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Abstract In the context of fibre bundles theory, there
exist some differential operators of order 2, called gen-
eralized Laplacians, acting on sections of vector bun-
dles over Riemannian manifolds, and generalizing the
Laplace-Beltrami operator. Such operators are deter-
mined by the choice of a covariant derivative on the
vector bundle. In this paper, we construct a class of
generalized Laplacians, devoted to multi-channels im-
age processing, from the construction of particular co-
variant derivatives. The construction requires to deal
with the notion of associated bundle, that relates prin-
cipal and vector bundles by the choice of a group repre-
sentation. In particular, covariant derivatives are deter-
mined by connection 1-forms on principal bundles. We
consider a minimization problem to construct particu-
lar connection 1-forms. Then, from the heat equation
of the corresponding Laplacians, we obtain a class of
diffusions whose behaviours depend of the choice of the
group representation. We provide experiments on grey-
level and color images.
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1 Introduction

The Laplace-Beltrami operator is the natural differen-
tial operator acting on functions of a Riemannian man-
ifold. It is involved widely in image processing/analysis
and computer vision, as for image regularization from
the corresponding heat equation [10],[11] and shape anal-
ysis from the approximation of its spectrum [4],[8],[9].

In [1],[2] Batard introduced generalized Laplacians in
the context of image and more generally vector-valued
field regularization. They are second order differential
operators acting on sections of vector bundles over Rie-
mannian manifolds. They are determined by two geo-
metric data, i.e. a Riemannian metric on the base man-
ifold and a covariant derivative on the vector bundle. In
this setting, the Laplace-Beltrami operator appears to
be a generalized Laplacian on a vector bundle of rank 1
equipped with the trivial connection. We refer to [3] for
more details about these operators. In [2], it is showed
that the methods developed in [11],[13],[14],[15],[16] for
color image regularization may be viewed as heat equa-
tions associated to generalized Laplacians. Then, par-
ticular covariant derivatives that take into account the
specificity of color images were constructed. By the heat
equations of the corresponding generalized Laplacians,
new diffusions of color images were performed. How-
ever, the constructed covariant derivatives were trivial
in the sense that they were constant with respect to the
point.

The notions of covariant derivative and connection 1-
form are at the heart of differential geometry of man-
ifolds and fibre bundles. They play also a fundamen-
tal role in the mathematical description of physics, as
in general relativity [5] and Gauge fields [7] theories.
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However, such notions have been few investigated in the
field of computer vision. Let us cite for example Duits
et al. [6] where a Cartan connection is contructed on the
tangent bundle of SE(3) yielding a left-invariant diffu-
sion for the purpose of crossing-preserving smoothing
of HARDI images.

In this paper, we construct a class of non trivial covari-
ant derivatives and the subsequent generalized Lapla-
cians (up to the choice of a metric on the base man-
ifold). They are parametrized by a group representa-
tion (ρ,G) acting on the acquisition space of the image,
and a positive function f on the base manifold. Then
we consider the corresponding heat equations and show
that they are suitable for applications to multi-channels
image processing. The function f determines the local
behaviour of the diffusion. More precisely, the diffusion
acts as a Beltrami flow when f = 0 and highlights data
when f > 0. Then, the group representation (ρ,G) de-
termines the nature of highlights, depending of its uni-
tary character. In this paper, we consider the dual ρC

of natural representations ρ of the groups R+∗ on R
dealing with grey-level images, and of the groups R+∗,
DC(3) of 3x3 diagonal matrices of strictly positive co-
efficients, SO(2) and SO(3) on R3 for color images.

To perform the construction of non-trivial covariant
derivatives, we deal with the notion of associated bun-
dles, that are vector bundles associated to principal
bundles through a group representation (ρ,G). In this
context, a covariant derivative is completely determined
by a connection 1-form on the principal bundle. More-
over, sections of associated bundles may be identified
with (ρ,G)-equivariant functions on principal bundles.
From the data of a connection 1-form on a principal
bundle and a Riemannian metric on the base mani-
fold, we construct a Riemannian metric on the total
space of the principal bundle by lifting up the metric
of the base manifold into the kernel of the connection
1-form, which is a called horizontal bundle. Then, we
consider a minimization problem in order to construct
optimal connection 1-forms. We deal with a Polyakov
action on the graph of functions J on a principal bundle
(P, π,M,G) twisted by the Casimir operator acting on
J . Minimizing this functional with respect to the met-
ric of the principal bundle under the constraint that
the metric of the base manifold is fixed provides opti-
mal connection 1-forms ω. Then we derive the family
of 1-forms fω, from which follows a family of covariant
derivatives on an associated bundle P ×(ρC ,G) V . We
show that the function J whose graph minimizing the
functional satisfies a generalized Laplace equation, i.e.
an equation of the form ∆f ωJ = 0, where ∆f ω is the

connection Laplacian on P ×(ρC ,G) V induced by the 1-
form fω. Then, the method of gradient descent to reach
the solution may be considered as the Euler scheme of
a PDE

∂Jt
∂t

= ∆fωJt, J0 = J (1)

and consequently provides a diffusion of the original
section J .

This paper is organized as follows. In Sect. 2, we con-
struct the minimization problems leading to heat equa-
tions of generalized Laplacians, whose corresponding
covariant derivatives are induced by optimal connection
1-forms. We first detail the method to construct a Rie-
mannian metric on the total space of a principal bundle
from the data of a Riemannian metric on the base man-
ifold and a horizontal bundle. We give explicit expres-
sions for the Lie groups involved in this paper, i.e. R+∗,
SO(2), DC(3) and SO(3). Then we present the func-
tional we are dealing with, and the minimization prob-
lems with respect to the connection 1-form and function
on principal bundle. In Sect. 3, we give the expressions
of optimal connection 1-forms for the different group
presented in this paper, from which we give the expres-
sions of the corresponding covariant derivatives on the
associated vector bundles for dual representations ρC .
At last, in Sect. 4, we propose applications to grey-level
and color image processing. We first give a physical in-
terpretation of the notion of (ρC , G)-equivariance for
images. Then, we show experiments by computing the
discrete approximation of the PDE (1) for differents
functions f and for the Lie group representations men-
tioned above.

2 Kernels of generalized Laplacians as solution
spaces of a minimization problem

For the reader who is not familiar with the notions re-
lated to the differential geometry of fiber bundles, we
refer to [12] for a complete introduction.

2.1 Riemannian metric on principal bundle induced by
a horizontal bundle

2.1.1 The general construction

Let (P, π,M,G) be a principal bundle, where the base
manifold M is of dimension m, the Lie group G is
of dimension n, and π : P −→ M is the projection
from the total manifold P to the base manifold M . For
the sake of shortness, we assimilate sometimes P and
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(P, π,M,G), and more generally any fiber bundle with
its total manifold. Let g and B be respectively a Rie-
mannian metric on M and a bi-invariant Riemannian
metric on G. Let HP be a horizontal subbundle of the
tangent bundle TP of P .

We construct a Riemannian metric h on P from g,B
and HP as follows.

Let (e1, · · · , em) be an orthonormal frame of TM with
respect to g. Let (eh1 , · · · , ehm) be the horizontal lift of
(e1, · · · , em) on HP . Let (X1, · · · , Xn) be a set of or-
thogonal vectors of TeG = g with respect to B. Let
(Xv

1 , · · · , Xv
n) be the frame of V P , the vertical subbun-

dle of TP , defined for i = 1, · · · , n by

Xv
i (p) =

(
d

dt
p · exp(tXi)

)
|t=0

where · denotes the action of G on the fibers of P . Then,
considering the metric h on TP given by the Identity
matrix field in the frame (eh1 , · · · , ehm, Xv

1 , · · · , Xv
n) of

TP turns (P, h) into a Riemannian manifold.

Remark 1 The subbundles HP and V P are orthogonal
with respect to h.

Remark 2 By theG-equivariance of the subbundlesHP
and V P , the metric h is completely determined by its
values along a section of P .

2.1.2 A particular case: base manifold of dimension 2
and matrix Lie groups

For the purpose of applications to image processing, we
focus on the particular case where the base manifold
M is of dimension 2 and the Lie group G is a matrix
Lie group. Let (x1, x2) and (a1, · · · , an) be respectively
coordinates systems of M and G. In what follows, we
compute the matrix representation of the metric h in
the frame (∂/∂x1, ∂/∂x2, ∂/∂a1, · · · , ∂/∂an) of TP .

For matrix Lie groups, the linear tangent map TRg0
of the right translation Rg0 is given by

TRg0(A) = A · g0

where · denotes the matrix multiplication.

Let p0 be the section of P of the form p0(x1, x2) =
Φ(x1, x2, e) where Φ is a trivialization of the bundle
and e is the neutral element of G. For the sake of clar-
ity, we omit the trivialization Φ from now on. By def-
inition of a subbunble HP of P , there exist functions

α1, α2, β1, β2, γ11, · · · , γ1n, γ21, · · · , γ2n on M such that

Hp0P = V ect

{
α1 ∂/∂x1 + β1 ∂/∂x2 +

n∑
k=1

γ1k ∂/∂ak,

α2 ∂/∂x1 + β2 ∂/∂x2 +
n∑
k=1

γ2k ∂/∂ak

}
and Tp0P = Hp0P ⊕ V ect{∂/∂a1, · · · , ∂/∂an}. Then,
by the G-equivariance property of HP , we have

Hp0·g0P =

V ect

{
Tp0R̃g0

(
α1 ∂/∂x1 + β1 ∂/∂x2 +

n∑
k=1

γ1k ∂/∂ak

)
,

Tp0R̃g0

(
α2 ∂/∂x1 + β2 ∂/∂x2 +

n∑
k=1

γ2k ∂/∂ak

)}

= V ect

{
α1 ∂/∂x1 + β1 ∂/∂x2 +

(
n∑
k=1

γ1k ∂/∂ak

)
· g0,

α2 ∂/∂x1 + β2 ∂/∂x2 +

(
n∑
k=1

γ2k ∂/∂ak

)
· g0

}
Finally, the data of smooth functions
α1, α2, β1, β2, γ11, · · · , γ1n, γ21, · · · , γ2n on M such that
α1β2 − α2β1 never vanishes completely determines the
subbundle HP .

In the frame (α1∂/∂x1+β1∂/∂x2, α2∂/∂x1+β2∂/∂x2),
we have

∂/∂x1 =
1

α1β2 − α2β1

(
β2

−β1

)

∂/∂x2 =
1

α1β2 − α2β1

(
−α2

α1

)
Then, denoting respectively by ∂/∂x h

1 and ∂/∂x h
2 the

liftings of ∂/∂x1 and ∂/∂x2 in HP , we have

∂/∂x h
1 =

∂/∂x1+
1

α1β2 − α2β1

(
n∑
k=1

[(β2γ1k − β1γ2k)] ∂/∂ak

)
·g0

∂/∂x h
2 =

∂/∂x2+
1

α1β2 − α2β1

(
n∑
k=1

[(α1γ2k − α2γ1k)] ∂/∂ak

)
·g0

We put

A =
1

α1β2 − α2β1

(
n∑
k=1

(β2γ1k − β1γ2k)∂/∂ak

)
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B =
1

α1β2 − α2β1

(
n∑
k=1

(α1γ2k − α2γ1k)∂/∂ak

)
Following Sect. 2.1.1, we construct a Riemannian metric
h on P of matrix representation

H =
(
g11 g12
g21 g22

)
⊕ C

in the frame (∂/∂x h
1 , ∂/∂x

h
2 , ∂/∂a1, · · · , ∂/∂an),

where {gij} is the matrix representation of g in the
frame (∂/∂x1, ∂/∂x2) and C = {Clk} is the matrix rep-
resentation of B in the frame (∂/∂a1, · · · , ∂/∂an).

Then, the matrix representation of h in the frame
(∂/∂x1, ∂/∂x2, ∂/∂a1, · · · , ∂/∂an) is given by

TQ−1HQ−1

where Q is the change frame field from
(∂/∂x1, ∂/∂x2, ∂/∂a1, · · · , ∂/∂an)
to (∂/∂x h

1 , ∂/∂x
h

2 , ∂/∂a1, · · · , ∂/∂an).

We have Q−1 =

1 0 0 · · · 0

0 1 0 · · · 0

(A · g0)1 (B · g0)1

...
... Idn

...
...

(A · g0)n (B · g0)n


Hence, we obtain

h11 = g11 +
n∑
l=1

n∑
k=1

Clk (A · g0)k(A · g0)l

h12 = h21 = g12 +
n∑
l=1

n∑
k=1

Clk (A · g0)l(B · g0)k

h1l = hl1 =
n∑
k=1

Ck l−2(A · g0)k, l ≥ 3

h22 = g22 +
n∑
l=1

n∑
k=1

Clk (B · g0)k(B · g0)l

h2l = hl2 =
n∑
k=1

Ck l−2(B · g0)k, l ≥ 3

hij = hji = Ci−2 j−2, i, j ≥ 3

in the frame (∂/∂x1, ∂/∂x2, ∂/∂a1, · · · , ∂/∂an).

2.1.3 Example 1: The Lie Group R+∗

The map ψ : a 7−→ exp(a) determines a chart of R+∗.

The metric B on R+∗ determined by a strictly positive
scalar δ in the frame (∂/∂a) is a bi-invariant Rieman-
nian metric. Hence, in the frame (∂/∂x1, ∂/∂x2, ∂/∂a),
h is given by the matrix representation

h11 =g11+δ
(β2γ1 − β1γ2)2

(α1β2 − α2β1)2
, h22 =g22+δ

(α1γ2 − α2γ1)2

(α1β2 − α2β1)2

h12 =h21 =g12 + δ
(β2γ1−β1γ2)(α1γ2−α2γ1)

(α1β2 − α2β1)2
, h33 =δ

h13 =h31 =δ
β2γ1 − β1γ2

α1β2 − α2β1
, h23 =h32 =δ

α1γ2 − α2γ1

α1β2 − α2β1

2.1.4 Example 2: The Lie Group SO(2)

The map ψ : θ 7−→
(

cos θ sin θ
− sin θ cos θ

)
determines a local

chart of SO(2).

The metric B on SO(2) determined by a strictly posi-
tive scalar δ in the frame (∂/∂θ) is a bi-invariant Rie-
mannian metric. As a consequence, in the local frame
(∂/∂x1, ∂/∂x2, ∂/∂θ), h is given by the matrix field

h11 =g11+δ
(β2γ1 − β1γ2)2

(α1β2 − α2β1)2
, h22 =g22+δ

(α1γ2 − α2γ1)2

(α1β2 − α2β1)2

h12 =h21 =g12 + δ
(β2γ1−β1γ2)(α1γ2−α2γ1)

(α1β2 − α2β1)2
, h33 =δ

h13 =h31 =δ
β2γ1 − β1γ2

α1β2 − α2β1
, h23 =h32 =δ

α1γ2 − α2γ1

α1β2 − α2β1

2.1.5 Example 3: The Lie Group DC(3)

The map ψ : (a1, a2, a3) 7−→
exp(a1) 0 0

0 exp(a2) 0

0 0 exp(a3)


determines a chart of DC(3).

The metric B on DC(3) given by the matrix field C =
δ I3 in the frame (∂/∂a1, ∂/∂a2, ∂/∂a3), where δ is a
strictly positive scalar, is a bi-invariant Riemannian
metric.

It follows that the matrix representation of h in the
frame (∂/∂x1, ∂/∂x2, ∂/∂a1, ∂/∂a2, ∂/∂a3) is given by
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h11 = g11 +
δ

(α1β2−α2β1)2
(∑3

k=1(β2γ1k−β1γ2k)2
)

h12 = h21 = g12+
δ

(α1β2−α2β1)2
(∑3

k=1(β2γ1k−β1γ2k)(α1γ2k−α2γ1k)
)

h22 = g22 +
δ

(α1β2−α2β1)2
(∑3

k=1(α1γ2k−α2γ1k)2
)

h13 = h31 =
δ

(α1β2−α2β1)
(β2γ11−β1γ21)

h14 = h41 =
δ

(α1β2−α2β1)
(β2γ12−β1γ22)

h15 = h51 =
δ

(α1β2−α2β1)
(β2γ13−β1γ23)

h23 = h32 =
δ

(α1β2−α2β1)
(α1γ21−α2γ11)

h24 = h42 =
δ

(α1β2−α2β1)
(α1γ22−α2γ12)

h25 = h52 =
δ

(α1β2−α2β1)
(α1γ23−α2γ13)

h33 = h44 = h55 = δ

h34 = h43 = h35 = h53 = h45 = h54 = 0

2.1.6 Example 4: The Lie Group SO(3)

The map ψ : (θ1, θ2, θ3) 7−→ R(θ1,θ2,θ3) =

cos θ2 cos θ3 cos θ2 sin θ3 sin θ2

− cos θ1 sin θ3 cos θ3 cos θ1 cos θ2 sin θ1
− cos θ3 sin θ2 sin θ1 − sin θ2 sin θ3 sin θ1

− cos θ3 cos θ1 sin θ2 − cos θ1 sin θ2 sin θ3 cos θ2 cos θ1
+ sin θ3 sin θ1 − cos θ3 sin θ1


determines a local chart of SO(3).

The metric B on SO(3) given by the matrix field

C =


δ 0 δ sin θ2

0 δ 0

δ sin θ2 0 δ


in the frame (∂/∂θ1, ∂/∂θ2, ∂/∂θ3), where δ is a strictly
positive scalar, is a bi-invariant Riemannian metric.

Hence, in the frame (∂/∂x1, ∂/∂x2, ∂/∂θ1, ∂/∂θ2, ∂/∂θ3),
the matrix representation of the metric h is given by

h11 = g11 +
δ

(α1β2−α2β1)2
(∑3

k=1(β2γ1k−β1γ2k)2
)

h12 = h21 = g12+

δ

(α1β2−α2β1)2
(∑3

k=1(β2γ1k−β1γ2k)(α1γ2k−α2γ1k)
)

h22 = g22 +
δ

(α1β2−α2β1)2
(∑3

k=1(α1γ2k−α2γ1k)2
)

h13 = h31 =
δ

(α1β2−α2β1)
(cos θ2 cos θ3(β1γ21−β2γ11)

− cos θ2 sin θ3(β1γ22−β2γ12) + sin θ2(β2γ13−β1γ23))

h14 = h41 =
δ

(α1β2−α2β1)
(sin θ3(β2γ11−β1γ21)

+ cos θ3(β2γ12−β1γ22))

h15 = h51 =
δ

(α1β2−α2β1)
(β2γ13−β1γ23)

h23 = h32 =
δ

(α1β2−α2β1)
(cos θ2 cos θ3(α1γ21−α2γ11)

− cos θ2 sin θ3(α1γ22−α2γ12) + sin θ2(α1γ23−α2γ13))

h24 = h42 =
δ

(α1β2−α2β1)
(sin θ3(α1γ21−α2γ11)

+ cos θ3(α1γ22−α2γ12))

h25 = h52 =
δ

(α1β2−α2β1)
(α1γ23−α2γ13)

h33 = h44 = h55 = δ

h34 = h43 = h45 = h54 = 0 h35 = h53 = δ sin θ2

2.2 A twisted Polyakov action on principal bundles

Let (P, π,M,G) be a principal bundle, ρ a representa-
tion of G on a vector space V equipped with the stan-
dard scalar product ( , ). Let J : P −→ V be a smooth
function. We denote by ϕ the graph of J .

Let h be a Riemannian metric on P induced by a Rie-
mannian metric g on M and a horizontal subbundle
HP of TP following the construction of Sect. 2.1. Let
Q be a Riemannian metric on P × V .

We consider the following functional which measures
the energy of the embedding ϕ : (P, h) −→ (P × V,Q)
twisted by the action of the Casimir operator

S =
∫
P

hµν
∂ϕi

∂xµ

∂ϕj

∂xν
Qij+

1
2

(Cas J, J) dP (2)

where the Casimir operator Cas ∈ End(V ) is defined
by

Cas =
∑

ρ∗(gi) 2
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for any orthonormal basis (g1, · · · , gn) of the Lie alge-
bra g of G, where ρ∗ : g −→ End(V) is the Lie algebra
representation induced by ρ.

The role of the extra term 1/2(CasJ, J) in (2) will ap-
pear in the proof of the following Proposition.

Proposition 1 Assuming that Q = H⊕κ IdimV , for a
Riemannian metric H on P and strictly positive con-
tant κ, then the function Jopt whose graph ϕopt mini-
mizes the action (2) may be approximated by a (ρ,G)-
equivariant function.

Proof Let ϕ be an embedding of a Riemannian manifold
(M, g) into a Riemannian manifold (N,h). It is well-
know that the Euler-Lagrange equations of the Polyakov
action

X =
∫
M

gµν
∂ϕi

∂xµ

∂ϕj

∂xν
hij dM

with respect to ϕ are

− 1
2
√
g
hil

∂X

∂ϕl
= ∆gϕ

i + Γ ijk∂µϕ
j∂νϕ

khµν = 0 (3)

Then, considering the functional (2) with the assump-
tion that Q = H ⊕ κ IdimV , the Euler-Lagrange equa-
tions with respect to J are

(∆h ⊗ 1 + Cas) J = 0 (4)

Under the identification between (ρ,G)-equivariant func-
tions on P and sections of P ×(ρ,G) V , the equation (4)
may be rewritten ∆AJ = 0 where ∆A is the operator∑

ij

gij
(
∇A∂i
∇A∂j
−
∑
k

Γ kij ∇A∂k

)
that is the connection Laplacian associated with the co-
variant derivative ∇A induced by HP on P ×(ρ,G) V .
We refer to [3] for the proof of the identification be-
tween the operators (∆h ⊗ 1 + Cas) and ∆A.

The gradient descent

Jt+dt = Jt + dt∆AJt, J0 = J (5)

for reaching the solution preserves the structure of sec-
tion of associated bundle, and consequently the scheme

Jt+dt = Jt + dt (∆h ⊗ 1 + Cas)Jt (6)

preserves the (ρ,G)-equivariance property. Hence, tak-
ing as initial condition a (ρ,G)-equivariant function, the
scheme (6) provides a set of (ρ,G)-equivariant functions
approximating the solution of (4). ut
Remark 3 The gradient descent (5) may be viewed as
the Euler scheme of a PDE
∂Jt
∂t

= ∆AJt, J0 = J (7)

that is a heat equation of a generalized Laplacian. Hence,
the scheme (5) provides a diffusion of the section J .

3 Some optimal connection 1-forms and
corresponding covariant derivatives

We restrict the functional (2) at the points of the form
Φ(x, e) for x ∈M , i.e.

S =
∫
Φ(M×{e})

hµν
∂ϕi

∂xµ

∂ϕj

∂xν
Qij +

1
2

(Cas J, J) dM (8)

and minimize it with respect to horizontal bundles along
the section s : x 7→ Φ(x, e). Then we obtain the expres-
sion of optimal horizontal bundles along the section s,
from which we derive the expression of optimal connec-
tion 1-forms along s. By the lifting down procedure, we
obtain a g-valued 1-form A on M , given by

A = s∗ω

from which we obtain the expression of the correspond-
ing covariant derivative∇A, relatively to the trivializing
section s, on the associated bundle P ×(ρC ,G) V by

∇AXJ = dXJ + ρ∗(A)(X)J

for X being a tangent vector field on M , and ρC a dual
representation of G on V .

In what follows, when dealing with the Lie groups G
of Sect. 2, we assume that Q is of the form I2⊕C⊕κIn
in the frame induced by the standard coordinates sys-
tem on P × V . We also assume that J is a (ρC , G)-
equivariant function, and we denote by I : M −→ V

the function defined by

I(x) = J ◦ Φ (x, e)

3.1 The case of Lie groups of dimension 1

3.1.1 Construction of optimal connection 1-forms

Following Sect. 2.1.2, the horizontal bundle HP along
the section s is of the form

V ect {α1∂/∂x1 + β1∂/∂x2 + γ1∂/∂a,

α2∂/∂x1 + β2∂/∂x2 + γ2∂/∂a}

for some functions α1, α2, β1, β2, γ1, γ2 on M .

We assume that the functions α1, α2, β1, β2 are con-
stant. Then, computing the Euler-Lagrange equations
of (8) with respect to the functions γ1 and γ2, we obtain
a unique solution, given for k = 1, 2 by
γk =(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1[
αk

(
∂ϕi

∂x1

∂ϕj

∂a
Qij

)
+βk

(
∂ϕi

∂x2

∂ϕj

∂a
Qij

)]
It follows the expression of the horizontal bundle HP
along s.
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3.1.2 Lifting down of the connection 1-form on M

Let X be a tangent vector field on P along the section s
of the form α∂/∂x1 + β ∂/∂x2 + γ ∂/∂a for some func-
tions α, β, γ on M . The connection 1-form ω induced by

HP is given along s by ω(X) =

[
γ +

(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1

×
(
−α∂ϕ

i

∂x1

∂ϕj

∂a
Qij−β

∂ϕi

∂x2

∂ϕj

∂a
Qij

)]
∂/∂a

By the lifting down procedure induced by s, we obtain
a 1-form A on M given by A(α∂/∂x1 + β ∂/∂x2)(x) =
ω(α∂/∂x1 + β ∂/∂x2 + 0 ∂/∂a)(x, e).

3.1.3 Corresponding covariant derivative for the
unique dual representation ρC of R+∗ on Rn

Writing the 1-form A as A1∂/∂a, we have ρC∗ (A) =
−A1In, and the nonzero symbols of the corresponding
covariant derivative ∇A are the terms Υ klk given by

Υ klk(x) = (ρC∗ A)kk(∂/∂xl)(x)

=
(
∂ϕi

∂a

∂ϕj

∂a
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂a
Qij (x, e)

Simple computations give

∂ϕi

∂a

∂ϕj

∂a
Qij (x, e) = δ + κ

(
n∑
p=1

Ip2
)

(x)

and

∂ϕi

∂xl

∂ϕj

∂a
Qij (x, e) = −κ

(
n∑
p=1

Ipxl
Ip

)
(x)

3.1.4 Corresponding covariant derivative for a class of
unitary dual representations ρC of SO(2) on R3

The maps

ρC
P

: θ 7−→ rotation of angle − θ in the plane P

where P is a 2-plan in R3 are unitary representations
of SO(2) on R3.

Writing the 1-form A as A1∂/∂θ, we can show that
ρC∗ (A) is of the form

ρC
P∗(A) = A1


0 −γ12 −γ13

γ12 0 −γ23

γ13 γ23 0



for some γ12, γ13, γ23 ∈ R such that γ2
12 +γ2

13 +γ2
23 = 1,

and the nonzero symbols of the corresponding covariant
derivative ∇A are the terms Υ klp given by

Υ klp(x) = (ρC
P∗A)kp(∂/∂xl)(x) = −Υ plk(x)

= (−1)l+1γkp

(
∂ϕi

∂θ

∂ϕj

∂θ
Qij

)−1
∂ϕi

∂xl

∂ϕj

∂θ
Qij (x, e)

for k 6= p. Moreover, we have

∂ϕi

∂θ

∂ϕj

∂θ
Qij (x, e) = δ+

κ
(

(γ12I
2+γ13I

3)2+(γ12I
1−γ23I

3)2+(γ13I
1+γ23I

2)2
)

(x)

and

∂ϕi

∂xl

∂ϕj

∂θ
Qij (x, e) = −κ×(

I1
xl

(−γ12I
2−γ13I

3)+I2
xl

(γ12I
1−γ23I

3)+I3
xl

(γ13I
1+γ23I

2)
)

(x)

3.2 The case of Lie groups of dimension 3

3.2.1 Construction of optimal connection 1-forms

Following Sect. 2.1.1, the horizontal bundle HP along
the section s is of the form

V ect
{
α1∂/∂x1 + β1∂/∂x2 +

∑3
k=1 γ1k ∂/∂ak,

α2∂/∂x1 + β2∂/∂x2 +
3∑
k=1

γ2k ∂/∂ak

}

for some functions α1, α2, β1, β2, γ11, γ12, γ13, γ21, γ22, γ23

on M .

We assume that the functions α1, α2, β1, β2 are con-
stant. Then, computing the Euler-Lagrange equations
of (8) with respect to the functions γij , we obtain a
unique solution given by

γl1 = λ

[
αl

(
(fd−e2)

∂ϕi

∂x1

∂ϕj

∂a1
Qij+(ce−fb)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(be− dc)∂ϕ
i

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(fd− e2)

∂ϕi

∂x2

∂ϕj

∂a1
Qij

+(ce− fb)∂ϕ
i

∂x2

∂ϕj

∂a2
Qij + (be− dc)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]

γl2 = λ

[
αl

(
(ce−fb)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij+(af−c2)

∂ϕi

∂x1

∂ϕj

∂a2
Qij
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+(bc− ae)∂ϕ
i

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(ce− fb)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij

+(af − c2)
∂ϕi

∂x2

∂ϕj

∂a2
Qij + (bc− ae)∂ϕ

i

∂x2

∂ϕj

∂a3
Qij

)]

γl3 = λ

[
αl

(
(be−dc)∂ϕ

i

∂x1

∂ϕj

∂a1
Qij+(bc−ae)∂ϕ

i

∂x1

∂ϕj

∂a2
Qij

+(ad− b2)
∂ϕi

∂x1

∂ϕj

∂a3
Qij

)
+ βl

(
(be− dc)∂ϕ

i

∂x2

∂ϕj

∂a1
Qij

+(bc− ae)∂ϕ
i

∂x2

∂ϕj

∂a2
Qij + (ad− b2)

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]
for l = 1, 2, where λ = 1/(2cbe+ fad− e2a− fb2− c2d)
and

a =
∂ϕi

∂a1

∂ϕj

∂a1
Qij b =

∂ϕi

∂a1

∂ϕj

∂a2
Qij c =

∂ϕi

∂a1

∂ϕj

∂a3
Qij

d =
∂ϕi

∂a2

∂ϕj

∂a2
Qij e =

∂ϕi

∂a2

∂ϕj

∂a3
Qij f =

∂ϕi

∂a3

∂ϕj

∂a3
Qij

.

It follows the expression of the horizontal bundle HP
along s.

3.2.2 Lifting down of the connection 1-form on M

Let X be a tangent vector field on P along the section s
of the form α∂/∂x1 +β ∂/∂x2 + γ1 ∂/∂a1 + γ2 ∂/∂a2 +
γ3∂/∂a3 for some functions α, β, γ1, γ2, γ3 on M . The
connection 1-form ω induced by HP is given along s by
ω(X) =[
γ1 − λ

[
(fd− e2)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)
+(ce−fb)

(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(be−dc)×(

α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a1

+
[
γ2 − λ

[
(ce− fb)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)
+(af−c2)

(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(bc−ae)×(

α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a2

+
[
γ3 − λ

[
(be− dc)

(
α
∂ϕi

∂x1

∂ϕj

∂a1
Qij + β

∂ϕi

∂x2

∂ϕj

∂a1
Qij

)
+(bc−ae)

(
α
∂ϕi

∂x1

∂ϕj

∂a2
Qij + β

∂ϕi

∂x2

∂ϕj

∂a2
Qij

)
+(ad−b2)×(

α
∂ϕi

∂x1

∂ϕj

∂a3
Qij + β

∂ϕi

∂x2

∂ϕj

∂a3
Qij

)]]
∂/∂a3

By the lifting down procedure induced by s, we obtain
a 1-form A given by A(α∂/∂x1 + β ∂/∂x2)(x) =

ω(α∂/∂x1+β ∂/∂x2+0 ∂/∂a1+0 ∂/∂a2+0 ∂/∂a3)(x, e)

3.2.3 Corresponding covariant derivative for the
unique dual ρC representation of DC(3) on R3

Writing the 1-form A as A1∂/∂a1+A2∂/∂a2+A3∂/∂a3,
we have ρC∗ (A) = −diag(A1, A2, A3). and the nonzero
symbols of the corresponding covariant derivative ∇A
are

Υ 1
l1(x) = (ρ∗A)11(∂/∂xl)(x)

= λ

[
c2c3

∂ϕi

∂xl

∂ϕj

∂a1
Qij

]
(x, e)

Υ 2
l2(x) = (ρ∗A)22(∂/∂xl)(x)

= λ

[
c1c3

∂ϕi

∂xl

∂ϕj

∂a2
Qij

]
(x, e)

Υ 3
l3(x) = (ρ∗A)33(∂/∂xl)(x)

= λ

[
c1c2

∂ϕi

∂xl

∂ϕj

∂a3
Qij

]
(x, e)

Simple computations give

∂ϕi

∂xl

∂ϕj

∂ak
Qij(x, e) = −κ Ikxl

Ik (x)

for l = 1, 2, k = 1, 2, 3, and

cp(x, e) = δ + κ Ip2(x), p = 1, 2, 3

3.2.4 Corresponding covariant derivative for the
unique dual representation ρC of SO(3) on R3

Writing the 1-form A as A1∂/∂θ1+A2∂/∂θ2+A3∂/∂θ3,
we have

ρC∗ (A) =


0 −A3 −A2

A3 0 −A1

A2 A1 0


and the nonzero symbols of the corresponding covariant
derivative ∇A are

γ1
l2(x) = (ρC∗ A)12(∂/∂xl)(x) = −γ2

l1(x)

= λ

[
(be− dc)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (bc− ae)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(ad− b2)
∂ϕi

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ1
l3(x) = (ρC∗ A)13(∂/∂xl)(x) = −γ3

l1(x)

= λ

[
(ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ1
Qij + (af − c2)

∂ϕi

∂xl

∂ϕj

∂θ2
Qij
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+(bc− ae)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

γ2
l3(x) = (ρC∗ A)23(∂/∂xl)(x) = −γ3

l2(x)

= λ

[
(fd− e2)

∂ϕi

∂xl

∂ϕj

∂θ1
Qij + (ce− fb)∂ϕ

i

∂xl

∂ϕj

∂θ2
Qij

+(be− dc)∂ϕ
i

∂xl

∂ϕj

∂θ3
Qij

]
(x, e)

for l = 1, 2. Simple computations show that

∂ϕi

∂xl

∂ϕj

∂θ1
Qij(x, e) = −κ(I2

xl
I3 − I3

xl
I2)(x)

∂ϕi

∂xl

∂ϕj

∂θ2
Qij(x, e) = −κ(I1

xl
I3 − I3

xl
I1)(x)

∂ϕi

∂xl

∂ϕj

∂θ3
Qij(x, e) = −κ(I1

xl
I2 − I2

xl
I1)(x)

and

a(x, e) = δ + κ(I22
+ I32

)(x) b(x, e) = κ I1I2(x)

c(x, e) = −κ I1I3(x) d(x, e) = δ + κ(I12
+ I32

)(x)

e(x, e) = κ I2I3(x) f(x, e) = δ + κ(I12
+ I22

)(x)

4 Application to image processing

4.1 From images to sections of associated bundles

Let I : Ω ⊂ R2 −→ Rn be a n-channels image given
with its coordinates (I1, · · · , In) in the acquisition space
that we embed into Rn. We endow Rn of a vector space
structure and basis (e1, · · · , en), and write

I(x1, x2) = I1(x1, x2)e1 + · · ·+ In(x1, x2)en

Let (ρ,G) be a Lie group representation on Rn. Un-
der its action on Rn, the group G acts on the basis
(e1, · · · , en). Let P be the set of basis obtained by the
transformations of (e1, · · · , en) under the action of the
group G, denoted by ·. The action of G on P is tran-
sitive and free. Denoting by π the projection of Ω × P
on Ω such that

π(x1, x2, g · (e1, · · · , en)) = (x1, x2),

the quadruplet P = (Ω × P, π,Ω,G) forms a trivial
principal bundle. The global diffeomorphism Φ : Ω ×
G −→ Ω × P is given by

Φ(x1, x2, g) = (x1, x2, g · (e1, · · · , en))

We construct the associated bundle E = P ×(ρ,G) Rn.

From the function I, we construct a (ρ,G)-equivariant
function J on P defined by

J(x1, x2, g · (e1, · · · , en)) = ρ(g)I(x1, x2) (9)

In particular, we have

J(x1, x2, (e1, · · · , en)) = I(x1, x2) (10)

since ρ(e) = Id by property of a group representation.

Under the correspondance between (ρ,G)-equivariant
functions of P and sections of E, J is a section of E of
the form J(x1, x2) = [(x1, x2, (e1, · · · , en)), I(x1, x2)],
and I the realization of J under the trivializing section
s(x1, x2) = (x1, x2, (e1, · · · , en)) = Φ(x1, x2, e) of P .

4.2 Interpretation of the (ρ,G)-equivariance for images

In this paper, we consider grey-level and color images.
We embed the grey-level space into R and the RGB

color space into R3.

By the (ρ,G)-equivariant function J we construct, we
take into account that some transformations of the light
source induce modifications of the pixels. Indeed, by
(10) we assign the basis (e1, · · · , en) to the light source
of the original image I. Then, we assimilate a basis
change given by the action g 7−→ g · (e1, · · · , en) to a
modification of the light source. By (9), the represen-
tation ρ tells how the pixels of the image change under
this basis change, and consequently under the corre-
sponding modification of the light source. By the use
of the fiber bundle context, we allow that the transfor-
mation of the light source change with respect to the
points of Ω.

Taking ρ as the dual of a natural representation of a
Lie group G on Rn makes the (ρ,G)-equivariance en-
code that pixels transform in the same way as the basis
does under the action of G. From a mathematical view-
point, it means that pixels are treated as covectors. It is
coherent with the interpretation above where we iden-
tified basis change with modification of the light source
since pixels clearly transform in the same way as the
light source does.

The action of R+∗ on the basis e1 for grey-level images
and (e1, e2, e3) for color images might be interpreted
as a homogeneous modification of the intensity of the
light source, whereas the action of DC(3) on the basis
(e1, e2, e3) might be interpreted as an inhomogeneous
modification of the light source in the red, green and
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blue components. The actions of the groups SO(3) and
SO(2) on the basis (e1, e2, e3) are more difficult to in-
terpret in terms of modification of the light source.

4.3 A class of generalized Laplacians derived from
optimal connection 1-forms

From the optimal connection 1-forms constructed in
Sect. 3.1.2 for Lie groups of dimension 1 and Sect. 3.2.2
for Lie groups of dimension 3, we derive a family of gen-
eralized Laplacians.

Let ω be such an optimal connection 1-form, s be the
section Φ(x, e) and A = s∗ω the lift down of ω on the
base manifold Ω induced by s. From ω we derive the
family ωf : = f ω, f ∈ C0(Ω) positive, of connection 1-
forms. Then, we construct a family of g-valued 1-forms
on the base manifold, defined by

Af : = s∗ωf = f s∗ω = f A

from which follows a family of covariant derivatives∇Af

on P ×(ρ,G) V given by ρ∗(Af ) = f ρ∗(A).

Then the minimization problem (2) with respect to
the embedding yields a family of connection Laplacians
∆Af associated with the covariant derivatives ∇Af .

Remark 4 For f ≡ 0, the operator ∆Af acts as the
Beltrami operator with respect to the metric of the base
manifold on each components of the sections.

4.4 Experiments

We equipp the base manifold Ω of the Riemannian met-
ric g given by the following matrix representation

g =

 1 + κ
∑n
k=1 I

k
x1

2
κ
∑n
k=1 I

k
x1
Ikx2

κ
∑n
k=1 I

k
x1
Ikx2

1 + κ
∑n
k=1 I

k
x2

2

 (11)

in the frame (∂/∂x1, ∂/∂x2), for some constant strictly
positive κ, where n = 1 dealing with grey-valued im-
ages and n = 3 for color images.

Following Sect. 3, we construct optimal connection 1-
forms ω for the dual of the natural representations of
R+∗ on R and R3, DC(3) and SO(3) on R3, as well
as SO(2) on R3 parametrized by the oriented 2-plan
(e1+e2+e3)∧e1. Note that this oriented 2-plan encodes
red hue and its non oriented counterpart encodes both

red and cyan hue. Then, we consider different functions
f : f0 ≡ 0, f1 ≡ 4 and f2 defined as follows

f2 =


4 if

√
λ+ − λ− ≥ 0.5

0 if
√
λ+ − λ− ≤ 0.49

400
√
λ+ − λ− − 196 otherwise

where λ+ and λ− are respectively the highest and low-
est eigenvalue fields of (11). Following Sect. 4.1 and 4.3
we construct the corresponding operators ∆Af on the
associated bundles.

At last, we consider the heat equations

∂It
∂t

+∆Af It = 0, I0 = I

whose solutions are approximated with the Euler scheme

It+dt = It + dt ∆Af It, I0 = I

We apply the scheme on a grey-valued image (Fig. 1(a))
and a color image (Fig. 2(a), Fig. 3(a)). The following
parameters were taken: 20 iterations, dt = 0.1, δ = 1
and κ = 0.001.

For f = f0, the diffusion corresponds to a Beltrami
flow on each component of the image. By the chosen
metric g in (11), the diffusion tends to preserve the
high edges and smooth the low ones. In particular, the
texture and noize components are smoothed (Fig. 1(b)
for grey-valued image and Fig. 2(b), Fig. 3(b) for color
image).

For f = f1, the behaviour of the diffusion follows the
action of the dual representation of the group on the ac-
quistion space, that we described in Sect. 4.1. We can
distinguish two types of behaviour, depending of the
unitary character of the representation. Indeed, dealing
with the groups R+∗ and DC(3), whose dual representa-
tions are non unitary, we observe an increase of the con-
trast, which is homogeneous in the components R,G,B
for the group R+∗ (Fig. 2(c)) (see also Fig. 1(c) for
grey-valued image) and inhomogeneous for the group
DC(3) (Fig. 2(e)). Dealing with the dual representa-
tion of SO(3) and SO(2) parametrized by the red-cyan
hues, we obtain an increase of the contrast too, but in
the chrominance part of the image. We also observe that
the diffusions induced by such groups make appear false
colors, of several hues for the case of the group SO(3)
(Fig. 3(c)), of red and cyan hue for the case of the group
SO(2) (Fig. 3(e)). False colors appear because there ex-
ist no non trivial rotation that preserve all the hues in
the RGB color space. However, whatever the nature of
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the group representation, we observe that the use of
the function f1 make highlight the edges, textures and
noize of the images.

Combining the functions f0 and f1, we present a diffu-
sion that highlights edges and textures, and smoothes
noize, i.e. a diffusion behaving like the diffusion con-
structed for f = f0 with noize and like the diffusion
constructed for f = f1 with edges and textures. As we
observe on Fig. 1(d) for the group R+∗ on grey-valued
image and Fig. 2(d) for color image, on Fig. 2(f) for the
group DC(3), on Fig. 3(d) for the group SO(3) and on
Fig. 3(f) for the group SO(2), the diffusion induced by
the function f2 constructed above fullfills these proper-
ties. Indeed, we use the function

√
λ+ − λ− as a thresh-

old for separating edges and textures from noize. Such
a function is widely used in image segmentation meth-
ods. However, as textures and edges are not separated,
false colors still appear on the textures dealing with the
groups SO(3) and SO(2).

5 Conclusion

In this paper, we constructed a class of covariant deriva-
tives, parametrized by a positive function f on the base
manifold, and showed that the corresponding connec-
tion Laplacians are suitable operators in the context of
image processing (up to a choice of a suitable Rieman-
nian metric on the base manifold). Such a construc-
tion required to deal with the notion of bundle asso-
ciated to principal bundle through a group representa-
tion (ρ,G). In this context, an image may be viewed
as (ρ,G)-equivariant function on the principal bundle.
We considered the dual representations of the group
R+∗ on R for grey-level images, and of the groups R+∗,
DC(3), SO(2), SO(3) on R3 for color images. Such rep-
resentations make the pixels of an image be treated as
covectors. We showed that the behaviour of the diffu-
sion depends of the unitary character of the represen-
tation. Further work will be devoted to construct new
functions f in order to perform new kinds of diffusion
of multi-channels images, and to provide experiments
on other kinds of vector-valued data.

References

1. Batard, T.: Clifford Bundles: A Common Framework for Im-

ages, Vector Fields and Orthonormal Frame Fields Regu-
larization. SIAM Journal in Imaging Sciences 3(3) 670-701

(2010)

2. Batard, T.: Heat Equations on Vector Bundles-Application
to Color Image Regularization. Journal of Mathematical

Imaging and Vision 41(1-2), 59-85 (2011)

3. Berline, N., Getzler, E., Vergne M.: Heat Kernels of Dirac
Operators. Springer, Heidelberg (2004)

4. Bronstein, A.M., Bronstein, M.M, Kimmel, R., Mahmoudi,

M., Sapiro, G.: A Gromov-Hausdorff Framework with Dif-
fusion Geometry for Topologically-Robust Non-rigid Shape

Matching. International Journal of Computer Vision 89(2-
3), 266-286 (2009)

5. Dirac, P.A.M.: General Theory of Relativity. Princeton Uni-

versity Press (1996)
6. Duits, R., Franken, E.: Left-Invariant Diffusions on the

Space of Positions and Orientations and their Application

to Crossing-Preserving Smoothing of HARDI images. Inter-
national Journal of Computer Vision 92(3), 231-264 (2011)
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(a) Grey-valued image (b) R+∗ for f = f0

(c) R+∗ for f = f1 (d) R+∗ for f = f2

Fig. 1 Grey-valued image diffusions from heat equations of generalized Laplacians parametrized by a function f and the unique dual
representation of R+∗ on R.
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(a) Color image (b) R+∗, DC(3) for f = f0

(c) R+∗ for f = f1 (d) R+∗ for f = f2

(e) DC(3) for f = f1 (f) DC(3) for f = f2

Fig. 2 Color image diffusions from heat equations of generalized Laplacians parametrized by a function f and the unique dual
representations of the Lie groups R+∗ and DC(3) on R3.
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(a) Color image (b) SO(3), SO(2) for f = f0

(c) SO(3) for f = f1 (d) SO(3) for f = f2

(e) SO(2) parametrized by P = (e1+e2+e3)∧e1 and f = f1 (f) SO(2) parametrized by P = (e1+e2+e3)∧e1 and f = f2

Fig. 3 Color image diffusions from heat equations of generalized Laplacians parametrized by a function f and dual representations
of the groups SO(3) and SO(2) on R3 (unique for SO(3) and parametrized by (e1 + e2 + e3) ∧ e1 for SO(2)).


