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Abstract

We prove, under the exterior geometric control condition, the Kato smoothing effect for
solutions of an inhomogenous and damped Schrédinger equation on exterior domains.
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1 Introduction and results

This paper is devoted to the study of a smoothing effect for a damped Schrédinger equation on
exterior domain. In order to formulate the results, we shall begin by recalling some results for
Schrodinger equation linking the regularity of solutions and the geometry of domain where these
equations are posed.

It is well known that the free Schrédinger equation enjoys the property of the > smoothing effect,
which can be described as follows: For any distribution uy of compact support, the solution of the
Cauchy problem

(i8; + A)u=0in R x R
U|t=0 = U0,

is infinitely differentiable with respect to t and = when ¢ # 0 and z € RY.
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Another type of smoothing effect says that if ug € L?(R?) then the solution of the Schrédinger
equation satisfies the Kato 1-smoothing effect (H'/?-smoothing effect):

/R H@VWM“)

This property of gain of regularity has been first observed in the case of R? in the works of Constantin-
Saut [12], Sj6lin [31] and Vega [33] and it has been extended locally in time to variable coefficient
operators with non trapping metric by Doi ([13, 15])).

In the case of domains with boundary Burq, Gérard and Tzvetkov [11] proved a local smooth-
ing estimate for exp(itA) in the exterior domains with non-trapping assumption. Using the 7T
argument, the proof of the smoothing effect with respect to initial data in [11] is reduced to the
non-homogeneous bound which, by performing Fourier transform in time, can be deduced from the
bounds on the cut-off resolvent:

2
2
L2(R4) S C||u0||L2> s > 1/2

IXx(A? = A) xllp2nre < C VA L

The resolvent bound, for which the non-trapping assumption plays a crucial role, is proven for
|[A] >> 1 in greater generality by Lax-Phillips [21], Melrose-Sjostrand [24, 25], Vainberg [32] and
Vazy-Zworski [34]

The Kato-effect has been extended by Robbiano and Zuily in [30] to variable coefficients operators
with unbounded potential in exterior domains with non trapping metric. The proof of their result
is reduced to an estimate localized in frequency which has been established by contradiction using
in a crucial way the semiclassical defect measure introduced by P. Gerard [17] (see also [22]). The
use of the microlocal defect measure to prove an estimate by contradiction method (Wilcox [35]) go
back to Lebeau [22]. This idea has been followed with success by several authors (see Burq [8, 9, 10]
Aloui and Khenissi [3, 4, 20]).

In [10], Burq proved that the non trapping condition is necessary for the H 1/2 smoothing effect
and showed, in the case of several convex obstacles satisfying certain assumptions, the smoothing
effect with an € > 0 loss:

IxullLz(ari/2-c(0)) < Clluollr2(),

where x is compactly supported.

On the other hand, the non-trapping assumption is also equivalent to the uniform decay of the
local energy for the wave equation (see [21, 28, 23]). For the trapping domains, when no such decay
is hoped, the idea of stabilization for the wave equation is to add a dissipative term to the equation
to force the energy of the solution to decrease uniformly. There is a large literature on the problem
of stabilization of wave equation. In the case of bounded domains, we quote essentially the work of
J. Rauch and M. Taylor [29] and the one of C. Bardos, G. Lebeau and J. Rauch [6] whose introduced
and developed the geometric control condition (GCC). This condition that asserts, roughly speaking,
that every ray of geometric optics enters the region where the damping term is effective in a uniform
time, turns out to be almost necessary and sufficient for the uniform exponential decay of waves. In
[3], Aloui and Khenissi introduced the Exterior Geometric control condition (see below Definition 1.1)
and hence extended the result of [6] to the case of exterior domains (see also [4] ).

Recently, by analogy with the stabilization problem the first author [1, 2] has introduced the forced
smoothing effect for Schrodinger equation in bounded domains; it consists to act on the equation to
produce some smoothing effects. More precisely he considered the following equation

idyu — Apu +ia(z)(—Ap)za(z)u =0 in ]0,400) x €,
u(0,.)=f in (1.1)
ulg+xa0 =0,

where 2 is a bounded domain and Ap is the Dirichlet-Laplace operator on €.
Using the strategy of [11], Aloui [2] proved a weak Kato -Smoothing effect:

||U||L2([5,T],H;+1(Q)) < CHUOHHE(Q) ) (1.2)



where 0 < e < T < oo and vy € HE (), (See [2] for the definition of Hf).

By iteration of the last result, Aloui deduced also a €°°-smoothing effect for the regularized
Schrodinger equation (1.1). Recently, Aloui, Khenissi and Vodev [5] have proved that the Geometric
control condition is not necessary to obtain the forced €°°- smoothing effect.

Ou the other hand, using the arguments of [11], we can prove, for the equation (1.1) in exterior
domains, the cut-off resolvent bound, which is sufficient to deduce the non-homogenous bound. But,
unfortunately, the generator operator Ap — ia(z)(—Ap)za(z) is not self-adjoint and then the TT*
argument fails. For this reason, we can not prove (with this strategy) the weak Kato-smoothing
effect (1.2) for exterior domains.

The question now is the following:

Can we establish the Kato-smoothing effect for the regularized Schrédinger equation (1.1) for
which the Geometric Control Condition is necessary? and if so, does this result still hold for exterior
problems?

In this paper, we give an affirmative answer. Indeed, under the Exterior Geometric Control
condition, we prove the Kato-smoothing effect and the non homogenous bound for the regularized
Schrodinger equation in exterior domains. Notice that the case of bounded domains can be treated
by the same method.

Our approach for deriving such results is to combine the strategies of Robbiano-Zuily in [30] and
Aloui-Khenissi in [3], [20].

In order to state our results, we give several notations and assumptions.

Let K be a compact obstacle in R? whose complement € an open set with > boundary 6 and p
be a second-order differential operator of the form

d
)
— Jjk =
; ;(E D) + V (x), D; . (1.3)

where coefficients /% and V are assumed to be in ¥ (R?), real valued, and b/* = v*J 1 < j,
k<d.
Throughout this paper, (z) := (1 + |2|?)2 and we denote by Sq(M, g) the Hormander’s class of
symbols if M is a weight and the metric
dz?  d¢?

= + —=.
(@) (©)°
We shall denote by p the principal symbol of P, namely

Z VR ()&,

jk=1

and we assume that
Je>0:p(x, &) > c¢)?, for z in R and ¢ in RY, (1.4)
{ (i) % € Sa(l,9), Vab*(x) = o(k), |e| = +oo, 1<j, k<d.

1.5
(ii) V € So((z)?,g), V > —Cy for some positive constant Cl. (15)

Under the assumptions (1.4) and (1.5), the operator P is essentially self-adjoint on 4§°(Q) and
we denote by P its self-adjoint extension.
Now we set
A= ((1+Co)Id+ P)'/?,

which is well defined by functional calculus of self-adjoint positive operators.
We consider the following regularized Schrodinger equation
(Dt + P)u —ialau = f in ]0, +00) x
u =0 on [0,+00) x 01, (1.6)

Ujt=0 = Uo,



where (ug, f) € €5°(Q) x €5°(]0, +00) x Q) and a € E5°(Q).
Let’s recall the Exterior Geometric Control (E.G.C.) condition [3]

Definition 1.1 (E.G.C.). Let R > 0 be such that K C Br = {|z| < R} and w be a subset of . We
say that w verifies the Exterior Geometric Control condition on Bgr (E.G.C.) if there exists T > 0
such that every generalized bicharacteristic -y starting from Bpg at time ¢ = 0, is such that:

e 7 leaves R x Bg before the time T, or

e 7 meets R™ x w between the times 0 and T'g.

We assume also that the bicaracteristics have no contact of infinite order with the boundary (see,
for a precise statement, Definition 2.11).
Under this condition on w = {z € Q,a?(x) > 0}, we can state our main result.

Theorem 1.2. Let T > 0, a € (—1/2,1/2) and s € (1/2,1]. Let P defined by (1.3) satisfying
the assumptions (1.4) and (1.5). Then under, the E.G.C on w one can find a positive constant
C(T,a,s) =C such that

Aozfl/2 s 2 d
()" f t

L2(Q)
(1.7)

T 9 T
A2 (g *su‘ dt+ sup ||A%u(t)||? <C | [|A%uq|? —+—/ ‘
J el e s W)y <O (1800l +

t€fo,

for all ug in C°(Q), f in (2 x RY), where u denotes the solution of (1.6).

Working with @ = e!1TC)ty one may assume V' > 1 in (1.5) and A = P2, which will be
assumed in the sequel. It turns into the following equation

(D¢ + P)u — iaP*?au = f in [0, 400) x Q

u=0on [0,00) x 09, (1.8)
u|t=0 = Uo,

where P > 1.

Remarks 1.3.

1. When the obstacle is nontrapping, we obtain the result of Robbiano Zuily [30] by taking
a(x) = 0 and moreover, we improve their result to non homogenous bound.

2. If we consider the equation in a bounded domain Q of R?, and replace the exterior geometric
condition (E.G.C) by the classical microlocal condition of Bardos-Lebeau-Rauch [6], we can
still prove the Kato-effect and then we improve the result of Aloui [2].

3. If there is a trapped ray which does not intersect the regularized region, due to Burq [10], the
Kato-effect does not hold. In this context, our result is thus optimal.

The rest of the paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.2
while in the Section A we shall prove some Lemmata used in Section 2.

2 Proofs

Let’s describe the strategy of the proof of theorem 1.2. In a first step, we reduce the estimate (1.7)
to an analogue one localized in frequencies. By following a contradiction argument, we can construct
an adapted microlocal defect measure. Our aim in the rest of the proof is to obtain a contradiction
on this measure. First, we prove that this measure is not identically null. Next, we show that it is
null on incoming set and on {a® > 0}. Finaly, using the geometrical assumption (E.G.C.) and that
the support of this measure is propagated along the generalized flow, we conclude that the measure
is identically null. This gives the contradiction.



2.1 Reduction to an estimate localized in frequency

We recall the Paley-Littlewood decomposition. Let ® € 65°([0, +00)) be a decreasing function such
that
P(s)=11if s<1/2, ®(s)=0 if s> 1.

Let ¢(s) = ®(471s) — ®(s), ¥(s) =0if s <1/20r s > 4,0 < < 1. For s > 0 we have

+oo
)+ Y v
n=0
and using P > 1, we have
+oo
w="> 14"
n=0

For support reason
YA "s)p(47Fs) = 0if |k —n| > 2,

thus there exists C' > 0 such that for all u € L*(Q),

lullZz () < CZ (47" PullZz(g) < C*llullzz(g)-

In the sequel we denote by h,, = 27" and u,, = up, = Y (h%P)u.
If u satisfies

Dyu + Pu —iaPY?*(au) = f, (2.1)
thus wu, is a solution of the following semi-classical Schrédinger equation:
hZ(Dy + P)u, — ihna(h2P)"? (aus) = hngn, (2.2)
where
gn = gn, = oo (5 P)f + it (5, P), a)(h, P)'/* (au) + ia(hy, P) [ (3 P), alu. (2.3)

Proposition 2.1. Let s € (1/2,1], T > 0 and o € (—1/2,1/2). Assume there exists C > 0 such
that for u, = 1(h2 P)u satisfying (2.2), we have, for all n > 1

||<$>_8Un||%2([o,ﬂx9) + hntSUPT] ||Un(t)||%2(9) <C (hn||un(0)||%2(9) + ||<37>sgn||2L2([o,T]xQ)) , (24

)

then there exists C' > 0 such that for all u satisfying (2.1) we have
[P/ H 4 ) " ull 32 o 1)<y + tes[lépﬂ 1P 2u(t)][72(0)

(2.5)
< (||Pa/2u(0)||%2(9) + ||Pa/2_1/4<37)sf||%2([07:r}x9)) :
Proof. We multiply (2.4) by h,2*~! and we sum over n € N, we obtain,
DB @)l qo,meey + D B> sup IIUn( M2
neN neN te[0,T
(2.6)
<C (Z e 2 un(0)][ 720y + D hr_zza_l||<$>sgn||i2([o,T]><Q)> :
neN neN
Now, let us estimate each term appearing in inequality (2.5). We have,
sup ([P u(t)||7z0) < C sup Y [[(h3 PYP*u(t)||72(0)
t€(0,T] t€l0,T] neN
<C sup > hi o (W P)u(t)[72(q) where (o) = a*/*¢(o)
t€0,T] ey
<CY b sup [o(ho P)u(t)]|Z2(q)- (2.7)
neN te[0,T



We have also with 9, (o) = Ua/2+1/41/1(0) )

[P @) S ull o o rey < C Y by 2 HIwn (e P) (@) ullZ2 (o 110
neN

<C Z h 227 K@) = (hE P)ull 220,11 <) ( by Lemma A8 )
neN

<C Z hy 227 ™ w72 0,10 2)- (2.8)
neN

Now we can estimate, with v (o) = o~*/%¢(0),

Y b2 a0y < C D (B PYPu(0)172(q)

neN neN
< C[|P*2u(0) 720y (2.9)

The term g,, contains three terms (see (2.3)). For the first, we have, with 15(0) = o=®/2T/4)(0),

D@ (W P) Nl o,myxay < D B T I (B P)@)* Fll 72 o,71x00)
neN neN

<Cc)y l[4bs (h2 P)P> 4 ()* Fl13 210 1y x)
neN

< CIPP7 @) £1172 o 11 x62)- (2.10)

For the second and the third terms of g, we can apply the Lemmata A.9 and A.11, to obtain with
(2.10),

> by K@) gnll72 o1 xay < CIPY @) Fll7 2 0,110y + CIPY*ulli 20, mpney- (211)
neN

Then following (2.6) (2.7), (2.8), (2.9) and (2.11), we obtain

||Pa/2+1/4<$>_su||2L2([o,T]xQ) + sup ||P“/2u(t)||%2(9)
t€[0,T]

<C (||Pa/2U(0)||%2(Q) + ||Pa/271/4<x>sf||i2([O,T}><Q) + ||Pa/2u||%2([o,:r]x9)) :

By Gronwall’s Lemma, we can remove the last term in the previous inequality and we obtain (2.5).
[

2.2 Comnstruction of microlocal defect measure

In this section we will prove the localized frequency estimate (2.4) by a contradiction argument and
using microlocal defect measure.
More precisely, let u; solution of

h?(Dy + P)uy, — iha(h*P)Y?(auy,) = hgy. (2.12)
We will prove by contradiction the following estimate,

(=)~ *unllZ20, 710 0) + hts[l(l]pT] lun(®)lZ20) < Chllun(0)IZ2() + Cll(2) gnllLz(o. 100y (213)
€lo,

Assuming it is false. Taking C' = k € N, we deduce sequences hy, i —J_ 0, u) = up, (0) € L*(Q)
ke—r+ 00

and g, = gn, € L*(Q) such that,

2 s 2
hy ||“2||L2(9) ]H—jroo 0, [|{x) 9k||L2([o,T]xQ) ]Hjm 0. (2.14)



We normalize by the left term in (2.13), thus

2

H@)_s Uk‘

+ hy sup |lup(®)| _1,
L2([0,T]x9) kte[O’T]H KO0

where, for simplicity, we have denoted up, = ur. By the Lemma A.1 we have

hg sup ||ug(t 2 - 0, 2.15
b s Ol 7 (215)
then )
oF - 1 2.16
H<$> uk‘ L2([0,7]xQ) k—>+oo (2.16)
The sequence (uy) is bounded in L7 (R, L7 .(€2)). Indeed, for R > 0, there exists ¢ > 0 such that
(z)™** > ¢, Yz € B(0,R) and then we have

T 1 (T 5 ‘ 1
/ / g [2dtd < f/ / ()2 ug [Pdtde < L. (2.17)
0 JOnBg ¢Jo JonBg c

{ wg = loug(t)
Wk = 1[07T}’wk.

We set
(2.18)

It follows from (2.17) that the sequence (W}) is bounded in L?(Ry, L7, .(R?)).
We associate to a symbol b = b(z,t,£,7) € 65°(T*R4H1) the semiclassical pseudo-differential opera-
tor (pdo) by the formula

. 1 a—y e t—s
Op(b)(y, 5, hDy, h* Dy)v(z,t) = @) // T T)go(y)b(m,t,é,T)v(y,s)dydsdde,
where ¢ € €°(R?) is equal to one on a neighborhood of the z-projection of the support of b. As in
[30] we can associate to (W}) a semi-classical measure p. More precisely,

Proposition 2.2. There exists a subsequence (Wy (1)) and a Radon measure p on T*R1 such that
for every b € €5°(T*R¥TY) one has

. 2 —
kBToo (Op(b) (mata ho iy De, hg(k)Dt) Wg(k),Wa(k))LQ(RdH) = (u,b) .

We prove first that the measure u satisfies the following property.

Proposition 2.3. The support of p is contained in the characteristic set of the operator D; + P
Y = {(z,t,&,7) € T*RT -2 € O, t € [0,T] and 7 + p(z,£) = 0}. (2.19)
Proof. According to (2.18), it is obvious that
supppu C {(z,t,&,7) € T*RY™ - € Q,t € [0,T7}.

Therefore it remains to show that if my = (o, to, &, 70) With zg € Q,t9 € [0,T], and 79+ p(z0, &) # 0
then mg ¢ supp . For simplicity, we shall denote the sequence Wy by W.

Case 1. Assume that z¢ € Q.

Let € > 0 be such that B(xzg,e) C Q, ¢ € 65°(B(z0,¢)), ¢ = 1 on B(xg, 5) and ¢ € 65°(Q),
¢ =1 on supp ¢. Let b € €5°(RY x Rg) such that 7, suppb C B(zo, 5) and x € 65°(R; x R;). Recall
that we have Wy = 11 r1louk and that (uy) is bounded sequence in L*([0,77], L7, .(€2)). We set

I = (b(z, b D) X (t, hiy Dy)p(2)hi (Dy + P, D)) Wi, @Wi) p2(Ra+1).-



As in [30] we have
lim I = (u, (7 + p)bx) . (2.20)

k—+oo

On the other hand, since we have
h2(Dy + P(x, Dy))uy, = hpia(h2P)"?auy, + higr,
and ¢ € 65°(Q),
@(hi D¢ + i P(x, D) )Wy, = p(ihra(hi P)? auy, + higr) + hio(uk (0)6—0 — hijup(T)6—r). (2.21)

Then I}, is a sum of four terms,
Iy = I} + I} + I} + I},

I = ihg (b(w, hi Dy) X (¢, by Dy)p(x)a(hi P)'? aug, GWi) po(ra+1)
I; = hi (b(z, b Dy) x(t, B D) p() g, W) 2 (ma+1)

I} = (b(x, hi.Dy) X (t, hiy D) hi (@) (0)61=0, @Wi) £2(Ra+1)

Iy = = (b(x, by D)X (t, B Di) higep () up (T)dr=1, @Wi) 2 (re+1) -

For the first term I}, we use the Lemma A.6, we have,

. 2
|y e < OBty + Cllawaqo, (2.22)
and we deduce,
1 < cthi sup luelfiao) + e sup (o) (2:23)
t€[0,71] tel0,T

Then we obtain, that I} goes to zero by (2.15). For the second term I7,

|I§| < hy ||gk||L2([0,T],B(mo,e)) ||95Wk||L2(Rd+1)

< Che () 9ell o710 [[ ()

L2([0,T]x9)
Using (2.14) and (2.16), we deduce that
kgrfoo I} =0. (2.24)
The third and fourth terms in (2.21) have the following form,
Jp = (b(l‘, thw)X(ta hiDt)‘phiuk(s)ét:sa @Wk)Lz(RLHl) , s=0orT.

Since (¢W}) is bounded in L?(R4*1), we see that
| Je]? < C||b¢wk(5)||iz(Rd) | hix(t, i Dy) 6= s||L2(R ES[UPT] llur ()72

so, using [30, Lemma A.5] with p = 2 and [ = 2, we deduce that,

| Tl* < chi llur(s)l[720) sup lluk()l72i) < chi sup [lus()lIzz(q)- (2.25)
t€[0,7] t€[0,T]

It follows from (2.23), (2.24), (2.25) and (2.15) that

lim I, = 0. (2.26)

k—oo

As the linear combination of x(t,7)b(z,£) are dense in 65°(T*(R4H1)), using (2.20) and (2.26), we
deduce that mg = (xq, to, &0, T0) ¢ SUPD f.



Case 2. Assume that zg € 99.
We would like to show that one can find a neighborhood U,, of z¢ in R? such that for any
be Uy, x Ry X ]Rg x R,), we have

{u, (r +p)b) = 0. (2.27)

Indeed this will imply that the point mq(zg, to, &, 70) (With 79 + (20, &) # 0) does not belong to the
support of u as claimed. Formula (2.27) will be implied, by

lim I; =0 where
k—+o0 ) 5 (228)
I, = (b(.”[:, 2 thwa tht)cphk(Dt + P)Wk) Wk)L2(Rd+1) .

where ¢ € 65°(Uy, ), = 1 on 7, supp b. Let Uy, a neighborhood of ¢ such that there exists a >
diffeomorphisme F from U,, to a neighborhood Uy of the origin in R? satisfying,

F(Uzoﬂﬂ):{yEUO:yl >0}
FUz,noQ)={y €Uy :y, =0} (2.29)
(P(z,D)Wy) o Ft = (D} + R(y, D') + L(z, D)) (Wi 0 F 1),
where R is a second-order differential operator, D' = (Ds, ..., D4) and L(z, D) a first order differential

operator. Let us set
g =upo F™', Vi =171y, 500k, (2.30)

then we will have
{ (D¢ + Df + R(y, D') + L(x, D)) vy = iaP'*(auy) o F~ + il g o F~4 = fi (2.31)
’Uk|y1:0 =0. '

Making the change of variable z = F~!(y) on the right-hand side of the second line of (2.28), we
see that

I = (B(y, t, hu Dy, WD WRE Dy + D} + R(y, D') + L{w, D))Vi, Vk)LZ(Rd+1) ,

where b € 652 (Up x Ry x ]R‘nl x R;), and ¢ € 65°(Uy), ¥» = 1 on m,supp b. To prove (2.28) it is

sufficient to prove that,

lim Jk = kggloo (Td)O(yl)wl(yl)h%(Dt + Df + R(yaDl) + L(x7D))Vk7Vk)L2(Rd+1) = 07

k——+oco

where T' = e(ylah'le)(I)(ylathl)X(tatht)) 0¢X € %OOO(UO X Rt X ]Rg X ]Rr)a ¢0¢1 S Cg()oo(UO)a
Yoty1 =1 on m, supp 0P x; According to (2.31) we have,

(Dt + Df + R(:Ua Dl) + L(,T, D))Vk = fk - i1y1>0vk(0a ')(5t=O + i1y1>0’l)k(T, ')6t=T
— iljo, 7} (D10k]y,=0) © dy,=0-
Therefore (2.28) will be proved if we can prove that
lim A} =0, j=1,2,3, where

k——+o00

Ai = (e(yla thl)q)(yla thI)X(ta hiDt)w0¢1h21y1>ka(sa -)5t:sa Vk) , S = 07 Ta

(2.32)
A7 = (0(y1, b D1)®(y', b D') X (t, B3 Dy )thorp1 b Lo ) (D1vk|y,—0) @ dyy=0, Vi)
A% = (0(yr, hi D1)®(y', hi D") X (t, b Dy )hotp1 B, fi, Vi) -
As in [30, A.18]
lim A} = 0. (2.33)

k—+o0

To estimate the term A? we need a Lemma. With Uy introduced in (2.29), we set Uy = {y € Uy :
y1 > 0}. We consider a smooth solution of the problem:

{ (Dy+ D? +R(y,D') + L(z,D))u=g in Uy xRy

2.34
“|y1:0 =0 ( )



Lemma 2.4. Let x € 65°(Up) and x1 € ¢5°(Up) x1 = 1 on supp x. There exists C > 0 such that
for any solution u of (2.34) and all h in )0, 1], we have

T < T
| oo, @] ar<c | [ 5 G ul ey, @

O Jal<1

1% (hdyu)(0)|

b3 yu(0 H
+ 1 xu(o) L2 L2

+ ‘ h%XU(T)|

¥ (hoy)(T)|

2
L+ ||xlhg||Lz) |

L2(UF) L2 (U,

Proof of the Lemma. It is analogue to the proof of [30, Lemma A.6]. ]
We replace in the previous Lemma g by iaP'/?(auy,) o F~* + h; 'g;, o F~1 and by (2.30), we obtain
easily the following corollary.

Corollary 2.5. One can find a constant C > 0 such that

- 2 1/2
| odrony,,— 0], a<c ( | IR @+ [ w0,
T 2
+/ <H)Za(h%p)l/2aukHL2 + ||>~<gk||i2> dt>
0
<C,
where vy has been defined in (2.80) and ¥ € €5°(RY).
Let us go back to the estimate of A% defined in (2.32). We have
2|2 2 2 2 T 2
| A7 |” < Chi 10(y1, he D)8y, =0l 2 gy 11 (W2 Vil g ; H(wlthwk)\yl:o (t)‘ Legaen &
Applying (2.17), [30, Lemma A.5] with p =2, 1 = 1 and corollary 2.5, we obtain
|47 < che — 0. (2.35)

The term |A}| can be treated as the first and the second term in the case 1.
Using (2.33) and (2.35), we deduce (2.32), which implies (2.28) thus (2.27). The proof of Proposi-
tion 2.3 is complete. [

2.3 The microlocal defect measure does not vanish identically
First let us prove that the sequence (uy) have mass in a compact domain.

Lemma 2.6. There exists a subsequence k,,, there exists R > 0 such that

T
[ O o, et > 172
Proof of Lemma. We prove the Lemma by contradiction. Assume that
T
VR > Ro, lim sup / ok ()2 e, poicarendt < 374, (2.36)
0
where Ry is large enough such that suppa C {|z| < Ro/2}.

Let x € €°°(R?) such that x = 1 for |z| > 2 and x = 0 for |z| < 1. We set xr(z) = x(z/R) and
by the choice of Ry we have axg = xga = 0 . The function vy := xruy satisfies

Dy + Py, = hi;'Xror + [P, xrur.

10



From [16, Theorem 2.8], we have
T T )
|1l < CUE O + [ 0 Ber (1 g + [Poxcnli) oyt

(2.37)
where E; is the pseudo-differential operator with symbol e, = (1+ p(z, &) + |z|?)2 which belongs to
S((El+ <z >)*,9).

For the first term of the right hand side of (2.37) we have, where (-, -) means the scalar product
in L2(Q),

IE_1v(0)|[32 = Al E_y xrP* (h} P)~ 3 (W3 P)yo (i P)u(0)|3 2,
= hi(St2(hi P)ug (0), St (h Pyur(0)), where S = E_ 1 xnP*, and s(t) =t~ 51,
= hi (2 (hg P)S*Sths (hj P)uy,(0), ug (0))
= hi (2 (h3 P)(h2P) =3 Qxr(h} P) 2 (h3 PYuy (0), uk (0))
< Chiel|ur ()7,
where 11 € 65°(0,4+00) and ¢; = 1 on supp(y)), S*S = P=iQypP%, Q = PoypA_q, and A_; =

E*,E_,. We have used that the operator ¢ is bounded from L*(RY) to L2(2) (see [30, Lemma
2
4.2]).

Then from (2.15), we deduce that
lim ||E_1v(0)[[72 = 0. (2.38)

k——+o0
T
Concerning the term I

0
Let ¢; € 6§°(R), such that ; =1 on supp .
Since 1y (hi P)uy, = u then applying 1 — ¢ (hi P) to Formula (2.12), we obtain

(x)*E_1h, ' xrgk|72dt, we will prove that it tends to zero.

hitgr = hy i (h2P) gy — ihi “a(hiP) 2 ay (hi P)uy, + ihy o1 (b3 P)a(hiP) auy.
Using that xra = 0, we have
b ' xrgr = Ry, ' xrY1 (B3 P) g + ih,ZIXR@ZJl(hiP)a(hiP)l/zauk.
And then

T
/ 2)° B+ by x gl 2ot
0

T T
< / 1(z)* E_1xrhy "1 (R P)gr||*dt + / [(z)* E_1xrhy "1 (R P)a(hi P) 2 auy||*dt
0 0

T T
S/ [(x)* E_1 xp P/ *4po (h3 P) gy ||*dt + / [{@)* E_1xrhy "1 (hi P)a(hi P) 2auy || dt,
0 0

where 15 (t) = t='/%¢)1 (t). We have,

T
/ ) By x P 4s (12 P)gel?dt < I + 11, (2.39)
0

where
T
I= / ) By (2)~* xr P22 (2 P) () gu[2dt
0
and

T
= h/Zz/O {z)* E-1XRI(WEP) > (Wi P), (@) ~*1(2)* gi | dt.

11



It follows that the symbol of (z)*E_(z)~* belongs to S((|¢| + (x))~!) then (z)*E_(z) *xrPY? is
bounded on L*(Q) (see [30, Lemma 4.2]) and we have

I<C/ ng dt

According to Lemma A.4, hi ' (z)*[(h2 P)'/?4ps(h2 P), (x)~*] is bounded on L?(2) and we get

< c/ e gel[2dt.

To estimate -
/ ) By xmhy 1 (R P)a(h2 P) M 2aug | 2dt,
0

we have with 1, (s) = s7111(s) and ¥ a smooth function such that, ¥ = 1 for |z| > 1 and x = 0 for
2] <1/2, Xr(x) = X(z/R),
(x)° E_1xrhi "1 (hiP)a = (2)* E_1xrPhys(hi P)a = (z)° E_1 xp PX rhi b (h}, P)a
= (2)* E_1(2) *xnP"* (Wi P)"*(2)*[X R, 2 (hi P)]a
+ (@) E_i () " xrl(x)®, P)Xrhe[o2(hi P), al, (2.40)
where we have used axg = 0 if R large enough.
By the [30, Lemma A.5] and Lemma A.3 the first term of (2.40) is bounded on L?(Q2) by Chy.
As [(x)®, P] is a sum of term «ad,; where « is bounded, (z)°E_i(x)~*xgr[(z)®, P] is bounded on

L*(), and [¢p2(h} P),a] is bounded on L*(Q) by [30, Lemma 6.3]. Then the second term of (2.40)
is bounded on L?(2) by Chy. Finally, we yield by Lemma A.6,

T T
/ (z)* E_1xrhy “b1 (B P)a(hi P)Y?aug||*dt < Crhi / |(h3 P auy || *dt
0 0

<C’th sup |Jug(t, )||2 (2.41)
t€[0,7]

According to (2.14) and (2.15), we conclude that the second term of the right hand side of (2.37)
goes to zeros when k tend to +oo

T
lim I{z)* E_1h; ' X rgx||32dt = 0. (2.42)

k—o0 Jo

T
Now we estimate the term / {x)* E_1[P, xr]u||32dt.
0
Let x1 € 67°(R—1<|2z| <2R+1),x1 > 0,x1 =1 on supp(Vxr),

T T
/ ) B2 [P, xrluelZe)dt < / 12> x1 Bt [P, s a2 oyt
0 0 .
+ / ) (1 = X0) B [P, b el e s
‘ T
< CRz(Sil)/O [wrl[Z2(rot < aj<orinydt < CR*™Y, (2.43)

where we have used, first that E_;0, is bounded on L2, (z)* is estimate by C'R® on support of x;
and 9, xr is the product of a bounded function by R~!, second, the symbol of (z)*(1—x1)E_1[P, Xr]
is uniformly bounded in R=1S(((z) + [£]) ", g) for all N. The last inequality uses the contradiction
assumption (2.36).

12



Following (2.37), (2.38), (2.42) and (2.43), we have,

T T
/0 ”<$>_s“k||i2(|w|>zR>dt§/0 ()= vkl[3 2 ey < Cry + CR2C™D,

where 0; — 0 when k — 400, C is independent of R and Cg may depend of R. Then we have
T T
/0 ||uk||i2(z€Q7 |z|<2R) Z/O ||<$)_8Uk||%2(weg7 |z|<2R)
T T
> [ ) “wslem = [ 1) uslBgurson
OT 0
> [ 1@y el ucqy = Cndi = CREC.

This with (2.16) implies a contradiction with (2.36) and proves the Lemma. ]
In the sequel, for simplicity, we shall denote the sequence uy, found in Lemma 2.6 by ug. Thus
there exist Ry > 0, kg > 0 such that

| 1Ol <yt > 5.

when R > Ry and k > kg.
We consider y; € €5°(RY) such that

0<x1 <1, xa(z)=1if |z| <Ry +2 and suppx1 C {|z| < Ry + 3},

with R; > Ry.
Let A>1, R>1,94 € 65°(R), ¢r € €5°(R) be such that 0 < 94, g <1 and

Ya(r) =1if |7 < A, ¢r(t) = 1if [t| < R.
We recall that wy(t) = loug(t).

Proposition 2.7. There exist positive constants Ay, Ry, ko such that

1

/ 194 (h3, De)dr(hg A) 1o ryx1wy (8|72 (gaydt > T
R

when A Z Ao, R Z Ro, k Z ko.
Corollary 2.8. The measure y does not vanish identically.

‘ ~ 1—
Proof of Proposition . Set I = (Id — ta(hiDy))1jomx1ux and 9(7) = %(T). It is easy

to see that 1) € L®(R) and |¢(7)| < Lforall T € R.
We have

I= {/;A(h%Dt)hiDt(l[o,T]ka)
B2 ~ .
= Tk@bA(hiDt)Xl(Uk(O)fst:o —ug(T)d¢=r)
$a(h3Dy)x1 10,71 (—h3 Puy + ihga(hi P)?auy + hygy)
= B}, + B} + B} + B;.

From [30, See the proof of Proposition 6.1] we know that ||@ZA(h%Dt)6t:a||Lz(R) < Ch,;l, then we
deduce that

lim_ [ 1Bz oyt < lim_ ORg2 (O + Tl ) = O

k—-+oo
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Using (2.22) and (2.15), we can prove easily that

hm / ||Bk||L2(Q)dt < C llm / h’k” hz )1/2aUA||L2(Q)dt =0.

From (2.14) we can see that

T
tin_ [ 1Bt < C tim [ gyt =0
R k——+o00 0

k——+oco

Now, for B} we argue as in [30, See the proof of Proposition 6.1]. Let 6 € €5°(0,+00) such § = 1 on
the support of ¢ and let 6, (s) = s6(s). We have

B} = —pa(h3 Dy)x1 10,1 hi PO(hi P)uy,
= —a(hiDy) 1o 11[x1, 01 (Wi P)]ur, — Ya(hiDy) 1o 1161 (hi P)x1wk-
Using Lemma 6.3 in [30] and the fact that

~ 1 ~
154D ey = O () I 100 = OO,

uniformly in k£, we deduce that

1 T
LByt < CUR sup ue @yt + 5 [ Ixruellagaydo)
R e[0T 0

Taking k and A sufficiently large we obtain

1
/ 194 (hiDi) 1o, 7y x 1wk ()][7 2 () > 3 (2.44)
Now, we set,
= (Id- ¢R(h2 ))¢A(tht) [0,T1X1Wk-
It is proved in [30] that
Cr
[yt < 1), (2.45)

where Cr, depends on R; and The proof does not depend on the equation, so it remains valid in
our case. Nevertheless we recall the proof in the sequel for the convenience of the reader. Before we
give the end of the proof of proposition 2.7.

Taking R sufficiently large and using (2.44), we obtain

1

| om0 2000 D) 100 Oy = 5.

Return to the proof of (2.45). We have |1 — ¢gr(t)| < C—F= hlel then we obtain,

M
h2
/RHIIH%P(]Rd)dtSCﬁk/ﬁgz||8J¢A(h%Dt)1[0,T}Xlwk||i2(]Rd)dt
j
hi; 5 5
<Cx RZ 10594 (hi;De) Lio, 71X 1wk || 120y At
J
h? ~ . .
< M5 ( / 10,8082 PYoa (12 Do) o1y [y
» R
J
; / 10, (1 —5<th>)¢A<tht>1[o7T}xluk||iz(mdt)

h2

=7 = (G + 0, (2.46)
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where 6 € %5° (R) satisfying f(t) = 1if ¢t € supp(6;) and 66, = 6.
We have by Lemma 6.3 [30]

Cy < Chy? /OT Ixvurllfeodt < chy?, (2.47)
and
Gt < [ 10,0EP). oA (D1 oy v
S/R||¢A(h%Dt)1[o7T}5€1Uk||%2(Q)dt

T T
<c / Rl |2 oyt < C, / 1)l (2.48)
0 0

where X1 € 65°

(), X1 =1 on supp(x1)-
Combining (2.46),

(2.47) and (2.48), we obtain (2.45). |

2.4 The microlocal defect measure vanishes in the incoming set

In this section we prove that the microlocal defect measure p vanishes in the incoming set.

First remind some notation introduced in [30] section 7. We keep the same notation when it is
possible.

We denote by

d
b(z,€) = D b (@)w b
Jok=1
PI'OpOSitiOIl 2.9. Let mgy = (xo,to,fo,T()) S T*(Rd+1) be such 50 75 0, T0 +p(;1:0,£0) = 0, |JIO| Z 3R0,
b(zg, &) < —30|z0||&o| for some 6 > 0 small enough. Then mg ¢ supp p.

We remind the results proved in [30] in section 7, Lemma 7.5 and Corollary 7.6. A part of the
proof is in Doi [15]. We use the Weyl quantification of symbol which is denoted by Op®.
There exist a symbol ® € S(1, g) such that 0 < ® <1 and a symbol Ay € S(1,g) such that,

supp A C supp® C {(,€) € T*(RY, |a| > 2Ry, b(z.&) < —olellel, 16> ). (2.49)
(2,6 € T®Y, la] 2 2Ro, b €) < —olallel, 162 ) € (0, 0) e T* (&), 22,0 =1,
®(z, h) = (x, €) when |he| > @ and 0 < h < 1,
H,®(z,€) < 0 on the support of Ay,
AL >0,
17,00 ()] = 05" (H, 1) € O (S(1,0), (250)

there exist two positive constants C, C’ such that,
—H\ > C(0) 2922, €) (ja] + [€]) — C'9%(a, ). (2.51)

Proof. Let 1 € %5°(R?) such that
. 4 3
p1(z) =1if 2| < gRO, supp 1 C {z, |z|] < §R0}. (2.52)
Let M large enough such that,

(1= 91)0p" (A1) (1 = p1)ulu)]| < %IIUIIQ-
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Here and in the sequel (-|-) and || - || denote the L?(2) inner product and norm respectively. The
cutoff make sense with this L? product. We set,

N(t) = (M = (1= @1)Op(M) (L = o1))up(t)|ur(t)),

and we have u
7|l7~tk(lﬁ)ll2 < N(t) < 2M g ()] (2.53)

Setting A = M — (1 — ¢1)Op(A1)(1 — p1), we have,

SN () = (A SOl (1)) + (M (D) s (1))

From (2.12) we have
d

Uk = —iPuy — h,;la(hiP)lm(auk) +ih, ' gi.
We obtain,
iN =(i[ P, AJug|ug)
dt — ) k|UEk
— h Y(Aa(h*P) P aug|ug) — byt (Aug|a(hiP)' 2 auy,)
+ Zhlzl(AgHuk) — ih,;l(Auk|gk)
=A; + As + As. (2.54)

For support reasons, we have a(l — ¢1) = 0 thus we deduce,

Ay = =3 (@B P (0w ) + (a1 P) (e
= =22 0EP) @)l <. (2.55)
We have, for a constant C; > 0
Al < 1o gullGe) ] (2.56)

To estimate A; we remark that [P, A] = [P, A] and
[P.A] = [P,1]Op” (M) (1 = ¢1) = (1= 01)[P,0p” (A)](1 = 1) + (1 = 01)Op“ (\)[P, 1] (2.57)

Following (2.49) and (2.52), the support of A\; and ¢; are disjoint, thus, taking account of (2.53), we
have

[([[P,£1]0p" (A1) (1 = 1) + (1 = 01)Op* (M)[P, p1]] ur|ug)| < CoN(2). (2.58)
Let d(x,€) € 65°(R24) supported in {|z — x| < 1, |€ — &| < 1}, and d(wg,&) = 1. According to
5

(2.50), (2.51) and Garding inequality, we get,
(=i(1 = 1) [P, Op* (A)](1 — 1 )urlug) > CahyM|[(x) " d(x, hi Dy )ug||* — CaN (2). (2.59)
From (2.57), (2.58) and (2.59) we obtain,

Ay > Csh (@)~ *d(2, he Dy)ug || — C5N(¢). (2.60)
Following (2.54), (2.55), (2.56) and (2.60), we have

N'(t) + Cshi (@)~ *d(z, hy Dp)ugl2 < B(t) + CoN(t), (2.61)

16



where we have set

p(t) = %||(Jf)sgk(t)||-||<w>_suk(t)||-

Integrating (2.61) between 0 and ¢ for ¢ € [0,7] we obtain,

T t
N(t) + Cshy |[{) = d(x, hi Do Jur |72 0 11 ¢ ) g/o B(t)dt+N(O)+Cg/0 N (s)ds. (2.62)

By Gronwall’s inequality we have for ¢ € [0,T],
T
N(t) < Cy / B(t)dt + CsN(0). (2.63)
0

Using (2.63) in (2.62), we get
(@) ~*d(, hi D Yurl72 (0,71 x02)
<Cs|[(@)* gl 210,11 (@) ~*urll 20, 11x02) + Colur[lur (0)][72(q)-

Following (2.14) and (2.16) we obtain

||(‘r>7sd(x>thw)ukl|%2([07T]><Q) — 0 when k£ — —+00.

Let x(t,7) € €5°(R?) supported in a neighborhood sufficiently small around (ty,7) and taking
account that d is supported in a neighborhood of (zg, &), we have

||X(t7 h%)d(ma thw)ukHLZ([O,T}XQ) — 0 when k — +00,
then (u, x?d?) = 0 thus (zo,t0,&0, 7o) & SUPP K- =

2.5 The microlocal defect measure vanishes on {a? > (0}

The goal of this section is to prove that the microlocal defect measure vanishes on {a®> > 0}. More
precisely we have the following proposition.

Proposition 2.10. Let uy, = 1 (hi P)u satisfying

h2(Dy + P)uy — ihga(hi P)Y?(auy) = hygr, (2.64)
s 2 2
162" 91172 (10,771 x 2y + Pk tGS[UPT} lluk (D)2 + ha oo 0, (2.65)
and )
% ug 2.
17 g 52 =

We assume that the sequence (Wy) = (11, 771uy) admits a microlocal defect measure pu then a®p = 0.

Proof. Taking the imaginary part of the L?([0,T] x Q) inner product of (2.64) with uy/hy, we
obtain,

Sm[(hi(Dy + Pug|ug) — i(a(hiP)l/Q(aukﬂuk) = Sm(gr|uk).
(2.67)

Using that P is self-adjoint, we get

T
Sm(hk/o /Q %Dt|uk|2drdt) — (B2 P)Y*(auy) |aug) = Sm((z)° g (x) " >uy,). (2.68)
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From (2.65) and (2.66), we have
T
i / / Difup Pdadt = ihelfur ()2 — ihellug(T)Bgy  — O,
0 Q k——+o0
and

|(()*gx [{) " *ur)| < 1{2)°gx |2y K@) Purll2@)  — 0.

k—4o00

Following (2.68), we deduce
((h2P)Y?(aug)|aur) — 0. (2.69)

k—4o00

Let 6 € ¢3°((0,+00)) with § = 1 on the support of ¢. Thus we have 6(hi P)ur, = uy. Let
6(t) = t~1/19(t), we have 6 € €5°((0, +00)) and,

(auglaug) = (ab?(h2 P)ug|auy) = (a(hi P)Y/26%(h2 P)uy|auy,)
= ((h2P)Y?6*(h2 P)au|auy) + ([a, (h3P)Y/262(h2 P)|uy|auy). (2.70)
From Lemma 6.3 [30], we have
lfa, (5 P) /26 (1, P)Juill 120y < Chillull 2. (2.71)
We have also,

((W2P)'8 (W} P)auglauy) = [[(W3P)"*6(h} Pau|fe 0 11 x

< |[(REP)* awk| 720 1100y = (BEP)Pauglauy) = 0, (2.72)
’ k—-+o00

from (2.69). Following (2.70), (2.71) and (2.72), we obtain,

(aug|aug) — 0. (2.73)

k——+oo

Let b(z,t,&,7) € €5°(R? x R x R? x R), we have by standard symbolic semi-classical calculus
(a2(a:)b(a:, t, thz, h%Dt)WHWk) :(b(l’, t, thz; h%Dt)(aWk)|aWk)
+ hiy(r (@, t, hy Dy, By D) Wi | W), (2.74)
where r(x,t, hy D,, h2D;) is bounded on L*([0,7] x R¢). Thus from (2.65), we have,

hi| (7 (2, t, by Doy B D)W | Wi )| < Chy[WillZ2 (0 7xmay . = 0- (2.75)

k——+oco

From (2.73) and using ||aWk||%2(kad) = [laug |72 (o 17 x) We obtain,
|(b($,t,th7tht)(aWk)|aWk)L2(]RXRd)| < CHCLWk”%g RxRd — 0. (2.76)
( ) k—+o0

According to the definition of the microlocal defect measure u, (2.74), (2.75) and (2.76) imply the
Proposition 2.10 [

2.6 Propagation properties of microlocal defect measure and end of proof

The statement of our results requires some geometric notions which are classical in the microlocal
study of boundary problems (cf. [18] p. 424 and 430-432).
Let M = Q x R;. We set

Ty M =T*M\{0} UT*OM\{0}.

We have the natural restriction map

m: TR — Ty M,
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which is the identity on T*R%\{0} (see [30] for details). Consider, near a point of the boundary
z = (z1,2',t) € OM a geodesic system of coordinates given by the diffeomorphism F in (2.29), for
which z = (0,0,¢), M = {(x1,2',t),21 > 0)} and the operator D; + P has the form (near z)

P=0D —1—D§1 + R(z1,7',Dy) + S(z, Dy),

with R a second order tangential operator and S a first order operator. Denoting r(x1,2',¢’) the
principal symbol of R and ry = r|;,—¢, the cotangent bundle to the boundary T*0M\{0} can be
decomposed (in this coordinate system) as the disjoint union of the following regions:

e the elliptic region & = {(z',t,£',7) € T*OM\{0}; ro(2’,&") + 7 > 0},
e the hyperbolic region H = {(z',t,&',7) € T*OM\{0}; ro(z',&") + 7 <0},
e and the glancing region G = {(2’,¢,¢&',7) € T*OM\{0}; ro(a’,&") + 7 =0}.

For the purpose of the proofs, it is important to consider the following subsets of the glancing
region:

e the diffractive region G; = {¢ € G, 0z, 7|+,=0(¢) < 0},
e the gliding region G, = {¢ € G,0,,7|z,=0(¢) > 0}; we set G = G4 UG,,
o and G* = {C € G, H} (0a,7]a,=0)(¢) = 0, 0 < j < k=2, H}"*(0n,7]z,=0)(C) # 0} k >3,
where
8r0 0 81“0 0

" T 9¢ dr' | Ox' OF

Definition 2.11. We say that the bicaracteristics have no contact of infinite order with the boundary

+o0
if ¢ = [ J G".
k=2

Now, we recall the definition of v the measure on the boundary. By the Lemma 2.4, we see that

the sequence (1,1 hk(%)) is bounded in L?(R; x L?(09)). Therefore with the notations in (2.18)

and Proposition 2.2, we have the following Lemma.

Lemma 2.12. There exists a subsequence (W, 1)) of (Wy(r)) and a Radon measure v on T* (02X Ry)
such that for every b € €5°(T*(00 x R¢)) we have

. 1aw,
lim <Op(b) (l’, t, hgl(k)Dm, hil(k)Dt) hgl(k)gairlz(k)’ hgl(k)

k—+oo

18W,1(k) — (1/ b).

7 on >
L2(8QXR1)

We give now two results on propagation of support of microlocal defect measure. The first,
Proposition 2.13 for point inside T*M and the second, Proposition 2.15 at the boundary of M.

Proposition 2.13. Let mg = (z9,&,t0,70) € T*M and Uy, be a neighborhood of this point in
T*M. Then for every b € 65°(Up,), we have

(1, Hpb) = 0. (2.77)

Proof. It is enough to prove (2.77) when b(z,t,&,7) = ®(x, &) x(t, 7) with 7, supp ® C V,, C Q.
Let ¢ € €5°(92) be such that ¢ =1 on V,,,. We introduce

1 .
Ay = h*k[(q’(%thz)X(t;hiDt)SDhi(Dt + P)1jo,7ywk; Ljo,7/Wk) L2 (2 xR)

— (®(z, hi Da)x(t, hi D)o 1o mywi, i (Dy + P)1jo mwi) 12 (0 xR))-
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We claim that we have

lim Ay = 0. (2.78)
k—+oo
We have
) .
Ap = —[(®(z, i Do) X (t, hy D)ol | Dy, 1o Wi, Lo, mwi) 2 (@ xR)

hy

— (®(x, hu Do) x(t, By De) 1o, rywr, hig [Dy, Lo ry]wi) 2 (o xm)]

— 23(®(x, b Do) x(t, hi D) 0gks Lo, mwi) L2(2xR)

— 2R(®(z, hy D )X(t:h%Dt)‘PI[O,T]a(hiP)l/Qawka1[07T}wk)L2(Q><]R) +o(1),

where we used that (®(x, hyD,)x(t, hiDy)p) — (D(x, hp D) x(t, hiDy)p)* = o(1) by pseudo-differen-
tial calculus. Tt was proved in [30, proof of Proposition A.9] that the first and the second terms tend
to zero when k — +oc. Since g, — 0 in L? , the third term tends also to zero when k — +00.
For the fourth term, according to (2.74) and (2.76), it is easy to see that it tends to zero. Thus (2.78)
is proved.

In another side, it was shown in the Proposition A.9 [30] that

lim Ay = —(u, Hy(®x)).

k—+o0

It follows from (2.78), (2.77) that (u, H,b) = 0 if b = ®x, which implies our proposition. ]
We consider now the case of point mg = (z9, &, to, 7o) € T*R! with zo € Q. We take, as in
[30], a neighborhood U,, so small that we can perform the diffeomorphism F described in (2.29).
Let p and v be the measures on T*R4*+! and T* (99 x R;) defined in Proposition 2.2 and Lemma
2.12. We denote by ji and 7 the measures on T*(U,, x R;) and T*(U,, N {y1 = 0} x R¢) which are
the pullback of y and v by the diffcomorphism F : (z,t) — (F(x),1).
We first recall the Lemma A.10 established in [30].

Lemma 2.14. Let b € 65°(T*(Uy, xRy)). We can find b; € €5°(Uy, X Ry ><]R;§T1 xR;), j=0,1and
by € 65°(T*(Uy, x Re)) with compact support in (y,t,n',T) such that with the notations of (2.29),

b(y, t,1,7) = bo(y,t,0',7) + bi(y, t,n's )i + ba(y, b, 7) (7 + 07 +r(y, 1)),
where r is the principal symbol of R(y,D').
Proposition 2.15. With the notations of Lemma 2.14 for every b € 65°(T*(Uy x Ry)), we have
(/-77 Hpb> = —<§7 b1|Y1=0>'

Proof. This proof is similar to the one of Proposition A.12 [30]. We recall some results from [30]
used to prove Proposition A.12. [

Lomma 216 (Lomma A13 [0). et for j = 0,1, = b01,1/,7) € G=(U B4 and
v € 65°(Uo) , p =1 on my suppa;. Then,

I Z[((bo(A) + b1 (M) Dy )oh2 (Dy + P)1o, vk |0, myvk) 12

- /+<(bo(Ak) + by (Ap) i D1) Lo i, hi (Dy + P) 1o qyvg)dY ]
U

0
1
= —H([hi(Dt + P), (bo(Ak) + b1 (M) hi D1) 1o my]vi|Lo,10%) 12
— (al(O,Yl,t,thyl,h%Dt)(pD/l:O].[O?T} (thlUlelzo)“.[O’T](thl'Uk‘leo))LQ(Rd—lXR). (279)

Here {(.,.) denotes the bracket in D'(R;).
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Lemma 2.17 (Lemma A.15 [30]). Let for j = 0,1,2, b; = b;(Y,t,n',7) € 6§°(Uy x R?) and
v € 65°(Uo), ¢ =1 on my suppb;. Let us set

Lj, = (b;(Ax)@(hu D1) 1o 170k, Ljo, 1y0k) 12 -

Then we have for j =0,1,2 . .
kETOO Lf,(k) = (i, bjmi)-
The previous Lemmas still hold in our case, since they are independent of the equation.
Lemma 2.18. Let b = b(Y,t,n',7) € 65°(Up x R¥1) and ¢ € €5°(Up) , ¢ = 1 on my suppb;. For
J =0,1 we set,

I = (b "b(AR)e(hi D1 B (Dy + P)lig 1ok Ljo,1108) 12 »

J] = /+(h,;lb(Ak)go(hkpl)n[o,T]vk|h§(Dt + P)1jo 7vi)dY.
U

0

Then lim I} = lim J] =0.

k—+oo k——+oo

Proof. The proof is similar to the one of Lemma A.14 [30]. We have,

o , .
Il = 7 [(ib(Ar) om0 (R D1) vk (0, )l Ljo,1101) p3. — (hb(Ar)de=rp(hi D) vk (0, ) |Ljo,70%) 12 ]
+ (0(AR) (i D1) 110 119k Lo, 7108 2. + (B(AR) (R D1) 10 mya (R P)* avg| 1o 1y0x) 12 -

From Lemma A.14 [30], the first and the second terms of the RHS in the previous identity tend to
zZero.
Using that ||gk||zz — 0, we can prove that the third term tends also to zero. '

Following Lemma, A.6 and (2.73) the forth term tends to zero. We conclude that I tends to zero.

For J] we argue as for I}. ]
Proof of Proposition 2.15. From Proposition 2.3 (7 + p)u = 0, so we have

(1, Hyb) = (fi, Hp(bo + bim))-
Let consider the identity (2.79), by Lemma 2.18, the LHS tends to zero when k& — +o00. By the
semiclassical symbolic calculus, we have
2

7 .
h—k[k2(Dt + P), (bo(Ag) + bi (A ki D1)g] = D ¢;(Ar)p(hy D1,
j=0
2 .
where ¢; € 65°(UpxR4TL), o1 = 1onsupp ¢, and {p,bg+bi1m } = Y. ¢;n]. Hence, using Lemma 2.17

j=0
and Lemma 2.12, the RHS of (2.79) tends to

— (1, Hyp(bo + b1m1)) — (¥, b1}y, —0)»

when k£ — +o0.
We conclude that
(1, Hpb) = (p, Hy(bo + bimi)) = —(¥, b1}y, —0),
which proves the Proposition 2.15. [

Proposition 2.19. With the notations of [30], we have

+oo
v(Gg U (U G*)) =o.

k=3

Proof. The proof is the same as of Lemma A.17 in [30]. |
By measure theory methods (see [8], [9] and [30]), the propagation of the measure p along the
generalized bicharacteristic flow is equivalent to Propositions 2.13, 2.15 and 2.19.
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A Appendix

In this appendix, we prove some Lemmas used above.

We recall the Helffer-Sjostrand formula (see [14]) used extensively in this section. To introduce it we
recall some notations.

Let 8 € 65°(R) and let ¢ € 65°(R) such that ¢(t) = 1if |t| <1 and p(t) =0 if |¢| > 2. Let N > 2,
we set

~ N g
.0 = > Do) a(o).

then § € €5°(R?) and satisfies

. . 1 - -

|06(t, )| < C|o|N where d8(t,0) = 5(&0 +1i0,0)(t,0). (A.1)
We call  an almost analytic extension of 8. Let P a self adjoint operator. We have the following

Helffer-Sjostrand formula

6(h*P) = ! d0(t,0)(z — h*P)"Ldtdo where z =t + io. (A.2)
™ JR2

The formula does not depend of N and ¢. We recall the estimates proved in [30], Lemma A.22, we
have for f = (2 — h?P)~u and Smz # 0,

(l=1)*

|Smz|?

IK*Pfl1Z2 ) + 1hD; fll72(e) + 1RV 2 fIIE2 () + 1f1I72() < C [ullZ2 () - (A-3)

Let h, a sequence such that h,, > 0 and h, — 0 when n — +o00. In the sequel, for simplicity we
denote such a sequence by h. We say h — 0 instead of h,, — 0 when n — 4oc0.
Lemma A.1. Let up and gp satisfying

h*(D; + P)uy, — iha(h?P)'/?(auy) = hgy in [0,T] x Q

up, =0 on [0,T] x 00

and we assume that |[(z) " *up|72 (0 r1x0) < 1, Pllun(0)[[72(q) = 0 and [(2)°gnll72 (0 170y — 0 when

h — 0. Then sup h||uh(t)||i2(9) — 0.
tel0,7)

Proof. Let k(t) = hllun(t)|72(q), using hdyup = —ihPuy, — a(h?P)'/?(auy) + ign, we have

K(t) = 2Re(hdyun(t)lun(1)
= 2Re(—ihPup (t)|un(t)) — 2Re(a(h?P)Y2 (aup) () |un (t)) + 2Re(ign|ur).

Using
Re (i Pup(t)|up(t)) =0,
and
Re(a(h® )"/ (aun) (t)|un(t)) = Re((h* P)'* (aup)(8)|aun(t)) > 0,
we obtain
E'(t) < 202)*gn ()] 220 [[{2) ~*un (t)|| 12 (0)-
Thus

E(t) < k(0) + 2|[{x)* gn | L2 (0,71 x ) [I{2) " *unllL2 (0,71 x ) -

The assumptions and the definition of k£ imply the Lemma. [
Let ¢ : R — R such that ¢(t) =0ift <« ort > 8 where 0 < a < 3.
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Lemma A.2. Let a € 65°(R?%) and s < 1, there exist C > 0, hg such that, if 0 < h < hg we have,
for all u € L*(),
(z)*[a, ¥ (B> P)](h* P)"*ul[72(0) < Ch?||ull72(g)- (A.4)

Proof. We prove (A.4) for u € 65° ().
Taking the adjoint, (A.4) is equivalent to

1(h*P)?[a, (W P) (@) *ull}q) < CR*|lullia(q)

which is equivalent to

|((2)°[a N>~ 00, a5(2)8s, + V), (h*P)(@) ulu) < CB*|ullZs(q
Thus it is enough to prove
1h0a; [a, 4 (h* P))(z) ull < Chllullr2(q), (A.5)
and
IRV a, (h*P)](z)*ull < Chllull2 () (A.6)

Now we prove (A.5). Following the Helffer-Sjostrand formula, where ¢ is an almost analytic
extension of 1, we have

hdy, [a, ¥(h*P)](z) :—7/61/; Vhoy,[a, (z — h*P) " ')(z)*dtdo
== /(91,/}(z)hazj (z — h®P)™a, z — h?>P](z — h*P) ™ {(z)*dtdo

= %/3"/}(2)haﬂ;] (Z — hQP)_l[a,z _ h2p]<m>s(2 _ hQP)—ldtda_ + A, (A?)

where A = /81/1 Yoy, (z — h*P) [a, z — W*P)(z — h*P)'[(z)®,z — h*P](z — h*P)'dsdo.
We have
[a,z — h>P] = h? Za] ()0, + hc(z), (A.8)

where a; and ¢ are compact supported. Followmg (A.7), we have two types of terms to control.
First we remark that

d
(h? Zaj(m)azj + h2e(x))(z)® = h2ﬁj6wj + h2d(z),

=1

where 3; and d are compact supported, following (A.7) and estimates (A.3) (with N = 3) we obtain

2
. z
10,z = 12P) (28,05, + 1)z = 1P ulley < Oy (A9)

Thus following (A.1), we have
[ j&[?(z)h@wj (z — W*P)" (h*B;0,, + h*d(z))(z — h*P) ™ udtdo||r2(q) < Chllul|r2(o).- (A.10)

Second, we have
[(z)*,2 = h*P] = h22% )0, + h*(z),
where |y, (7)] + |y(z)| < C{x)*~! < C', with the above notations, we have following (A.3),

118z, (z = W2 P) ! (h?aj(2) 8y, + hPc())(z — W2 P) ™ (WP (2)0ey, + hP7(2))(2 — B2 P) " u|
(|2])® (A.11)

< Ch2| |3||U’||L2 Q)

23



thus, following the proof of (A.10), we prove (A.5).
To prove (A.6), following the Helffer-Sjostrand formula we have,

W20, (R P) / OP(2)hV (2 = h2P)~[a, 2 = h*P)(2 — b P) ™" (x)"dtdo.

With the notation above, it is enough to prove

3
|IRVY/2(z—h hQZa] )8, +hc(2)) (2 — h*P) " (z)*ul|2(q) < Ch (1) llul|p2(0)- (A.12)

|[Smz[?

Writing (z —h>P)~1(z)® = (z)*(2 —h®>P)~ ' +[(z —h®>P) ™', (x)?], the first term is estimated following
the proof of (A.9). To estimate the second term, we follow the proof of (A.11). Thus we obtain
(A.12) which achieve the proof of Lemma. |

Lemma A.3. Let s € [0,1] and x a smooth function such that x =1 for |z| > 1. We set xr(z) =
X(z/R). There exists C > 0 such that for all u € L*(Q),

I(R*P)"?(2)* [ (h* P), xr]ull < Chllull.

Proof. The proof is very close to the one of Lemma A.2. By the same argument it is sufficient
to prove

1100 (x)* [ (h*P), xr]ull < Chllull, (A.13)
IRV (@) [ (B* P), xRull < Chllull- (A.14)

From the Helffer-Sjostrand formula, we obtain (as in (A.7))

B, () [0 (1 P), xr] = % / 09 (2)hda, (= — B2P) " (2)"[(z — I P), xa)(z — *P) ‘dtdo  (A.15)
+ % /3¢(z)hawj [2)*, (2 — h2P)"1[(= — 2 P), xal(z — B2 P)~dtdo.

Modulo negative power of Smz, in the first term of (A.15) hd,,(z — h*P)~" is bounded on L?*()
and, because ()*/R is bounded on the support of x'(z/R), we can write (z)*[(z — h?P), xg] as a
sum of term «(x)h?d,,. This yields that (z)*[(z — h*P), xg](z — h*P) ! is bounded on L?(2) by Ch
modulo negative power of Smz. This gives the result for the first term in (A.15).

Writing
[(z)%, (z = h2P) ™Y = —(2 — B P) " [(z)*, 2 — h*P](z — h*P)~*

and arguing as for the first term, we obtain (A.13). By the same arguments and using that hV'/?(z —
h?P)~! is bounded on L?(Q) modulo negative power of Smz (see [30, Lemma A.22]), we obtain
(A.14). ]

Lemma A.4. Let s such that |s| <1, let b € €>(Q) such that |b(z)| < C(z)* and
|0z, b(x)| + |8§jzkb| < C(z)*71, there exist C > 0, hg > 0 such that, if 0 < h < hg we have, for all
u € L?(Q),

[{x)~* [ (h*P), blul| 2y < Chllul|2(o)-

Proof. By Helffer-Sjostrand formula, we have, with the notation of Lemma A.2,

()~ *[( /81/1 (z — h?*P) Yz — h?P,b](z — h*P) 'dtdo (A.16)

/81/} 5(z — h2P h22% )0, + h2y(z))(z — K2 P) " dtdo,
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where |7 ()] + [v(z)] < C(z)* .
If s > 0, following (A.3), we have

d
)2 (2 = 2P) (12 3" 4 (2B, + H(@)(z — BP)ullz2(y < Cho P oy, (A7)

|Smz|
k=1

thus, following the proof of (A.10), we achieve the proof of Lemma in this case.
If s < 0, we write

(1) Sz = WPP) "t = (z = W2P) Ha) * — (= = W2P) (@) *, (= = WP)](= — W*P) !

Putting this in (A.16), we obtain two terms. The first gives

d
1z = B2 P) ) (1 3" (@), + B(2)) (2 — B2P) ull iy < Cho Pl ey (A18)

|Smz|
k=1
The second gives
d
I(z — h*P hzz (@)Dt b f(2)) (2 = B2P) "M (h* ) ()t B2(2)) (2 = h*P) "l
k=1 (A.19)
5 (I21)?
<o g lul,

because |y (z)| + [7(z)| < C{z)~*~! . Following (A.18), (A.19) and the Helffer-Sjostrand formula,
we obtain the Lemma. ]

Remarks A.5. In the Lemma A .4, we can remove the assumption |s| < 1, by commuting (x)* with
(z — h?P)~! several times, but Lemma A.4 is sufficient for us in the sequel.

Lemma A.6. Let a € €5°(RY), there exist C > 0, hy such that, if 0 < h < hg we have, for all
u € L2(Q),
1(h* P)! 2 agp(h® PYul|72(qy < Ch|[ull72(0) + Cllaul72(q)-

Proof. Writing
(B2 P)' 2 ap(h?Pyu = (K2 P)'/?[a, (h? P)Ju + (h*P)Y/?¢)(h? P)au
then using the Lemma A.2 with s = 0,
I(W*P) 2 ayp (W P)ullj2(q) < I1(B*P)2[a, (B P)lullia () + 1(B* )29 (h* P)aul|7s g
< CR?|lullfs(q) + Cllaull?sq),
which proves the Lemma. [

Lemma A.7. For all s € [-1,1], there exists C > 0 such that for all u € €§5°(Q)and all h € (0,1],
we have

[[{@)* 9 (h* P) () *ull2(0) < Cllullzz(a)
Proof. We have by Lemma A.4

()4 (h* P)(z) ~*ull 2(q) < |[¥(h* P)ul| 20y + [[{x)° [ (h* P), () ~*lull 2(q)
< |l (h*Pul|12(0) + Chllullr2(q),

which proves the Lemma. [
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Lemma A.8. Let o € (—1,1) and s € [-1,
u € 65°(1), we have

+oo
C1 Y h,**|(z) p(h2P
n=0

)UH%Z(Q)

“+o0
<D (R P) (@) ullfaiy < Ca Y by > ||(@) (ki P
n=0

1], then there exist C1 > and Cy > 0 such that for all

—+o0

)U||%2(Q)a
n=0

where ¥ was defined in Section 2.1 and h, = 27",

Proof. We have
[ (h3 P)(2)*ullF2(q) = Il (h5 P

< 2|l (kP

+2[|¢(h P w

To estimate A, we can write

n+1

Zw hi P)ull72(q

A < 2[|{z )+ 2l

By support properties of ¢ and by the Lemma A.

n+1
Ay = ||
k=n—1

By Lemma A.4 we see easily that

P) Y ¢(hiPlulliz(q

Z¢ hiP)ull32(q)

n+1
Zw (hiP)ullZs (o
+00 )
k=n-+2
n+1
Z@/J hz u||L2 —2A1-|—2A2
7, we have
n+1
<[z D w(hEP)ullfag (A.20)
k=n—1

n+1

Ay < CHE||(=)

Summing with respect n, we obtain

400 n+1 +o0 /n+1
SRAIES WECL YRS 'S (z
n=0 k=0 k=0

We have h, “F1he = 2= (1=a)(n=k)g—k < 9=(1—

a)(n—k) and (27(1704

Z¢ (g P)ull72(q)

2
hootlpe (h,;a||(x)s¢(h§p)u||m(m)> . (A21)

)7) >0 € £* because 1 —a > 0. We

can consider the right hand side of (A.21) as a convolution ¢! * > and we obtain the estimation of

this term by C Z hy 2% [[(2)* 1 (h7, P)ul[7 2 () which estimates, with (A.20), the term A.

Now we estlmate B. By support properties of

1 and Lemma A .4 it follows that

k+1
= [[¢(h3, P Z Y(hi P Z b(h3 P)ulliz(q)
k=n-+42 =k—1
“+oo k+1

= [(haP) Y [(@)*, v (hiP)] Z »(h5P)ullzzq)

k=n+2 j=k—-1
2
k+1
thH Z (W5 P)ull 2@ | -
k=n-+2 j=k—1



Summing with respect n, we obtain

+00 k+1 2
> by Z hill(@)® > (R P)ullL2q)
n=0 k=n-+2 j=k—1

+o0 +o00 k+1 ?
Z( > hathte (h,:a||<x>s > w<h§P>ulle<n>)) -

k=n+2 j=k—

We have h,@h, T = 2-(1Fa)(k=n)g=n < 9=(1+a){k=n) apq (2-(1+a)j) € ¢! since 1+ a > 0. We can
conclude as for the term A above. We have proved the right inequality of the Lemma.
We prove the other inequality.

We have,
1) 9 (5, PullZz () = [I{x) Z¢ (hiP) (@) ull 2o
n+1
< 2||()°y Zw hg P)(@)*ull72(q
+2||{x)* Z P(hi P)(x)*ull]2(q) = 2D + 2E.
k=n—+2
We have by properties of support of ¥,
n+1 n+1
D <2p(hyP) Y (i P) (@) ullfaq) + 2Il[()°, ¢ Z P(hgP) () ullZz(q)-

k=n—1
The estimate of the first term is clear, for the second using Lemma A .4, we get

n+1

+o0
>k ll) o (hi P)(x) " Y w(hi P){a) ullfa(q)
n=0

k=0
+oo /n+1 2
<> <Z hy, ® b (hk“||w<hiP><w>Su||Lz<m)> .
n=0 \k=0

We have h;@T1he < 2-(1=2)(n=k) and we can conclude as above by convolution argument.
For E, it follows from the support properties of ¢, Lemma A.7 and Lemma A .4,

+oo k+1
B =) b(2P) )" Y w(EP) Y w(hP) ) ullae
k=n-+2 j=k—1
“+o0 k+1
<@ etiP) Y [y e(h2P)] Y $(hEP) (@) ullls )
k=n+2 j=k—1
+o0 k+1
<Olfa)* Y () )] Y w(RP) (@) ulliz g
k=n+2 j=k—-1
k+1 2
(Z hell Y w(h3P)(a) ull e ) :
k=n-+2 j=k—1
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Summing with respect n, we obtain,

+o0 +oo
Y h @ e (h P) )™ Y d(hiP) (@) ullza )
n=0 k=n-+2
+o0 400 k41 2
<S>0 mpente bl DD BB P) (@) ullpa e :
n=0 \ k=n+2 j=k—-1
We have h,;*h;T* < 27(n=k)(1+2) and we can conclude by convolution argument. ]

Lemma A.9. Let s € [-1,1], a € (—1,3/2) there exists C > 0 such that for all u € L?(Q2), we have
Zh (@) [(hi P), al(hi P) 2 a(hi P) =2 ullf2q) < Cllullfz(q)
Proof. Following the properties of ¢, we have

(hiP)'/* = thh o (h} P)

j=0
where 1 (0) = 0'/%¢)(o) and
(h% —a/2 _ Zh aha¢1 h2 )
n=0

where 11 (o) = 0~ %/?4(0). Thus we must prove,

Zh l Z hy Ry h (@) ? [y (hi P), algpo (3 P)atby (ki Plull72q) < Cllull2iq)-  (A.22)

( N*2
Let us introduce for each k the following partition of N2.
A,lgz (j,n) EN? k>j—2ork>n—2, and j > n — 2},
={(j,n) EN?, k>j—2o0r k>n—2, textandj < n — 3},
Az: (j,n) €EN? k<j—3and k <n—3}.

In the sequel, for each set AY we will prove (A.22).
Let 12 € 6§°(0, +00) such that 2 = 1 on the support of ¢». We have,

“+o0o
thlll Z hi_ah;1h2<x>s[w(h%P),a]1/12(h§P)1/10(h?P)a¢1(h2 )u||L2 <24 +2B,

(jm)€A}

where

A= Zh DD h kg @) [ (B P), alya (B Patp (W3 P)ihr (ki Pul3 2y

(j,m)eA;

+oo
<Oy mt | D0 i h ) [ (B P), ala (B P)avho (B Py (ki Pull 2o

(4,n)EA]
[i—n|<1

n<k+4

2
+oo
<Cy ( > h2/2ah;1+°‘||¢1(hfLP)u||Lz(Q)) (by Lemma A 4). (A.23)
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We have him_ah;l*“ =2~ (k=n)(8/2=a)9=n/2 < 9=(k=n)(3/2=a) and we can see (A.23) as a convolu-
tion 1 % £2 if o < 3/2 which prove (A.22) for this term.
For B, we can see that

+oo
B=Y 'l Y 7y hia) (B P), alwa (hiP)[o(h3 P), aliby (b, P)ulli2q)
k=0 (Jm)eAy

<2C+2D,
where
+00 ‘ ‘ ‘ ‘
C=>"hi'll D by hy he (@) [ (ki P), allvo(h3 P), albs(h3 Py (h2 P)ullfz (o).
k=0 (j,n)eA}C

In the last sum |j — n| < 1, then we can estimate this term as the term A.
We have

+oo
D=>"m Yk oh (@) [ (hEP), al[wa (W2 P), (o (2 P), allihs (h2 Pull} 2 q)
k=0

(4,n)EAL
2
+oo
< Z ( Z hjhz/Q_athwl(h%P)U||L2(Q)) (by Lemma A .4 and Lemma A.10).
k=0 \(j,n)eA}

In A}, we have j > n — 2 then the sum over j gives a constant time h,,. Then,

2
+ oo
D<Cy ( > hi/z_ahifa||¢1(hip)u||L2(Q))

k=0 \n<k+4

—+o0
gCZhi’m Z 22 Z 1 (B P)ull7zq | »
k=0

n<k+4 n<k+4

by Cauchy-Schwarz inequality and as all the sums converge if a € (—1,3/2), we obtain (A.22).
Now we will estimate the sum over A7. We have with the function t, defined above, as
Yo(h3P)Ya(h2,P) = 0, because j < n — 2,

+o0
STRMST bR ha (@) (R P), altbo (A2 P)a3 (h3 )iy (W2 PYull3 (o)
k=0 (j.m)€A?

—+oo
=S hM DD by %Ry R (@) [b(hR P), alva (k] P)[[a, 2 (b P)], b2 (ho P (h P)ul |72 g
k=0 (j,m) €A

2
+oo
<Cy ( Sy 2O‘hj_lhffaﬂwl(h%P)uHLQ(Q)) (by Lemma A.4 and the Lemma A.10).
k=0 \(j,n)€A}

As Y h;l < Ch,*t, we can end the proof as for the term D above.

j<n—3

Finally we treat the sum over A}. We have, as 1 (hj P)yo(h3P) = 0.
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Zh MDD k(@) [ (B P), alo () Pav (h, P)ull72 o

(j,n)e A2

+
=S n DD by hy R (@) (ki P)agbe (13 P (B3 P)ars (i, P)ibn (h, P)ul |72 g
P

(jn)eA}
< 2FE + 2F,

where,

+00
E =Y "m0 S bR e (@) (0 P)[a, o (b P)), e (R3 P)la, 2 (B2 Py (B2 PYul[32
kf

(§,n)eA3

2

Z( > hy ™ bbby (k2 )u||L2(Q)> :
(jin)e A3

If (j,n) € A}, we have j > k + 3 then the sum over j is less than Chy. We obtain,

2
+oo
E<CY’ ( > him_ah}zﬂ||1/11(hip)u||L2(Q))

k=0 \n>k+3

+oo
<0y nie ( > hf;r?‘“) ( > ||¢1(hip)u||%2(9))
k=0

n>k+3 n>k+3

+oo
<CY hillulliegy < Cllullza)

k=0
And we have

F= Zh DD T ohg g (@) (B P)lla, o (B3 P)), o (3 P)Jiba (i P)avn (7, P)ullf g

(jn)€A}
lj—n|<1

2
+oo
<Cy h ( > h;+a||¢1(hip)u||L2(Q)> (by Lemma A.10)
k=0

n>k+3
+oo +o0
<Oy W7 Y mte > (B Pyulliz) | <C D hillullzao)
k=0 n>k+3 n>k+3 k=0
Which achieve the proof of Lemma. ]

Lemma A.10. Let b € €°°(Q) with support in {|z| < R}, let 01, 05 € €5°(R), let s € [0, 1] there
exist ho > 0 and C > 0 such that for all u € L*(Q) and h € (0, hy) we have,

() [161(h* P), b], 02 (h* P)]ull 120y < Ch?|lullrz2(q)

Proof. We give only a sketch of proof, we use the same technic than before. By the Helffer-
Sjostrand formula, we have

16, (W2 P), 0o (2P = — / By (t,00)08 (82, 02)[[(21 — W2P) B, (2 — W2 P) didr
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where z = (21, 22) and z; = t; + i0;.
First, we can write

[[(Zl - h2P)715b]7 (22 - hQP)il]
= (Zl — hQP)_l(ZQ — hQP)_l[[zl — hQP, b],Zg — hZP](Zl — hQP)_l(ZQ — hQP)_l,
and

[[z1 — %P, b], 29 — h? —h4z'y]k 6]k+h427] )0; + h'yo(z),

where the +’s are compactly supported. Second, as
(x)*(z1 — W*P) Y2y — K*P)™' =(21 — B>P) "' (2o — W P) "} {z)*
T [(#)*, (21 — h2P) (22 — h2P) !
+ (21 = h*P) " (2)°, (22 — B2P)71],
and [(7)%, (2 —h?P)7'] = —(2 — h®*P)~'[{x)*, (2 — h®P)](2 — h* P) ™!, then we can obtain the Lemma

by using the estimate (A.3) and writing the commutator [(x)®, (2 — h?P)] as in the Formula (A.16).
[

Lemma A.11. Let s € [-1,1], a < 3/2, there exists C > 0 such that for all u € L*(Q), we have

+oo
> b @) alhg P) 2[R P), al(hi P) = ullZs gy < ClullZa g
k=0

Proof. We follow the same strategy than the one for the proof of Lemma A.9. We have to prove,
+oo
Dor YD h Ry R () avo (B P) [ (hi P), alen (B P)ullfag) < Cllulljz).  (A24)
= (j,n)EN2

If [j — k| > 2 and |n — k| > 2, the corresponding term in the sum is null. If |j — k| < 1 (the case
|n — k| < 1 is symmetric and let to the reader). We consider two cases, the first if n > k + 2, term
A in the sequel, and the second if £ > n + 2 term B in the sequel.

+o00
A<OY | ST mPong () aho (B2 P (hE P)aspa (b2 P)ipy (h2 Phul 2 o

li—k|<1
n>k+2
+ 2
<cy [ > hk”Q“hznz/)(hiP)[a,¢2<hiP)]¢1(th)u||L2(m)
k=0 \n>k+2

2
+0oo
<> Y h,;”z‘ah;*anwl(hiP)uan(m)
k=0

n>k+2

+oo
< CZh,jl_Qa ( Z hi”“) ( Z ||¢1(hip)u||%2(9))
k=0

n>k+2 n>k+2
+0oo
<O hillullFay < Cllulfzg)-
k=0
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B<OY [ ST P ng e ano (B3 Pys (13 PY(h3 P)arps (B2 Phull 2oy

k=0 li—k|<1
k>nf2

<Y | ST m P nalwa (B2 P, [(hE P), allby (B2 P)ull 2o
k=0 \k>n+2
2

+oo
<O ST BEORS (h2 Pl
k=0 \ k>n+2

“+oo
< CZ Z Qf(kfn)(S/Qfa)||¢1(hip)u||L2(Q) < CHUH%Z(Q)a
k=0 \ k>nt2

because the last term can be seen as a convolution ¢* % ¢ if o < 3/2. The estimations on A and B

prove (A.24). ]
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