→ V is called (ρ,G)-
equivariant if it satisfies

J(p · g) = ρ(g)J(p)

We denote by C∞(P, V )(ρ,G) the set of smooth (ρ,G)-
equivariant functions on P .

There is a correspondance between sections of associ-
ated bundles and (ρ,G)-equivariant functions on prin-
cipal bundles. Indeed, given f ∈ C∞(P, V )(ρ,G), we put
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Sf (x) = [p, f(p)] for any p ∈ π−1(x). By the (ρ,G)-
equivariance property of f , the map Sf is indepen-
dant of the choice of p. Hence, Sf is a section of E =
P ×(ρ,G)V . Conversely, for S ∈ Γ (E), we puf fS(p) = v

such that S ◦π(p) = [p, v]. We observe that fS is (ρ,G)-
equivariant.

A.3.2. From horizontal bundles on principal bundles to
covariant derivatives on associated bundles

Let (P, π,M,G) be a principal bundle, ρ a representa-
tion of G on a finite-dimensional vector space V , and
E = P ×(ρ,G) V the associated bundle. Let S ∈ Γ (E)
and fS the corresponding (ρ,G)-equivariant function.
Let HP be a horizontal bundle of P . Let X ∈ Γ (TM)
and Xh ∈ Γ (TP ) be the horizontal lift of X with re-
spect to HP . Then, there exist a covariant derivative
∇A on (E, πE ,M) such that the following correspon-
dance holds

dXhfS ←→ ∇AXS

Let ω be the connection 1-form induced by HP . Let s
be a section of P and A be the g-valued 1-form on M

given by
A = s∗ω

where ∗ denotes the pull-back map.

Then, relatively to the local frame of (E, πE ,M) in-
duced by s, the covariant derivative is given by

∇AX = dX + ρ∗(A)(X)

where ρ∗ : g −→ End(V) is the Lie algebra representa-
tion induced by ρ.

Appendix B. Optimal connection 1-forms and
corresponding covariant derivatives

B.1. The case of Lie groups of dimension 1

B.1.1. Construction of optimal connection 1-forms

Computing the Euler-Lagrange equations of (19) with
respect to the functions αk, βk, γk for k = 1, 2, we ob-
tain γk =(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1[
αk

(
∂ϕi

∂x1

∂ϕj

∂a
Qij

)
+βk

(
∂ϕi

∂x2

∂ϕj

∂a
Qij

)]
.

It defines a unique horizontal field HsP along s whose
expression is obtained from (20). We refer to Appendix
C.1 for more details.

Let X be a tangent vector field on P along the section s

of the form α∂/∂x1 + β ∂/∂x2 + γ ∂/∂a for some func-
tions α, β, γ on M . The connection 1-form ω induced by

HP is given along s by ω(X) =

[
γ +

(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1

×
(
−α∂ϕ

i

∂x1

∂ϕj

∂a
Qij−β

∂ϕi

∂x2

∂ϕj

∂a
Qij

)]
∂/∂a

The 1-form A = s∗ω on M is given by A(α∂/∂x1 +
β ∂/∂x2)(x) = ω(α∂/∂x1 + β ∂/∂x2 + 0 ∂/∂a)(x, e).

B.1.2. Corresponding covariant derivative for the unique
dual representation ρC of R+∗ on R3

Writing the 1-form A as A1∂/∂a, we have ρC∗ (A) =
−A1I3.

Hence, the nonzero symbols of the corresponding co-
variant derivative ∇A are given in the frames
(∂/∂x1, ∂/∂x2) of TM and (χs(·, e1), χs(·, e2), χs(·, e3))
of P ×(ρC ,R+∗) R3 by

Υ klk(x) = (ρC∗ A)kk(∂/∂xl)(x)

=
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂a
Qij (x, e)

for l = 1, 2 and k = 1, 2, 3.

Taking a metric Q of the form I2⊕ δ⊕κI3 in the frame
(∂/∂x1, ∂/∂x2, ∂/∂a, e1, e2, e3), we obtain

∂ϕi

∂a

∂ϕj

∂a
Qij (x, e) = δ + κ

(
3∑
k=1

Ik
2

)
(x)

and

∂ϕi

∂xl

∂ϕj

∂a
Qij (x, e) = −κ

(
3∑
k=1

Ikxl
Ik

)
(x)

B.1.3. Corresponding covariant derivative for a class of
unitary dual representations ρC of SO(2) on R3

Let P be a 2-dimensional subspace of R3, and the corre-
sponding bivector γ12e1e2 + γ13e1e3 + γ23e2e3 for γ2

12 +
γ2
13+γ2

23 = 1. Writing the 1-form A as A1∂/∂θ, we have

ρC
P∗(A) = A1


0 −γ12 −γ13

γ12 0 −γ23

γ13 γ23 0


Hence, the nonzero symbols of the corresponding co-
variant derivative ∇A are given in the frames
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(∂/∂x1, ∂/∂x2) of TM and (χs(·, e1), χs(·, e2), χs(·, e3))
of P ×(ρC ,SO(2)) R3 by

Υ klp(x) = (ρC
P∗A)kp(∂/∂xl)(x) = −Υ plk(x)

= (−1)l+1γkp

(
∂ϕi

∂θ

∂ϕj

∂θ
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂θ
Qij (x, e)

for l = 1, 2 and k, p = 1, 2, 3 with k 6= p.

Taking a metric Q of the form I2⊕ δ⊕κI3 in the frame
(∂/∂x1, ∂/∂x2, ∂/∂θ, e1, e2, e3), we obtain

∂ϕi

∂θ

∂ϕj

∂θ
Qij (x, e) = δ+

κ
(
(γ12I

2+γ13I
3)2+(γ12I

1−γ23I
3)2+(γ13I

1+γ23I
2)2
)
(x)

and
∂ϕi

∂xl

∂ϕj

∂θ
Qij (x, e) = −κ×

(
I1
xl

(−γ12I
2 − γ13I

3) +

I2
xl

(γ12I
1 − γ23I

3) + I3
xl

(γ13I
1 + γ23I

2)
)

(x)

B.2. The case of Lie groups of dimension 3

B.2.1. Construction of optimal connection 1-forms

Computing the Euler-Lagrange equations of (19) with
respect to the functions αl, βl, γlj for l = 1, 2 and j =
1, 2, 3, we obtain

γl1 = λ

[
αl

(
(fd−e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij+(ce−fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(be− dc)∂ϕ
i

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij

+(ce− fb)∂ϕ
i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]

γl2 = λ

[
αl

(
(ce−fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij+(af−c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij

+(bc− ae)∂ϕ
i

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij

+(af − c2)
∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]

γl3 = λ

[
αl

(
(be−dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij+(bc−ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(ad− b2)
∂ϕi

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij

+(bc− ae)∂ϕ
i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]
where λ = 1/(2cbe+ fad− e2a− fb2 − c2d) and

a =
∂ϕi

∂a1

∂ϕj

∂a1
Qij b =

∂ϕi

∂a1

∂ϕj

∂a2
Qij c =

∂ϕi

∂a1

∂ϕj

∂a3
Qij

d =
∂ϕi

∂a2

∂ϕj

∂a2
Qij e =

∂ϕi

∂a2

∂ϕj

∂a3
Qij f =

∂ϕi

∂a3

∂ϕj

∂a3
Qij

It defines a unique horizontal field HsP along s whose
expression is obtained from (20). We refer to Appendix
C.2 for more details.

Let X be a tangent vector field on P along the section
s of the form α∂/∂x1 + β ∂/∂x2 +

∑3
k=1 γk ∂/∂ak for

some functions α, β, γk on M . The connection 1-form ω

induced by HP is given along s by ω(X) =[
γ1 − λ

[
(fd− e2)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)

+(ce−fb)
(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(be−dc)×

(
α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a1

+
[
γ2 − λ

[
(ce− fb)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)

+(af−c2)
(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(bc−ae)×

(
α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a2

+
[
γ3 − λ

[
(be− dc)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)

+(bc−ae)
(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(ad−b2)×

(
α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a3

The 1-form A = s∗ω on M is given by A(α∂/∂x1 +
β ∂/∂x2)(x) =

ω(α∂/∂x1+β ∂/∂x2+0 ∂/∂a1+0 ∂/∂a2+0 ∂/∂a3)(x, e)
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B.2.2. Corresponding covariant derivative for the unique
dual representation ρC of DC(3) on R3

Writing the 1-form A as A1∂/∂a1+A2∂/∂a2+A3∂/∂a3,
we have ρC∗ (A) = −diag(A1, A2, A3).

Hence, the nonzero symbols of the corresponding co-
variant derivative ∇A are given in the frames
(∂/∂x1, ∂/∂x2) of TM and (χs(·, e1), χs(·, e2), χs(·, e3))
of P ×(ρC ,DC(3)) R3 by

Υ 1
l1(x) = (ρ∗A)11(∂/∂xl)(x)

= λ

[
d f

∂ϕi

∂xl

∂ϕj

∂a1
Qij

]
(x, e)

Υ 2
l2(x) = (ρ∗A)22(∂/∂xl)(x)

= λ

[
a f

∂ϕi

∂xl

∂ϕj

∂a2
Qij

]
(x, e)

Υ 3
l3(x) = (ρ∗A)33(∂/∂xl)(x)

= λ

[
a d

∂ϕi

∂xl

∂ϕj

∂a3
Qij

]
(x, e)

for l = 1, 2.

Taking a metric Q of the form I2 ⊕ δ I3 ⊕ κ I3 in the
frame (∂/∂x1, ∂/∂x2, ∂/∂a1, ∂/∂a2, ∂/∂a3, e1, e2, e3), we
obtain

∂ϕi

∂xl

∂ϕj

∂ak
Qij(x, e) = −κ Ikxl

Ik (x)

for k = 1, 2, 3, and

a(x, e) = δ + κ I12
(x) d(x, e) = δ + κ I22

(x)

f(x, e) = δ + κ I32
(x)

B.2.3. Corresponding covariant derivative for the unique
dual representation ρC of SO(3) on R3

Writing the 1-form A as A1∂/∂θ1+A2∂/∂θ2+A3∂/∂θ3,
we have

ρC∗ (A) =


0 −A3 −A2

A3 0 −A1

A2 A1 0


Hence the nonzero symbols of the corresponding covari-
ant derivative ∇A are given in the frames
(∂/∂x1, ∂/∂x2) of TM and (χs(·, e1), χs(·, e2), χs(·, e3))
of P ×(ρC ,SO(3)) R3 by

γ1
l2(x) = (ρC∗ A)12(∂/∂xl)(x) = −γ2

l1(x)

= λ

[
(be− dc)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (bc− ae)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(ad− b2)
∂ϕi

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ1
l3(x) = (ρC∗ A)13(∂/∂xl)(x) = −γ3

l1(x)

= λ

[
(ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (af − c2)

∂ϕi

∂xl

∂ϕj

∂θ2
Qij

+(bc− ae)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ2
l3(x) = (ρC∗ A)23(∂/∂xl)(x) = −γ3

l2(x)

= λ

[
(fd− e2)

∂ϕi

∂xl

∂ϕj

∂θ1
Qij + (ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(be− dc)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

for l = 1, 2.

Taking a metric Q of the form

I2 ⊕


δ 0 δ sin θ2

0 δ 0

δ sin θ2 0 δ

⊕ κ I3

in the frame (∂/∂x1, ∂/∂x2, ∂/∂θ1, ∂/∂θ2, ∂/∂θ3, e1, e2, e3),
we obtain

∂ϕi

∂xl

∂ϕj

∂θ1
Qij(x, e) = −κ(I2

xl
I3 − I3

xl
I2)(x)

∂ϕi

∂xl

∂ϕj

∂θ2
Qij(x, e) = −κ(I1

xl
I3 − I3

xl
I1)(x)

∂ϕi

∂xl

∂ϕj

∂θ3
Qij(x, e) = −κ(I1

xl
I2 − I2

xl
I1)(x)

and

a(x, e) = δ + κ(I22
+ I32

)(x) b(x, e) = κ I1I2(x)

c(x, e) = −κ I1I3(x) d(x, e) = δ + κ(I12
+ I32

)(x)

e(x, e) = κ I2I3(x) f(x, e) = δ + κ(I12
+ I22

)(x)
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Appendix C. Solutions of Euler-Lagrange Equations

C.1. The case of Lie groups of dimension 1

The Euler-Lagrange equations of the functional (19) with respect to HsP are

∗
∂S|s

∂α1
= 0

⇐⇒ (β2γ1 − β1γ2)
[
(α1β2 − α2β1)(g12α2 − g22β2)

∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β2 − g11α2)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α2 − g12β2) + (β1γ2 − β2γ1)(g22β2 − g12α2)
)∂ϕi
∂a

∂ϕj

∂a
Qij

]
= 0

∗
∂S|s

∂α2
= 0

⇐⇒ (β2γ1 − β1γ2)
[
(α1β2 − α2β1)(g12α1 − g22β1)

∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β1 − g11α1)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α1 − g12β1) + (β1γ2 − β2γ1)(g22β1 − g12α1)
)∂ϕi
∂a

∂ϕj

∂a
Qij

]
= 0

∗
∂S|s

∂β1
= 0

⇐⇒ (α2γ1 − α1γ2)
[
(α1β2 − α2β1)(g12α2 − g22β2)

∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β2 − g11α2)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α2 − g12β2) + (β1γ2 − β2γ1)(g22β2 − g12α2)
)∂ϕi
∂a

∂ϕj

∂a
Qij

]
= 0

∗
∂S|s

∂β2
= 0

⇐⇒ (α2γ1 − α1γ2)
[
(α1β2 − α2β1)(g12α1 − g22β1)

∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β1 − g11α1)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α1 − g12β1) + (β1γ2 − β2γ1)(g22β1 − g12α1)
)∂ϕi
∂a

∂ϕj

∂a
Qij

]
= 0

∗
∂S|s

∂γ1
= 0

⇐⇒ (α1β2 − α2β1)(g12α1 − g22β1)
∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β1 − g11α1)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α1 − g12β1) + (β1γ2 − β2γ1)(g22β1 − g12α1)
)∂ϕi
∂a

∂ϕj

∂a
Qij = 0

∗
∂S|s

∂γ2
= 0

⇐⇒ (α1β2 − α2β1)(g12α1 − g22β1)
∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β1 − g11α1)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α1 − g12β1) + (β1γ2 − β2γ1)(g22β1 − g12α1)
)∂ϕi
∂a

∂ϕj

∂a
Qij = 0
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Finally, the Euler-Lagrange equations reduce to the equations
∂S|s

∂γ1
= 0 and

∂S|s

∂γ2
= 0, i.e. to the following system



(α1β2 − α2β1)(g12α1 − g22β1)
∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β1 − g11α1)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α1 − g12β1) + (β1γ2 − β2γ1)(g22β1 − g12α1)
)∂ϕi
∂a

∂ϕj

∂a
Qij = 0

(α1β2 − α2β1)(g12α2 − g22β2)
∂ϕi

∂x1

∂ϕj

∂a
Qij + (α1β2 − α2β1)(g12β2 − g11α2)

∂ϕi

∂x2

∂ϕj

∂a
Qij

+
(

(α1γ2 − α2γ1)(g11α2 − g12β2) + (β1γ2 − β2γ1)(g22β2 − g12α2)
)∂ϕi
∂a

∂ϕj

∂a
Qij = 0

We obtain a linear system with respect to γ1 and γ2 of the form

D

γ1

γ2

 = (α1β2 − α2β1)×


(α2g12+β2g22)

∂ϕi

∂x1

∂ϕj

∂a
Qij−(β2g12+α2g11)

∂ϕi

∂x2

∂ϕj

∂a
Qij

(α1g11+β1g12)
∂ϕi

∂x2

∂ϕj

∂a
Qij−(β1g22+α1g12)

∂ϕi

∂x1

∂ϕj

∂a
Qij

 (27)

where the coefficients of the matrix D are

D11 =
(
α2(α2g11 + β2g12) + β2(β2g22 + α2g12)

)∂ϕi
∂a

∂ϕj

∂a
Qij

D12 =−
(
α1(β2g12 + α2g11) + β1(α2g12 + β2g22)

)∂ϕi
∂a

∂ϕj

∂a
Qij

D21 =−
(
α1(β2g12 + α2g11) + β1(α2g12 + β2g22)

)∂ϕi
∂a

∂ϕj

∂a
Qij

D22 =
(
α1(α1g11 + β1g12) + β1(β1g22 + α1g12)

)∂ϕi
∂a

∂ϕj

∂a
Qij

The solution of the system (27) is

γ1 =
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1[
α1

(
∂ϕi

∂x1

∂ϕj

∂a
Qij

)
+β1

(
∂ϕi

∂x2

∂ϕj

∂a
Qij

)]

γ2 =
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1[
α2

(
∂ϕi

∂x1

∂ϕj

∂a
Qij

)
+β2

(
∂ϕi

∂x2

∂ϕj

∂a
Qij

)]
Conclusion: HsP =

V ect

{
α1∂/∂x1 + β1∂/∂x2 +

(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1 [
−α1

(
∂ϕi

∂x1

∂ϕj

∂a

)
+ β1

(
∂ϕi

∂x2

∂ϕj

∂a

)]
∂/∂a,

α2∂/∂x1 + β2∂/∂x2 +
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1 [
−α2

(
∂ϕi

∂x1

∂ϕj

∂a

)
+ β2

(
∂ϕi

∂x2

∂ϕj

∂a

)]
∂/∂a

}
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C.2. The case of Lie groups of dimension 3

As for the case of Lie groups of dimension 1, the Euler Lagrange equations of the functional (19) with respect to

HsP reduce to the equations
∂S|s

∂γlj
= 0, for l = 1, 2, j = 1, 2, 3, and we obtain a linear system with respect to the

functions γij of the form

D



γ11

γ12

γ13

γ21

γ22

γ23



= (α1β2 − α2β1)×



(α2g12+β2g22)
∂ϕi

∂x1

∂ϕj

∂a1
Qij−(β2g12+α2g11)

∂ϕi

∂x2

∂ϕj

∂a1
Qij

(α2g12+β2g22)
∂ϕi

∂x1

∂ϕj

∂a2
Qij−(β2g12+α2g11)

∂ϕi

∂x2

∂ϕj

∂a2
Qij

(α2g12+β2g22)
∂ϕi

∂x1

∂ϕj

∂a3
Qij−(β2g12+α2g11)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

(α1g11+β1g12)
∂ϕi

∂x2

∂ϕj

∂a1
Qij−(β1g22+α1g12)

∂ϕi

∂x1

∂ϕj

∂a1
Qij

(α1g11+β1g12)
∂ϕi

∂x2

∂ϕj

∂a2
Qij−(β1g22+α1g12)

∂ϕi

∂x1

∂ϕj

∂a2
Qij

(α1g11+β1g12)
∂ϕi

∂x2

∂ϕj

∂a3
Qij−(β1g22+α1g12)

∂ϕi

∂x1

∂ϕj

∂a3
Qij



(28)

where

D =



aG bG cG aF bF cF

bG dG eG bF dF eF

cG eG f G cF eF f F

aF bF cF aE bE cE

bF dF eF bE dE eE

cF eF f F cE eE f E


and

a =
∂ϕi

∂a1

∂ϕj

∂a1
Qij b =

∂ϕi

∂a1

∂ϕj

∂a2
Qij c =

∂ϕi

∂a1

∂ϕj

∂a3
Qij

d =
∂ϕi

∂a2

∂ϕj

∂a2
Qij e =

∂ϕi

∂a2

∂ϕj

∂a3
Qij f =

∂ϕi

∂a3

∂ϕj

∂a3
Qij

E = α1(g11α1 + g12β1) + β1(g22β1 + g12α1)

F = − [α1(g12β2 + g11α2) + β1(g12α2 + g22β2)]

G = α2(g11α2 + g12β2) + β2(g22β2 + g12α2)

The solution of the system (28) is

γ11 =
1

2cbe+ fad− e2a− fb2 − c2d

[
α1

(
(fd− e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)

+β1

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
γ12 =

1
2cbe+ fad− e2a− fb2 − c2d

[
α1

(
(ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)
+β1

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
γ13 =

1
2cbe+ fad− e2a− fb2 − c2d

[
α1

(
(be− dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x1

∂ϕj

∂a3
Qij

)
+β1

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]
γ21 =

1
2cbe+ fad− e2a− fb2 − c2d

[
α2

(
(fd− e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)
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+β2

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
γ22 =

1
2cbe+ fad− e2a− fb2 − c2d

[
α2

(
(ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)
+β2

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]

γ23 =
1

2cbe+ fad− e2a− fb2 − c2d

[
α2

(
(be− dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x1

∂ϕj

∂a3
Qij

)

+β2

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]

Conclusion: HsP =

V ect

{
α1∂/∂x1 + β1∂/∂x2 +

1
2cbe+ fad− e2a− fb2 − c2d

[[
α1

(
(fd− e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(be− dc)∂ϕ
i

∂x1

∂ϕi

∂a3
Qij

)
+ β1

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a1

+
[
α1

(
(ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)
+β1

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a2

+
[
α1

(
(be− dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x1

∂ϕj

∂a3
Qij

)
+β1

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a3,

α2∂/∂x1 + β2∂/∂x2 −
1

2cbe+ fad− e2a− fb2 − c2d

[[
α2

(
(fd− e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(be− dc)∂ϕ
i

∂x1

∂ϕi

∂a3
Qij

)
− β2

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij + (ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a1

+
[
α2

(
(ce− fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a3
Qij

)
+β2

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (af − c2)

∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a2

+
[
α2

(
(be− dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x1

∂ϕj

∂a3
Qij

)
+β2

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]
∂/∂a3

}
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(a) Image ’Barbara’ (b) Trivial connection: anisotropic diffu-
sion preserving strong edges

(c) Optimal connection relatively to the
group SO(3): better preservation of the
edges on the back of the chair

Fig. 1 Heat diffusions of the color image ’Barbara’ induced by generalized Laplacians associated with connection 1-forms

(a) Image ’Lena’ (b) Trivial connection: anisotropic diffu-
sion preserving strong edges

(c) Optimal connection relatively to the
group R+∗: better preservation of the tex-
ture on the hat

Fig. 2 Heat diffusions of the color image ’Lena’ induced by generalized Laplacians associated with connection 1-forms
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(a) Image ’Barbara’

(b) Trivial connection: no enhancement of the contrast (c) Connection relatively to the group SO(3): enhance-
ment of the contrast in the chrominance component

(d) Connection relatively to the group R+∗: enhance-
ment of the contrast in the luminance component

(e) Connection relatively to the group DC(3): enhance-
ment of the contrast in luminance and chrominance
components

Fig. 3 Heat diffusions of the color image ’Barbara’ induced by generalized Laplacians associated with connection 1-forms
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(a) Image ’Lake’

(b) Trivial connection: no enhancement of the contrast (c) Connection relatively to the group SO(3): enhance-
ment of the contrast in the chrominance component

(d) Connection relatively to the group R+∗: enhance-
ment of the contrast in the luminance component

(e) Connection relatively to the group DC(3): enhance-
ment of the contrast in luminance and chrominance
components

Fig. 4 Heat diffusions of the color image ’Lake’ induced by generalized Laplacians associated with connection 1-forms


