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Abstract

We prove, under the exterior geometric control condition, the Kato smoothing e�ect for

solutions of an inhomogenous and damped Schr�odinger equation on exterior domains.
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1 Introduction and results

This paper is devoted to the study of a smoothing e�ect for a damped Schr�odinger equation on
exterior domain. In order to formulate the results, we shall begin by recalling some results for
Schr�odinger equation linking the regularity of solutions and the geometry of domain where these
equations are posed.
It is well known that the free Schr�odinger equation enjoys the property of the C1 smoothing e�ect,
which can be described as follows: For any distribution u0 of compact support, the solution of the
Cauchy problem (

(i@t +�)u = 0 in R� Rd
ujt=0 = u0;

is in�nitely di�erentiable with respect to t and x when t 6= 0 and x 2 Rd.
�Facult�e des Sciences de Bizerte, email : lassaad.aloui@fsg.rnu.tn
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Another type of smoothing e�ect says that if u0 2 L2(Rd) then the solution of the Schr�odinger
equation satis�es the Kato 1

2 -smoothing e�ect (H
1=2-smoothing e�ect):Z

R




hxi�s�1=4u



2
L2(Rd)

� Cku0k2L2 ; s > 1=2:

This property of gain of regularity has been �rst observed in the case of Rd in the works of Constantin-
Saut [12], Sj�olin [31] and Vega [33] and it has been extended locally in time to variable coe�cient
operators with non trapping metric by Doi ([13, 15])).

In the case of domains with boundary Burq, G�erard and Tzvetkov [11] proved a local smooth-
ing estimate for exp(it�) in the exterior domains with non-trapping assumption. Using the TT ?

argument, the proof of the smoothing e�ect with respect to initial data in [11] is reduced to the
non-homogeneous bound which, by performing Fourier transform in time, can be deduced from the
bounds on the cut-o� resolvent:

k�(�2 ��)�1�kL2!L2 � C; 8�� 1:

The resolvent bound, for which the non-trapping assumption plays a crucial role, is proven for
j�j >> 1 in greater generality by Lax-Phillips [21], Melrose-Sjostrand [24, 25], Vainberg [32] and
Vazy-Zworski [34]

The Kato-e�ect has been extended by Robbiano and Zuily in [30] to variable coe�cients operators
with unbounded potential in exterior domains with non trapping metric. The proof of their result
is reduced to an estimate localized in frequency which has been established by contradiction using
in a crucial way the semiclassical defect measure introduced by P. Gerard [17] (see also [22]). The
use of the microlocal defect measure to prove an estimate by contradiction method (Wilcox [35]) go
back to Lebeau [22]. This idea has been followed with success by several authors (see Burq [8, 9, 10]
Aloui and Khenissi [3, 4, 20]).

In [10], Burq proved that the non trapping condition is necessary for the H1=2 smoothing e�ect
and showed, in the case of several convex obstacles satisfying certain assumptions, the smoothing
e�ect with an " > 0 loss:

k�ukL2(H1=2�"(
)) � Cku0kL2(
);
where � is compactly supported.

On the other hand, the non-trapping assumption is also equivalent to the uniform decay of the
local energy for the wave equation (see [21, 28, 23]). For the trapping domains, when no such decay
is hoped, the idea of stabilization for the wave equation is to add a dissipative term to the equation
to force the energy of the solution to decrease uniformly. There is a large literature on the problem
of stabilization of wave equation. In the case of bounded domains, we quote essentially the work of
J. Rauch and M. Taylor [29] and the one of C. Bardos, G. Lebeau and J. Rauch [6] whose introduced
and developed the geometric control condition (GCC). This condition that asserts, roughly speaking,
that every ray of geometric optics enters the region where the damping term is e�ective in a uniform
time, turns out to be almost necessary and su�cient for the uniform exponential decay of waves. In
[3], Aloui and Khenissi introduced the Exterior Geometric control condition (see below De�nition 1.1)
and hence extended the result of [6] to the case of exterior domains (see also [4] ).

Recently, by analogy with the stabilization problem the �rst author [1, 2] has introduced the forced
smoothing e�ect for Schr�odinger equation in bounded domains; it consists to act on the equation to
produce some smoothing e�ects. More precisely he considered the following equation8<: i@tu��Du+ ia(x)(��D)

1
2 a(x)u = 0 in ]0;+1)� 
;

u(0; :) = f in 
;
ujR+�@
 = 0;

(1.1)

where 
 is a bounded domain and �D is the Dirichlet-Laplace operator on 
.
Using the strategy of [11], Aloui [2] proved a weak Kato -Smoothing e�ect:

kvkL2([";T ];Hs+1
D (
)) � c kv0kHs

D(
) ; (1.2)
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where 0 < " < T <1 and v0 2 Hs
D(
), (See [2] for the de�nition of Hs

D).
By iteration of the last result, Aloui deduced also a C1-smoothing e�ect for the regularized

Schr�odinger equation (1.1). Recently, Aloui, Khenissi and Vodev [5] have proved that the Geometric
control condition is not necessary to obtain the forced C1- smoothing e�ect.

On the other hand, using the arguments of [11], we can prove, for the equation (1.1) in exterior
domains, the cut-o� resolvent bound, which is su�cient to deduce the non-homogenous bound. But,
unfortunately, the generator operator �D � ia(x)(��D)

1
2 a(x) is not self-adjoint and then the TT ?

argument fails. For this reason, we can not prove (with this strategy) the weak Kato-smoothing
e�ect (1.2) for exterior domains.

The question now is the following:
Can we establish the Kato-smoothing e�ect for the regularized Schr�odinger equation (1.1) for

which the Geometric Control Condition is necessary? and if so, does this result still hold for exterior
problems?

In this paper, we give an a�rmative answer. Indeed, under the Exterior Geometric Control
condition, we prove the Kato-smoothing e�ect and the non homogenous bound for the regularized
Schr�odinger equation in exterior domains. Notice that the case of bounded domains can be treated
by the same method.

Our approach for deriving such results is to combine the strategies of Robbiano-Zuily in [30] and
Aloui-Khenissi in [3], [20].

In order to state our results, we give several notations and assumptions.
Let K be a compact obstacle in Rd whose complement 
 an open set with C1 boundary @
 and ~P
be a second-order di�erential operator of the form

~P =

dX
j;k=1

Dj(b
jkDk) + V (x); Dj =

@

i@xj
; (1.3)

where coe�cients bjk and V are assumed to be in C1(Rd); real valued, and bjk = bkj ; 1 � j;
k � d:

Throughout this paper, hxi := (1 + jxj2) 12 and we denote by S
(M; g) the H�ormander's class of
symbols if M is a weight and the metric

g =
dx2

hxi2 +
d�2

h�i2 :

We shall denote by p the principal symbol of ~P , namely

p(x; �) =

dX
j;k=1

bjk(x)�j�k;

and we assume that
9 c > 0 : p(x; �) � cj�j2; for x in Rd and � in Rd; (1.4)(

(i) bjk 2 S
(1; g); rxb
jk(x) = o( 1

jxj ); jxj ! +1; 1 � j; k � d:

(ii) V 2 S
(hxi2 ; g); V � �C0 for some positive constant C0:
(1.5)

Under the assumptions (1.4) and (1.5), the operator ~P is essentially self-adjoint on C1
0 (
) and

we denote by P its self-adjoint extension.
Now we set

� = ((1 + C0)Id+ P )1=2;

which is well de�ned by functional calculus of self-adjoint positive operators.
We consider the following regularized Schr�odinger equation8><>:

(Dt + P )u� ia�au = f in ]0;+1)� 


u = 0 on [0;+1)� @
;
ujt=0 = u0;

(1.6)
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where (u0; f) 2 C1
0 (
)� C1

0 (]0;+1)� 
) and a 2 C1
0 (
):

Let's recall the Exterior Geometric Control (E.G.C.) condition [3]

De�nition 1.1 (E.G.C.). Let R > 0 be such that K � BR = fjxj < Rg and ! be a subset of 
: We
say that ! veri�es the Exterior Geometric Control condition on BR (E.G.C.) if there exists TR > 0
such that every generalized bicharacteristic 
 starting from BR at time t = 0; is such that:

� 
 leaves R+ �BR before the time TR; or

� 
 meets R+ � ! between the times 0 and TR:

We assume also that the bicaracteristics have no contact of in�nite order with the boundary (see,
for a precise statement, De�nition 2.11).

Under this condition on ! = fx 2 
; a2(x) > 0g; we can state our main result.

Theorem 1.2. Let T > 0, � 2 (�1=2; 1=2) and s 2 (1=2; 1]. Let P de�ned by (1.3) satisfying
the assumptions (1.4) and (1.5). Then under, the E.G.C on ! one can �nd a positive constant
C(T; �; s) = C such thatZ T

0




��+1=2hxi�su



2
L2(
)

dt+ sup
t2[0;T ]

k��u(t)k2L2(
)�C
 
k��u0k2L2(
) +

Z T

0




���1=2hxisf


2
L2(
)

dt

!
(1.7)

for all u0 in C1
0 (
), f in C1

0 (
� R+), where u denotes the solution of (1.6).

Working with ~u = ei(1+C0)tu; one may assume V � 1 in (1.5) and � = P 1=2; which will be
assumed in the sequel. It turns into the following equation8><>:

(Dt + P )u� iaP 1=2au = f in [0;+1)� 


u = 0 on [0;1)� @
;
ujt=0 = u0;

(1.8)

where P � 1:

Remarks 1.3.

1. When the obstacle is nontrapping, we obtain the result of Robbiano Zuily [30] by taking
a(x) = 0 and moreover, we improve their result to non homogenous bound.

2. If we consider the equation in a bounded domain 
 of Rd; and replace the exterior geometric
condition (E.G.C) by the classical microlocal condition of Bardos-Lebeau-Rauch [6], we can
still prove the Kato-e�ect and then we improve the result of Aloui [2].

3. If there is a trapped ray which does not intersect the regularized region, due to Burq [10], the
Kato-e�ect does not hold. In this context, our result is thus optimal.

The rest of the paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.2
while in the Section A we shall prove some Lemmata used in Section 2.

2 Proofs

Let's describe the strategy of the proof of theorem 1.2. In a �rst step, we reduce the estimate (1.7)
to an analogue one localized in frequencies. By following a contradiction argument, we can construct
an adapted microlocal defect measure. Our aim in the rest of the proof is to obtain a contradiction
on this measure. First, we prove that this measure is not identically null. Next, we show that it is
null on incoming set and on fa2 > 0g. Finaly, using the geometrical assumption (E.G.C.) and that
the support of this measure is propagated along the generalized 
ow, we conclude that the measure
is identically null. This gives the contradiction.
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2.1 Reduction to an estimate localized in frequency

We recall the Paley-Littlewood decomposition. Let � 2 C1
0 ([0;+1)) be a decreasing function such

that
�(s) = 1 if s � 1=2; �(s) = 0 if s � 1:

Let  (s) = �(4�1s)� �(s),  (s) = 0 if s � 1=2 or s � 4, 0 �  � 1. For s � 0 we have

1 = �(s) +

+1X
n=0

 (4�ns);

and using P � 1, we have

u =

+1X
n=0

 (4�nP )u:

For support reason
 (4�ns) (4�ks) = 0 if jk � nj � 2;

thus there exists C > 0 such that for all u 2 L2(
),

kuk2L2(
) � C

+1X
n=0

k (4�nP )uk2L2(
) � C2kuk2L2(
):

In the sequel we denote by hn = 2�n and un = uhn =  (h2nP )u.
If u satis�es

Dtu+ Pu� iaP 1=2(au) = f; (2.1)

thus un is a solution of the following semi-classical Schr�odinger equation:

h2n(Dt + P )un � ihna(h
2
nP )

1=2(aun) = hngn; (2.2)

where
gn = ghn = hn (h

2
nP )f + i[ (h2nP ); a](h

2
nP )

1=2(au) + ia(h2nP )
1=2[ (h2nP ); a]u: (2.3)

Proposition 2.1. Let s 2 (1=2; 1], T > 0 and � 2 (�1=2; 1=2). Assume there exists C > 0 such
that for un =  (h2nP )u satisfying (2.2), we have, for all n � 1

khxi�sunk2L2([0;T ]�
) + hn sup
t2[0;T ]

kun(t)k2L2(
) � C
�
hnkun(0)k2L2(
) + khxisgnk2L2([0;T ]�
)

�
; (2.4)

then there exists C 0 > 0 such that for all u satisfying (2.1) we have

kP�=2+1=4hxi�suk2L2([0;T ]�
) + sup
t2[0;T ]

kP�=2u(t)k2L2(
)

� C 0
�
kP�=2u(0)k2L2(
) + kP�=2�1=4hxisfk2L2([0;T ]�
)

�
:

(2.5)

Proof. We multiply (2.4) by h�2��1n and we sum over n 2 N, we obtain,X
n2N

h�2��1n khxi�sunk2L2([0;T ]�
) +
X
n2N

h�2�n sup
t2[0;T ]

kun(t)k2L2(
)

� C

 X
n2N

h�2�n kun(0)k2L2(
) +
X
n2N

h�2��1n khxisgnk2L2([0;T ]�
)
!
:

(2.6)

Now, let us estimate each term appearing in inequality (2.5). We have,

sup
t2[0;T ]

kP�=2u(t)k2L2(
) � C sup
t2[0;T ]

X
n2N

k (h2nP )P�=2u(t)k2L2(
)

� C sup
t2[0;T ]

X
n2N

h�2�n k 0(h2nP )u(t)k2L2(
) where  0(�) = ��=2 (�)

� C
X
n2N

h�2�n sup
t2[0;T ]

k (h2nP )u(t)k2L2(
): (2.7)
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We have also with  1(�) = ��=2+1=4 (�) ,

kP�=2+1=4hxi�suk2L2([0;T ]�
) � C
X
n2N

h�2��1n k 1(h2nP )hxi�suk2L2([0;T ]�
)

� C
X
n2N

h�2��1n khxi�s (h2nP )uk2L2([0;T ]�
)( by Lemma A.8 )

� C
X
n2N

h�2��1n khxi�sunk2L2([0;T ]�
): (2.8)

Now we can estimate, with  2(�) = ���=2 (�),X
n2N

h�2�n kun(0)k2L2(
) � C
X
n2N

k 2(h2nP )P�=2u(0)k2L2(
)

� CkP�=2u(0)k2L2(
): (2.9)

The term gn contains three terms (see (2.3)). For the �rst, we have, with  3(�) = ���=2+1=4 (�),X
n2N

h�2�+1
n khxis (h2nP )fk2L2([0;T ]�
) �

X
n2N

h�2�+1
n k (h2nP )hxisfk2L2([0;T ]�
)

� C
X
n2N

k 3(h2nP )P�=2�1=4hxisfk2L2([0;T ]�
)

� CkP�=2�1=4hxisfk2L2([0;T ]�
): (2.10)

For the second and the third terms of gn we can apply the Lemmata A.9 and A.11, to obtain with
(2.10),X

n2N

h�2��1n khxisgnk2L2([0;T ]�
) � CkP�=2�1=4hxisfk2L2([0;T ]�
) + CkP�=2uk2L2([0;T ]�
): (2.11)

Then following (2.6) (2.7), (2.8), (2.9) and (2.11), we obtain

kP�=2+1=4hxi�suk2L2([0;T ]�
) + sup
t2[0;T ]

kP�=2u(t)k2L2(
)

� C
�
kP�=2u(0)k2L2(
) + kP�=2�1=4hxisfk2L2([0;T ]�
) + kP�=2uk2L2([0;T ]�
)

�
:

By Gronwall's Lemma, we can remove the last term in the previous inequality and we obtain (2.5).

2.2 Construction of microlocal defect measure

In this section we will prove the localized frequency estimate (2.4) by a contradiction argument and
using microlocal defect measure.

More precisely, let uh solution of

h2(Dt + P )uh � iha(h2P )1=2(auh) = hgh: (2.12)

We will prove by contradiction the following estimate,

khxi�suhk2L2([0;T ]�
) + h sup
t2[0;T ]

kuh(t)k2L2(
) � Chkuh(0)k2L2(
) + Ckhxisghk2L2([0;T ]�
): (2.13)

Assuming it is false. Taking C = k 2 N, we deduce sequences hk !
k!+1

0; u0k = uhk(0) 2 L2(
)

and gk = ghk 2 L2(
) such that,

hk


u0k

2L2(
) !

k!+1
0; khxis gkk2L2([0;T ]�
) !

k!+1
0: (2.14)
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We normalize by the left term in (2.13), thus


hxi�s uk


2
L2([0;T ]�
)

+ hk sup
t2[0;T ]

kuk(t)k2L2(
) = 1;

where, for simplicity, we have denoted uhk = uk. By the Lemma A.1 we have

hk sup
t2[0;T ]

kuk(t)k2L2(
) !
k!+1

0; (2.15)

then 


hxi�s uk


2
L2([0;T ]�
)

!
k!+1

1: (2.16)

The sequence (uk) is bounded in L2
loc(Rt; L

2
loc(
)): Indeed, for R > 0 , there exists c > 0 such that

hxi�2s � c; 8x 2 B(0; R) and then we haveZ T

0

Z

\BR

jukj2dtdx � 1

c

Z T

0

Z

\BR

hxi�2s jukj2dtdx � 1

c
: (2.17)

We set �
wk = 1
uk(t)
Wk = 1[0;T ]wk:

(2.18)

It follows from (2.17) that the sequence (Wk) is bounded in L2(Rt; L
2
loc(R

d)):
We associate to a symbol b = b(x; t; �; �) 2 C1

0 (T �Rd+1) the semiclassical pseudo-di�erential opera-
tor (pdo) by the formula

Op(b)(y; s; hDx; h
2Dt)v(x; t) =

1

(2�h)d+1

ZZ
ei(

x�y
h �+ t�s

h2
�)'(y)b(x; t; �; �)v(y; s)dydsd�d�;

where ' 2 C1
0 (Rd) is equal to one on a neighborhood of the x-projection of the support of b. As in

[30] we can associate to (Wk) a semi-classical measure �: More precisely,

Proposition 2.2. There exists a subsequence (W�(k)) and a Radon measure � on T �Rd+1 such that

for every b 2 C1
0 (T �Rd+1) one has

lim
k!+1

�
Op(b)

�
x; t; h�(k)Dx; h

2
�(k)Dt

�
W�(k);W�(k)

�
L2(Rd+1)

= h�; bi :

We prove �rst that the measure � satis�es the following property.

Proposition 2.3. The support of � is contained in the characteristic set of the operator Dt + P

� = f(x; t; �; �) 2 T �Rd+1 : x 2 
; t 2 [0; T ] and � + p(x; �) = 0g: (2.19)

Proof. According to (2.18), it is obvious that

supp� � f(x; t; �; �) 2 T �Rd+1 : x 2 
; t 2 [0; T ]g:

Therefore it remains to show that ifm0 = (x0; t0; �0; �0) with x0 2 
; t0 2 [0; T ]; and �0+p(x0; �0) 6= 0
then m0 =2 supp�: For simplicity, we shall denote the sequence W�(k) by Wk.

Case 1. Assume that x0 2 
:
Let " > 0 be such that B(x0; ") � 
, ' 2 C1

0 (B(x0; ")); ' = 1 on B(x0;
"
2 ) and ~' 2 C1

0 (
);
~' = 1 on supp': Let b 2 C1

0 (Rdx�Rd�) such that �x supp b � B(x0;
"
2 ) and � 2 C1

0 (Rt�R� ): Recall
that we have Wk = 1[0;T ]1
uk and that (uk) is bounded sequence in L2([0; T ]; L2

loc(
)): We set

Ik = (b(x; hkDx)�(t; h
2
kDt)'(x)h

2
k(Dt + P (x;Dx))Wk; ~'Wk)L2(Rd+1):
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As in [30] we have
lim

k!+1
Ik = h�; (� + p)b�i : (2.20)

On the other hand, since we have

h2k(Dt + P (x;Dx))uk = hkia(h
2
kP )

1=2auk + hkgk;

and ' 2 C1
0 (
),

'(h2kDt + h2kP (x;Dx))Wk = '(ihka(h
2
kP )

1=2auk + hkgk) + h2k'(uk(0)�t=0 � h2kuk(T )�t=T ): (2.21)

Then Ik is a sum of four terms,
Ik = I1k + I2k + I3k + I4k ;

I1k = ihk (b(x; hkDx)�(t; h
2
kDt)'(x)a(h

2
kP )

1=2auk; ~'Wk)L2(Rd+1)

I2k = hk (b(x; hkDx)�(t; h
2
kDt)'(x)gk; ~'Wk)L2(Rd+1)

I3k = (b(x; hkDx)�(t; h
2
kDt)h

2
k'(x)uk(0)�t=0; ~'Wk)L2(Rd+1)

I4k = �(b(x; hkDx)�(t; h
2
kDt)h

2
k'(x)uk(T )�t=T ; ~'Wk)L2(Rd+1):

For the �rst term I1k , we use the Lemma A.6, we have,


(h2kP )1=2auk


2
L2(
)

� Ch2kkukk2L2(
) + Ckaukk2L2(
); (2.22)

and we deduce,
jI1k j � c(h2k sup

t2[0;T ]
kukk2L2(
) + hk sup

t2[0;T ]
kukk2L2(
)): (2.23)

Then we obtain, that I1k goes to zero by (2.15). For the second term I2k ,��I2k �� � hk kgkkL2([0;T ];B(x0;"))
k ~'WkkL2(Rd+1)

� Chk khxis gkkL2([0;T ]�
)



hxi�s uk




L2([0;T ]�
)
:

Using (2.14) and (2.16), we deduce that

lim
k!+1

I2k = 0: (2.24)

The third and fourth terms in (2.21) have the following form,

Jk =
�
b(x; hkDx)�(t; h

2
kDt)'h

2
kuk(s)�t=s; ~'Wk

�
L2(Rd+1)

; s = 0 or T:

Since ( ~'Wk) is bounded in L2(Rd+1); we see that

jJkj2 � c kb'wk(s)k2L2(Rd)


h2k�(t; h2kDt)�t=s



2
L2(R)

sup
t2[0;T ]

kuk(t)k2L2(
);

so, using [30, Lemma A.5] with p = 2 and l = 2, we deduce that,

jJkj2 � ch2k kuk(s)k2L2(
) sup
t2[0;T ]

kuk(t)k2L2(
) � c h2k sup
t2[0;T ]

kuk(t)k4L2(
): (2.25)

It follows from (2.23), (2.24), (2.25) and (2.15) that

lim
k!1

Ik = 0: (2.26)

As the linear combination of �(t; �)b(x; �) are dense in C1
0 (T ?(Rd+1)), using (2.20) and (2.26), we

deduce that m0 = (x0; t0; �0; �0) =2 supp�.
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Case 2. Assume that x0 2 @
:
We would like to show that one can �nd a neighborhood Ux0 of x0 in Rd such that for any

b 2 C1
0 (Ux0 � Rt � Rd� � R� ); we have

h�; (� + p)bi = 0: (2.27)

Indeed this will imply that the point m0(x0; t0; �0; �0) (with �0+(x0; �0) 6= 0) does not belong to the
support of � as claimed. Formula (2.27) will be implied, by(

lim
k!+1

Ik = 0 where

Ik =
�
b(x; t; hkDx; h

2
kDt)'h

2
k(Dt + P )Wk;Wk

�
L2(Rd+1)

:
(2.28)

where ' 2 C1
0 (Ux0); ' = 1 on �x supp b: Let Ux0 a neighborhood of x0 such that there exists a C1

di�eomorphisme F from Ux0 to a neighborhood U0 of the origin in Rd satisfying,8<:
F (Ux0 \ 
) = fy 2 U0 : y1 > 0g
F (Ux0 \ @
) = fy 2 U0 : y1 = 0g

(P (x;D)Wk) � F�1 = (D2
1 +R(y;D0) + L(x;D))(Wk � F�1);

(2.29)

where R is a second-order di�erential operator, D0 = (D2; :::; Dd) and L(x;D) a �rst order di�erential
operator. Let us set

vk = uk � F�1; Vk = 1[0;T ]1y1>0vk; (2.30)

then we will have� �
Dt +D2

1 +R(y;D0) + L(x;D)
�
vk = iaP 1=2(auk) � F�1 + h�1k gk � F�1 := fk

vkjy1=0 = 0:
(2.31)

Making the change of variable x = F�1(y) on the right-hand side of the second line of (2.28), we
see that

Ik =
�
~b(y; t; hkDy; h

2
kDt) h

2
k(Dt +D2

1 +R(y;D0) + L(x;D))Vk; Vk

�
L2(Rd+1)

;

where ~b 2 C1
0 (U0 � Rt � Rd� � R� ); and  2 C1

0 (U0);  = 1 on �y supp~b: To prove (2.28) it is
su�cient to prove that,

lim
k!+1

Jk = lim
k!+1

�
T 0(y1) 1(y

0)h2k(Dt +D2
1 +R(y;D0) + L(x;D))Vk; Vk

�
L2(Rd+1)

= 0;

where T = �(y1; hkD1)�(y
0; hkD

0)�(t; h2kDt); ��� 2 C1
0 (U0 � Rt � R

d
� � R� );  0 1 2 C1

0 (U0);
 0 1 = 1 on �y supp ���; According to (2.31) we have,

(Dt +D2
1 +R(y;D0) + L(x;D))Vk = fk � i1y1>0vk(0; :)�t=0 + i1y1>0vk(T; :)�t=T

� i1[0;T ](D1vkjy1=0)
 �y1=0:

Therefore (2.28) will be proved if we can prove that8>>>><>>>>:
lim

k!+1
Ajk = 0; j = 1; 2; 3; where

A1
k =

�
�(y1; hkD1)�(y

0; hkD
0)�(t; h2kDt) 0 1h

2
k1y1>0vk(s; :)�t=s; Vk

�
; s = 0; T;

A2
k =

�
�(y1; hkD1)�(y

0; hkD
0)�(t; h2kDt) 0 1h

2
k1[0;T ](D1vkjy1=0)
 �y1=0; Vk

�
;

A3
k =

�
�(y1; hkD1)�(y

0; hkD
0)�(t; h2kDt) 0 1h

2
kfk; Vk

�
:

(2.32)

As in [30, A.18]
lim

k!+1
A1
k = 0: (2.33)

To estimate the term A2
k we need a Lemma. With U0 introduced in (2.29), we set U+

0 = fy 2 U0 :
y1 > 0g: We consider a smooth solution of the problem:� �

Dt +D2
1 +R(y;D0) + L(x;D)

�
u = g in U+

0 � Rt
ujy1=0 = 0

(2.34)
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Lemma 2.4. Let � 2 C1
0 (U0) and �1 2 C1

0 (U0) �1 = 1 on supp�: There exists C > 0 such that
for any solution u of (2.34) and all h in ]0; 1]; we have

Z T

0




(�h@1u)jy1=0 (t)



2
L2
dt � C

0@Z T

0

X
j�j�1

k�1(hD)�u(t)k2L2(U+
0 ) dt

+



h 1

2�u(0)




L2(U+

0 )




h 1
2 (h@1u)(0)





L2(U+

0 )

+



h 1

2�u(T )




L2(U+

0 )




h 1
2 (h@1u)(T )





L2(U+

0 )
+ k�1hgk2L2

�
:

Proof of the Lemma. It is analogue to the proof of [30, Lemma A.6].
We replace in the previous Lemma g by iaP 1=2(auk) � F�1 + h�1k gk � F�1 and by (2.30), we obtain
easily the following corollary.

Corollary 2.5. One can �nd a constant C > 0 such thatZ T

0




(�hk@1vk)jy1=0 (t)



2
L2
dt � C

 Z T

0

k~�uk(t)k2L2(
) dt+



h1=2k uk(0)




2
L2(
)

dt

+

Z T

0

�


~�a(h2kP )1=2auk


2
L2

+ k~�gkk2L2
�
dt

!
� C;

where vk has been de�ned in (2.30) and ~� 2 C1
0 (Rd):

Let us go back to the estimate of A2
k de�ned in (2.32). We have

��A2
k

��2 � Ch2k k�(y1; hkD1)�y1=0k2L2(R) k( 2Vk)k2L2(Rd+1)
Z T

0




( 1hkD1vk)jy1=0 (t)



2
L2(Rd�1)

dt:

Applying (2.17), [30, Lemma A.5] with p = 2, l = 1 and corollary 2.5, we obtain��A2
k

�� � chk �! 0: (2.35)

The term
��A3

k

�� can be treated as the �rst and the second term in the case 1.
Using (2.33) and (2.35), we deduce (2.32), which implies (2.28) thus (2.27). The proof of Proposi-
tion 2.3 is complete.

2.3 The microlocal defect measure does not vanish identically

First let us prove that the sequence (uk) have mass in a compact domain.

Lemma 2.6. There exists a subsequence k� , there exists R > 0 such thatZ T

0

kuk� (t)k2L2(x2
; jxj<R)dt � 1=2:

Proof of Lemma. We prove the Lemma by contradiction. Assume that

8R > R0; lim sup
k

Z T

0

kuk(t)k2L2(x2
; jxj�2R+1)dt � 3=4; (2.36)

where R0 is large enough such that supp a � fjxj � R0=2g.
Let � 2 C1(Rd) such that � = 1 for jxj > 2 and � = 0 for jxj < 1. We set �R(x) = �(x=R) and

by the choice of R0 we have a�R = �Ra = 0 . The function vk := �Ruk satis�es

Dtvk + Pvk = h�1k �Rgk + [P; �R]uk:
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From [16, Theorem 2.8], we haveZ T

0

khxi�svkk2L2(Rd) � C(kE� 1
2
vk(0)k2L2(Rd) +

Z T

0

khxisE�1
�
h�1k �Rgk + [P; �R]uk

� k2L2(Rd)dt);
(2.37)

where Es is the pseudo-di�erential operator with symbol es = (1 + p(x; �) + jxj2) s2 which belongs to
S((j�j+ < x >)s; g).

For the �rst term of the right hand side of (2.37) we have, where (�; �) means the scalar product
in L2(
),

kE� 1
2
vk(0)k2L2 = hkkE� 1

2
�RP

1
4 (h2kP )

� 1
4 1(h

2
kP ) (h

2
kP )u(0)k2L2 ;

= hk(S 2(h
2
kP )uk(0); S 2(h

2
kP )uk(0)); where S = E� 1

2
�RP

1
4 ; and  2(t) = t�

1
4 1

= hk( 2(h
2
kP )S

?S 2(h
2
kP )uk(0); uk(0))

= hk( 2(h
2
kP )(h

2
kP )

� 1
4Q�R(h

2
kP )

1
4 2(h

2
kP )uk(0); uk(0))

� Chkkuk(0)k2L2 ;

where  1 2 C1
0 (0;+1) and  1 = 1 on supp( ), S?S = P�

1
4Q�RP

1
4 , Q = P

1
2�RA�1, and A�1 =

E?
� 1

2

E� 1
2
. We have used that the operator Q is bounded from L2(Rd) to L2(
) (see [30, Lemma

4.2]).
Then from (2.15), we deduce that

lim
k!+1

kE� 1
2
vk(0)k2L2 = 0: (2.38)

Concerning the term

Z T

0

khxisE�1h�1k �Rgkk2L2dt, we will prove that it tends to zero.
Let  1 2 C1

0 (R), such that  1 = 1 on supp .
Since  1(h

2
kP )uk = uk then applying 1�  1(h

2
kP ) to Formula (2.12), we obtain

h�1k gk = h�1k  1(h
2
kP )gk � ih�1k a(h2kP )

1=2a 1(h
2
kP )uk + ih�1k  1(h

2
kP )a(h

2
kP )

1=2auk:

Using that �Ra = 0, we have

h�1k �Rgk = h�1k �R 1(h
2
kP )gk + ih�1k �R 1(h

2
kP )a(h

2
kP )

1=2auk:

And thenZ T

0

khxisE�1h�1k �Rgkk2L2dt

�
Z T

0

khxisE�1�Rh�1k  1(h
2
kP )gkk2dt+

Z T

0

khxisE�1�Rh�1k  1(h
2
kP )a(h

2
kP )

1=2aukk2dt

�
Z T

0

khxisE�1�RP 1=2 2(h
2
kP )gkk2dt+

Z T

0

khxisE�1�Rh�1k  1(h
2
kP )a(h

2
kP )

1=2aukk2dt;

where  2(t) = t�1=2 1(t): We have,Z T

0

khxisE�1�RP 1=2 2(h
2
kP )gkk2dt � I + II; (2.39)

where

I =

Z T

0

khxisE�1hxi�s�RP 1=2 2(h
2
kP )hxisgkk2dt

and

II = h�2k

Z T

0

khxisE�1�R[(h2kP )1=2 2(h2kP ); hxi�s]hxisgkk2dt:
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It follows that the symbol of hxisE�1hxi�s belongs to S((j�j+ hxi)�1) then hxisE�1hxi�s�RP 1=2 is
bounded on L2(
) (see [30, Lemma 4.2]) and we have

I � C

Z T

0

khxisgkk2dt;

According to Lemma A.4, h�1k hxis[(h2kP )1=2 2(h2kP ); hxi�s] is bounded on L2(
) and we get

II � C

Z T

0

khxisgkk2dt:

To estimate Z T

0

khxisE�1�Rh�1k  1(h
2
kP )a(h

2
kP )

1=2aukk2dt;

we have with  2(s) = s�1 1(s) and ~� a smooth function such that, ~� = 1 for jxj � 1 and ~� = 0 for
jxj � 1=2, ~�R(x) = ~�(x=R),

hxisE�1�Rh�1k  1(h
2
kP )a = hxisE�1�RPhk 2(h2kP )a = hxisE�1�RP ~�Rhk 2(h

2
kP )a

= hxisE�1hxi�s�RP 1=2(h2kP )
1=2hxis[ ~�R;  2(h2kP )]a

+ hxisE�1hxi�s�R[hxis; P ] ~�Rhk[ 2(h2kP ); a]; (2.40)

where we have used a~�R = 0 if R large enough.
By the [30, Lemma A.5] and Lemma A.3 the �rst term of (2.40) is bounded on L2(
) by Chk.

As [hxis; P ] is a sum of term �@xj where � is bounded, hxisE�1hxi�s�R[hxis; P ] is bounded on
L2(
), and [ 2(h

2
kP ); a] is bounded on L2(
) by [30, Lemma 6.3]. Then the second term of (2.40)

is bounded on L2(
) by Chk. Finally, we yield by Lemma A.6,

Z T

0

khxisE�1�Rh�1k  1(h
2
kP )a(h

2
kP )

1=2aukk2dt � CRh
2
k

Z T

0

k(h2kP )1=2aukk2dt

� CRh
2
k sup
t2[0;T ]

kuk(t; :)k2: (2.41)

According to (2.14) and (2.15), we conclude that the second term of the right hand side of (2.37)
goes to zeros when k tend to +1

lim
k!1

Z T

0

khxisE�1h�1k �Rgkk2L2dt = 0: (2.42)

Now we estimate the term

Z T

0

khxisE�1[P; �R]ukk2L2dt.
Let �1 2 C1

0 (R� 1 < jxj < 2R+ 1); �1 � 0; �1 = 1 on supp(r�R);Z T

0

khxisE�1[P; �R]ukk2L2)dt �
Z T

0

khxis�1E�1[P; �R]�1uk]k2L2(
)dt

+

Z T

0

khxis(1� �1)E�1[P; �R]�1uk]k2L2(
)dt;

� CR2(s�1)

Z T

0

kukk2L2(R�1<jxj<2R+1)dt � CR2(s�1); (2.43)

where we have used, �rst that E�1@x is bounded on L2, hxis is estimate by CRs on support of �1
and @x�R is the product of a bounded function by R�1, second, the symbol of hxis(1��1)E�1[P; �R]
is uniformly bounded in R�1S((hxi+ j�j)�N ; g) for all N . The last inequality uses the contradiction
assumption (2.36).
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Following (2.37), (2.38), (2.42) and (2.43), we have,Z T

0

khxi�sukk2L2(jxj>2R)dt �
Z T

0

khxi�svkk2L2(Rd) � CR�k + CR2(s�1);

where �k ! 0 when k ! +1, C is independent of R and CR may depend of R. Then we haveZ T

0

kukk2L2(x2
; jxj<2R) �
Z T

0

khxi�sukk2L2(x2
; jxj<2R)

�
Z T

0

khxi�sukk2L2(x2
) �
Z T

0

khxi�sukk2L2(jxj>2R)

�
Z T

0

khxi�sukk2L2(x2
) � CR�k � CR2(s�1):

This with (2.16) implies a contradiction with (2.36) and proves the Lemma.
In the sequel, for simplicity, we shall denote the sequence uk� found in Lemma 2.6 by uk. Thus

there exist R0 > 0, k0 > 0 such thatZ T

0

kuk(t)k2L2(jxj<R)dt �
1

2
;

when R > R0 and k > k0.
We consider �1 2 C1

0 (Rd) such that

0 � �1 � 1; �1(x) = 1 if jxj � R1 + 2 and supp�1 � fjxj � R1 + 3g;

with R1 > R0.
Let A � 1, R � 1,  A 2 C1

0 (R), �R 2 C1
0 (R) be such that 0 �  A, �R � 1 and

 A(�) = 1 if j� j � A; �R(t) = 1 if jtj � R:

We recall that wk(t) = 1
uk(t).

Proposition 2.7. There exist positive constants A0, R0, k0 such thatZ
R

k A(h2kDt)�R(h
2
k�)1[0;T ]�1wk(t)k2L2(Rd)dt �

1

4
;

when A � A0, R � R0, k � k0.

Corollary 2.8. The measure � does not vanish identically.

Proof of Proposition . Set I = (Id�  A(h
2
kDt))1[0;T ]�1uk and e (�) = 1�  A(�)

�
. It is easy

to see that e 2 L1(R) and j e (�)j � 1
A for all � 2 R.

We have

I = e A(h2kDt)h
2
kDt(1[0;T ]�1wk)

=
h2k
i
e A(h2kDt)�1(uk(0)�t=0 � uk(T )�t=T )e A(h2kDt)�11[0;T ](�h2kPuk + ihka(h

2
kP )

1=2auk + hkgk)

= B1
k +B2

k +B3
k +B4

k:

From [30, See the proof of Proposition 6.1] we know that k e A(h2kDt)�t=akL2(R) � Ch�1k , then we
deduce that

lim
k!+1

Z
R

kB1
kk2L2(
)dt � lim

k!+1
Ch4kh

�2
k (kuk(0)k2L2(
) + kuk(T )k2L2(
)) = 0:
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Using (2.22) and (2.15), we can prove easily that

lim
k!+1

Z
R

kB3
kk2L2(
)dt � C lim

k!+1

Z T

0

hkk(h2kP )1=2aukk2L2(
)dt = 0:

From (2.14) we can see that

lim
k!+1

Z
R

kB4
kk2L2(
)dt � C lim

k!+1

Z T

0

k�1gkk2L2(
)dt = 0:

Now, for B2
k we argue as in [30, See the proof of Proposition 6.1]. Let ~� 2 C1

0 (0;+1) such ~� = 1 on

the support of  and let ~�1(s) = s~�(s). We have

B2
k = � e A(h2kDt)�11[0;T ]h

2
kP
e�(h2kP )uk

= � e A(h2kDt)1[0;T ][�1; e�1(h2kP )]uk � e A(h2kDt)1[0;T ]e�1(h2kP )�1uk:
Using Lemma 6.3 in [30] and the fact that

k e A(h2kDt)kL2(R)!L2(R) = O

�
1

A

�
; ke�1(h2kP )kL2(
)!L2(
) = O(1);

uniformly in k, we deduce thatZ
R

kB2
kk2L2(
)dt � C(h2k sup

t2[0;T ]
kuk(t)k2L2(
)dt+

1

A

Z T

0

k�1ukk2L2(
)dt):

Taking k and A su�ciently large we obtainZ
R

k A(h2kDt)1[0;T ]�1wk(t)k2L2(Rd)dt �
1

3
: (2.44)

Now, we set
II = (Id� �R(h

2
k�)) A(h

2
kDt)1[0;T ]�1wk:

It is proved in [30] that Z
R

kIIk2L2(Rd)dt �
CR1

R
(1 + h2k); (2.45)

where CR1
depends on R1 and The proof does not depend on the equation, so it remains valid in

our case. Nevertheless we recall the proof in the sequel for the convenience of the reader. Before we
give the end of the proof of proposition 2.7.

Taking R su�ciently large and using (2.44), we obtainZ
R

k�R(h2k�) A(h2kDt)1[0;T ]�1wk(t)k2L2(Rd)dt �
1

4
:

Return to the proof of (2.45). We have j1� �R(t)j � C
hj�jp
R

then we obtain,

Z
R

kIIk2L2(Rd)dt � C
h2k
R

Z
R

X
j

k@j A(h2kDt)1[0;T ]�1wkk2L2(Rd)dt

� C
h2k
R

Z
R

X
j

k@j A(h2kDt)1[0;T ]�1ukk2L2(
)dt

� h2k
R

X
j

�Z
R

k@je�(h2kP ) A(h2kDt)1[0;T ]�1ukk2L2(
)dt

+

Z
R

k@j(1� e�(h2kP )) A(h2kDt)1[0;T ]�1ukk2L2(
)dt
�

:=
h2k
R
(C1

k + C2
k); (2.46)
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where e� 2 C1
0 (R) satisfying e�(t) = 1 if t 2 supp(�1) and e��1 = �1.

We have by Lemma 6.3 [30]

C1
k � Ch�2k

Z T

0

k�1ukk2L2(
)dt � ch�2k ; (2.47)

and

C2
k �

Z
R

k@j [e�(h2kP ); �1] A(h2kDt)1[0;T ]e�1ukk2L2(
)dt
�
Z
R

k A(h2kDt)1[0;T ]e�1ukk2L2(
)dt
� C

Z T

0

ke�1ukk2L2(
)dt � CR1

Z T

0

khxi�sukk2L2(
)dt; (2.48)

where e�1 2 C1
0 (
), e�1 = 1 on supp(�1).

Combining (2.46), (2.47) and (2.48), we obtain (2.45).

2.4 The microlocal defect measure vanishes in the incoming set

In this section we prove that the microlocal defect measure � vanishes in the incoming set.
First remind some notation introduced in [30] section 7. We keep the same notation when it is

possible.
We denote by

b(x; �) =

dX
j;k=1

bjk(x)xj�k:

Proposition 2.9. Let m0 = (x0; t0; �0; �0) 2 T ?(Rd+1) be such �0 6= 0, �0+p(x0; �0) = 0, jx0j � 3R0,
b(x0; �0) � �3�jx0jj�0j for some � > 0 small enough. Then m0 =2 supp�.

We remind the results proved in [30] in section 7, Lemma 7.5 and Corollary 7.6. A part of the
proof is in Doi [15]. We use the Weyl quanti�cation of symbol which is denoted by Opw.

There exist a symbol � 2 S(1; g) such that 0 � � � 1 and a symbol �1 2 S(1; g) such that,

supp�1 � supp� � f(x; �) 2 T �(Rd); jxj � 2R0; b(x; �) � ��
2
jxjj�j; j�j � j�0j

4
g; (2.49)

f(x; �) 2 T �(Rd); jxj � 5

2
R0; b(x; �) � ��jxjj�j; j�j � j�0j

2
g � f(x; �) 2 T �(Rd); �(x; �) = 1g;

�(x; h�) = �(x; �) when jh�j � j�0j
2
; and 0 < h � 1;

Hp�(x; �) � 0 on the support of �1;

�1 � 0;

[ ~P ;Opw(�1)]� 1

i
Opw(Hp�1) 2 Opw(S(1; g)); (2.50)

there exist two positive constants C; C 0 such that;

�Hp�1 � Chxi�2s�2(x; �)(jxj+ j�j)� C 0�2(x; �): (2.51)

Proof. Let '1 2 C1
0 (Rd) such that

'1(x) = 1 if jxj � 4

3
R0; supp'1 � fx; jxj � 3

2
R0g: (2.52)

Let M large enough such that,

j((1� '1)Op
w(�1)(1� '1)uju)j � M

2
kuk2:
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Here and in the sequel (�j�) and k � k denote the L2(
) inner product and norm respectively. The
cuto� make sense with this L2 product. We set,

N(t) = ((M � (1� '1)Op(�1)(1� '1))uk(t)juk(t));
and we have

M

2
kuk(t)k2 � N(t) � 2Mkuk(t)k2: (2.53)

Setting � =M � (1� '1)Op(�1)(1� '1), we have,

d

dt
N(t) = (�

d

dt
uk(t)juk(t)) + (�uk(t)j d

dt
uk(t)):

From (2.12) we have
d

dt
uk = �iPuk � h�1k a(h2kP )

1=2(auk) + ih�1k gk:

We obtain,

d

dt
N =(i[P;�]ukjuk)

� h�1k (�a(h2P )1=2aukjuk)� h�1k (�ukja(h2kP )1=2auk)
+ ih�1k (�gkjuk)� ih�1k (�ukjgk)

=A1 +A2 +A3: (2.54)

For support reasons, we have a(1� '1) = 0 thus we deduce,

A2 = �M
hk

[(a(h2kP )
1=2(auk)juk) + (ukja(h2kP )1=2(auk))]

= �2M

hk
k(h2kP )1=4(auk)k2 � 0: (2.55)

We have, for a constant C1 > 0

jA3j � C1

hk
khxisgkkkhxi�sukk: (2.56)

To estimate A1 we remark that [P;�] = [ ~P ;�] and

[P;�] = [ ~P ;'1]Op
w(�1)(1� '1)� (1� '1)[ ~P ;Op

w(�1)](1� '1) + (1� '1)Op
w(�1)[ ~P ;'1]: (2.57)

Following (2.49) and (2.52), the support of �1 and '1 are disjoint, thus, taking account of (2.53), we
have

j(�[ ~P ;'1]Opw(�1)(1� '1) + (1� '1)Op
w(�1)[ ~P ;'1]

�
ukjuk)j � C2N(t): (2.58)

Let d(x; �) 2 C1
0 (R2d) supported in fjx � x0j � 1; j� � �0j � 1g, and d(x0; �0) = 1. According to

(2.50), (2.51) and G�arding inequality, we get,

(�i(1� '1)[ ~P ;Op
w(�1)](1� '1)ukjuk) � C3h

�1
k khxi�sd(x; hkDx)ukk2 � C4N(t): (2.59)

From (2.57), (2.58) and (2.59) we obtain,

A1 � C3h
�1
k khxi�sd(x; hkDx)ukk2 � C5N(t): (2.60)

Following (2.54), (2.55), (2.56) and (2.60), we have

N 0(t) + C3h
�1
k khxi�sd(x; hkDx)ukk2 � �(t) + C6N(t); (2.61)
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where we have set

�(t) =
C1

hk
khxisgk(t)k:khxi�suk(t)k:

Integrating (2.61) between 0 and t for t 2 [0; T ] we obtain,

N(t) + C3h
�1
k khxi�sd(x; hkDx)ukk2L2([0;T ]�
) �

Z T

0

�(t)dt+N(0) + C8

Z t

0

N(s)ds: (2.62)

By Gronwall's inequality we have for t 2 [0; T ],

N(t) � C7

Z T

0

�(t)dt+ C8N(0): (2.63)

Using (2.63) in (2.62), we get

khxi�sd(x; hkDx)ukk2L2([0;T ]�
)
�C8khxisgkkL2([0;T ]�
)khxi�sukkL2([0;T ]�
) + C9hkkuk(0)k2L2(
):

Following (2.14) and (2.16) we obtain

khxi�sd(x; hkDx)ukk2L2([0;T ]�
) ! 0 when k ! +1:

Let �(t; �) 2 C1
0 (R2) supported in a neighborhood su�ciently small around (t0; �0) and taking

account that d is supported in a neighborhood of (x0; �0), we have

k�(t; h2k)d(x; hkDx)ukkL2([0;T ]�
) ! 0 when k ! +1;

then h�; �2d2i = 0 thus (x0; t0; �O; �0) 62 supp�.

2.5 The microlocal defect measure vanishes on fa2 > 0g

The goal of this section is to prove that the microlocal defect measure vanishes on fa2 > 0g. More
precisely we have the following proposition.

Proposition 2.10. Let uk =  (h2kP )u satisfying

h2k(Dt + P )uk � ihka(h
2
kP )

1=2(auk) = hkgk; (2.64)

khxis gkk2L2([0;T ]�
) + hk sup
t2[0;T ]

kuk(t)k2L2(
) + hk !
k!+1

0; (2.65)

and 


hxi�s uk


2
L2([0;T ]�
)

!
k!+1

1: (2.66)

We assume that the sequence (Wk) = (1[0;T ]1
uk) admits a microlocal defect measure � then a2� = 0.

Proof. Taking the imaginary part of the L2([0; T ]� 
) inner product of (2.64) with uk=hk, we
obtain,

=m[(hk(Dt + P )ukjuk)� i(a(h2kP )
1=2(auk)juk) = =m(gkjuk):

(2.67)

Using that P is self-adjoint, we get

=m(hk

Z T

0

Z



1

2
Dtjukj2dxdt)� ((h2kP )

1=2(auk)jauk) = =m(hxisgkjhxi�suk): (2.68)

17



From (2.65) and (2.66), we have

hk

Z T

0

Z



Dtjukj2dxdt = ihkkuk(0)k2L2(
) � ihkkuk(T )k2L2(
) !
k!+1

0;

and
j(hxisgkjhxi�suk)j � khxisgkkL2(
)khxi�sukkL2(
) !

k!+1
0:

Following (2.68), we deduce
((h2kP )

1=2(auk)jauk) !
k!+1

0: (2.69)

Let � 2 C1
0 ((0;+1)) with � = 1 on the support of  . Thus we have �(h2kP )uk = uk. Let

~�(t) = t�1=4�(t), we have ~� 2 C1
0 ((0;+1)) and,

(aukjauk) = (a�2(h2kP )ukjauk) = (a(h2kP )
1=2~�2(h2kP )ukjauk)

= ((h2kP )
1=2~�2(h2kP )aukjauk) + ([a; (h2kP )

1=2~�2(h2kP )]ukjauk): (2.70)

From Lemma 6.3 [30], we have

k[a; (h2kP )1=2~�2(h2kP )]ukkL2(
) � ChkkukkL2(
): (2.71)

We have also,

((h2kP )
1=2~�2(h2kP )aukjauk) = k(h2kP )1=4~�(h2kP )aukk2L2([0;T ]�
)

� k(h2kP )1=4aukk2L2([0;T ]�
) = ((h2kP )
1=2aukjauk) !

k!+1
0; (2.72)

from (2.69). Following (2.70), (2.71) and (2.72), we obtain,

(aukjauk) !
k!+1

0: (2.73)

Let b(x; t; �; �) 2 C1
0 (Rd � R� Rd � R), we have by standard symbolic semi-classical calculus

(a2(x)b(x; t; hkDx; h
2
kDt)WkjWk) =(b(x; t; hkDx; h

2
kDt)(aWk)jaWk)

+ hk(r(x; t; hkDx; h
2
kDt)WkjWk); (2.74)

where r(x; t; hkDx; h
2
kDt) is bounded on L2([0; T ]� Rd). Thus from (2.65), we have,

hkj(r(x; t; hkDx; h
2
kDt)WkjWk)j � ChkkWkk2L2([0;T ]�Rd) !

k!+1
0: (2.75)

From (2.73) and using kaWkk2L2(R�Rd) = kaukk2L2([0;T ]�
) we obtain,

j(b(x; t; hDx; h
2Dt)(aWk)jaWk)L2(R�Rd)j � CkaWkk2L2(R�Rd) !

k!+1
0: (2.76)

According to the de�nition of the microlocal defect measure �, (2.74), (2.75) and (2.76) imply the
Proposition 2.10

2.6 Propagation properties of microlocal defect measure and end of proof

The statement of our results requires some geometric notions which are classical in the microlocal
study of boundary problems (cf. [18] p. 424 and 430-432).
Let M = 
� Rt. We set

T �bM = T �Mnf0g [ T �@Mnf0g:
We have the natural restriction map

� : T �Rd+1

M
! T �bM;
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which is the identity on T �Rd+1
M nf0g (see [30] for details). Consider, near a point of the boundary

z = (x1; x
0; t) 2 @M a geodesic system of coordinates given by the di�eomorphism F in (2.29), for

which z = (0; 0; t), M = f(x1; x0; t); x1 > 0)g and the operator Dt + P has the form (near z)

P = Dt +D2
x1 +R(x1; x

0; Dx0) + S(x;Dx);

with R a second order tangential operator and S a �rst order operator. Denoting r(x1; x
0; �0) the

principal symbol of R and r0 = rjx1=0, the cotangent bundle to the boundary T ?@Mnf0g can be
decomposed (in this coordinate system) as the disjoint union of the following regions:

� the elliptic region E = f(x0; t; �0; �) 2 T ?@Mnf0g; r0(x
0; �0) + � > 0g,

� the hyperbolic region H = f(x0; t; �0; �) 2 T ?@Mnf0g; r0(x
0; �0) + � < 0g,

� and the glancing region G = f(x0; t; �0; �) 2 T ?@Mnf0g; r0(x
0; �0) + � = 0g.

For the purpose of the proofs, it is important to consider the following subsets of the glancing
region:

� the di�ractive region Gd = f� 2 G; @x1rjx1=0(�) < 0g,
� the gliding region Gg = f� 2 G; @xnrjxn=0(�) > 0g; we set G2 = Gd [ Gg,
� and Gk = f� 2 G; Hj

r0(@x1rjx1=0)(�) = 0; 0 � j < k � 2; Hk�2
r0 (@x1rjx1=0)(�) 6= 0g k � 3,

where

Hr0 =
@r0
@�0

@

@x0
� @r0
@x0

@

@�0

.

De�nition 2.11. We say that the bicaracteristics have no contact of in�nite order with the boundary

if G =

+1[
k=2

Gk.

Now, we recall the de�nition of � the measure on the boundary. By the Lemma 2.4, we see that
the sequence (1[0;T ]hk(

@wk
@n )) is bounded in L2(Rt � L2(@
)): Therefore with the notations in (2.18)

and Proposition 2.2, we have the following Lemma.

Lemma 2.12. There exists a subsequence (W�1(k)) of (W�(k)) and a Radon measure � on T ?(@
�Rt)
such that for every b 2 C1

0 (T �(@
�Rt)) we have

lim
k!+1

�
Op(b)

�
x; t; h�1(k)Dx; h

2
�1(k)

Dt

�
h�1(k)

1

i

@W�1(k)

@n ; h�1(k)
1

i

@W�1(k)

@n

�
L2(@
�Rt)

= h�; bi :

We give now two results on propagation of support of microlocal defect measure. The �rst,
Proposition 2.13 for point inside T ?M and the second, Proposition 2.15 at the boundary of M .

Proposition 2.13. Let m0 = (x0; �0; t0; �0) 2 T ?M and Um0
be a neighborhood of this point in

T ?M . Then for every b 2 C1
0 (Um0

), we have

h�;Hpbi = 0: (2.77)

Proof. It is enough to prove (2.77) when b(x; t; �; �) = �(x; �)�(t; �) with �x supp� � Vx0 � 
.
Let ' 2 C1

0 (
) be such that ' = 1 on Vx0 . We introduce

Ak =
i

hk
[(�(x; hkDx)�(t; h

2
kDt)'h

2
k(Dt + P )1[0;T ]wk; 1[0;T ]wk)L2(
�R)

� (�(x; hkDx)�(t; h
2
kDt)'1[0;T ]wk; h

2
k(Dt + P )1[0;T ]wk)L2(
�R)]:
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We claim that we have
lim

k!+1
Ak = 0: (2.78)

We have

Ak =
i

hk
[(�(x; hkDx)�(t; h

2
kDt)'h

2
k[Dt; 1[0;T ]]wk; 1[0;T ]wk)L2(
�R)

� (�(x; hkDx)�(t; h
2
kDt)'1[0;T ]wk; h

2
k[Dt; 1[0;T ]]wk)L2(
�R)]

� 2=(�(x; hkDx)�(t; h
2
kDt)'gk; 1[0;T ]wk)L2(
�R)

� 2<(�(x; hkDx)�(t; h
2
kDt)'1[0;T ]a(h

2
kP )

1=2awk; 1[0;T ]wk)L2(
�R) + o(1);

where we used that (�(x; hkDx)�(t; h
2
kDt)')� (�(x; hkDx)�(t; h

2
kDt)')

� = o(1) by pseudo-di�eren-
tial calculus. It was proved in [30, proof of Proposition A.9] that the �rst and the second terms tend
to zero when k ! +1. Since gk ! 0 in L2

loc, the third term tends also to zero when k ! +1.
For the fourth term, according to (2.74) and (2.76), it is easy to see that it tends to zero. Thus (2.78)
is proved.

In another side, it was shown in the Proposition A.9 [30] that

lim
k!+1

Ak = �h�;Hp(��)i:

It follows from (2.78), (2.77) that h�;Hpbi = 0 if b = ��, which implies our proposition.
We consider now the case of point m0 = (x0; �0; t0; �0) 2 T ?Rd+1 with x0 2 @
: We take, as in

[30], a neighborhood Ux0 so small that we can perform the di�eomorphism F described in (2.29).
Let � and � be the measures on T ?Rd+1 and T ?(@
�Rt) de�ned in Proposition 2.2 and Lemma

2.12. We denote by ~� and ~� the measures on T ?(Ux0 �Rt) and T
?(Ux0 \ fy1 = 0g �Rt) which are

the pullback of � and � by the di�eomorphism ~F : (x; t) 7! (F (x); t):
We �rst recall the Lemma A.10 established in [30].

Lemma 2.14. Let b 2 C1
0 (T ?(Ux0�Rt)): We can �nd bj 2 C1

0 (Ux0�Rt�Rd�1
�0 �R� ); j = 0; 1 and

b2 2 C1
0 (T ?(Ux0 �Rt)) with compact support in (y; t; �0; �) such that with the notations of (2.29),

b(y; t; �; �) = b0(y; t; �
0; �) + b1(y; t; �

0; �)�1 + b2(y; t; �; �)(� + �21 + r(y; �0));

where r is the principal symbol of R(y;D0):

Proposition 2.15. With the notations of Lemma 2.14 for every b 2 C1
0 (T ?(U0 �Rt)), we have

he�;Hpbi = �he�; b1jY1=0i:

Proof. This proof is similar to the one of Proposition A.12 [30]. We recall some results from [30]
used to prove Proposition A.12.

Lemma 2.16 (Lemma A.13 [30]). Let for j = 0; 1, bj = bj(Y; t; �
0; �) 2 C1

0 (U0 � R
d+1) and

' 2 C1
0 (U0) , ' = 1 on �Y supp aj. Then,

i

hk
[((b0(�k) + b1(�k)hkD1)'h

2
k(Dt + P )1[0;T ]vkj1[0;T ]vk)L2+

�
Z
U+
0

h(b0(�k) + b1(�k)hkD1)'1[0;T ]vk; h
2
k(Dt + P )1[0;T ]vkidY ]

= � i

hk
([h2k(Dt + P ); (b0(�k) + b1(�k)hkD1)'1[0;T ]]vkj1[0;T ]vk)L2+

� (a1(0; Y
0; t; hkDY 0 ; h2kDt)'jY1=01[0;T ](hkD1vkjY1=0)j1[0;T ](hkD1vkjY1=0))L2(Rd�1�R): (2.79)

Here h:; :i denotes the bracket in D0(Rt).
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Lemma 2.17 (Lemma A.15 [30]). Let for j = 0; 1; 2, bj = bj(Y; t; �
0; �) 2 C1

0 (U0 � R
d) and

' 2 C1
0 (U0), ' = 1 on �Y supp bj. Let us set

Ljk = (bj(�k)'(hkD1)
j1[0;T ]vk; 1[0;T ]vk)L2+ :

Then we have for j = 0; 1; 2
lim

k!+1
Lj�(k) = he�; bj�j1i:

The previous Lemmas still hold in our case, since they are independent of the equation.

Lemma 2.18. Let b = b(Y; t; �0; �) 2 C1
0 (U0 � Rd+1) and ' 2 C1

0 (U0) , ' = 1 on �Y supp bj. For
j = 0; 1 we set,

Ijk = (h�1k b(�k)'(hkD1)
jh2k(Dt + P )1[0;T ]vkj1[0;T ]vk)L2+ ;

Jjk =

Z
U+
0

hh�1k b(�k)'(hkD1)
j1[0;T ]vkjh2k(Dt + P )1[0;T ]vkidY:

Then lim
k!+1

Ijk = lim
k!+1

Jjk = 0.

Proof. The proof is similar to the one of Lemma A.14 [30]. We have,

Ijk =
1

i
[(hkb(�k)�t=0'(hkD1)

jvk(0; :)j1[0;T ]vk)L2+ � (hkb(�k)�t=T'(hkD1)
jvk(0; :)j1[0;T ]vk)L2+ ]

+ (b(�k)'(hkD1)
j1[0;T ]gkj1[0;T ]vk)L2+ + (b(�k)'(hkD1)

j1[0;T ]a(h
2
kP )

1=2avkj1[0;T ]vk)L2+ :
From Lemma A.14 [30], the �rst and the second terms of the RHS in the previous identity tend to
zero.
Using that kgkkL2 ! 0, we can prove that the third term tends also to zero.

Following Lemma A.6 and (2.73) the forth term tends to zero. We conclude that Ijk tends to zero.

For Jjk we argue as for Ijk.
Proof of Proposition 2.15. From Proposition 2.3 (� + p)� = 0, so we have

he�;Hpbi = he�;Hp(b0 + b1�1)i:
Let consider the identity (2.79), by Lemma 2.18, the LHS tends to zero when k ! +1. By the
semiclassical symbolic calculus, we have

i

hk
[k2(Dt + P ); (b0(�k) + b1(�k)hkD1)'] =

2X
j=0

cj(�k)'(hkD1)
j ;

where cj 2 C1
0 (U0�Rd+1), '1 = 1 on supp', and fp; b0+b1�1g =

2P
j=0

cj�
j
1. Hence, using Lemma 2.17

and Lemma 2.12, the RHS of (2.79) tends to

�he�;Hp(b0 + b1�1)i � he�; b1jY1=0i;
when k ! +1.

We conclude that
he�;Hpbi = he�;Hp(b0 + b1�1)i = �he�; b1jY1=0i;

which proves the Proposition 2.15.

Proposition 2.19. With the notations of [30], we have

e�(Gd [ (

+1[
k=3

Gk)) = 0:

Proof. The proof is the same as of Lemma A.17 in [30].
By measure theory methods (see [8], [9] and [30]), the propagation of the measure � along the

generalized bicharacteristic 
ow is equivalent to Propositions 2.13, 2.15 and 2.19.
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A Appendix

In this appendix, we prove some Lemmas used above.
We recall the Hel�er-Sj�ostrand formula (see [14]) used extensively in this section. To introduce it we
recall some notations.
Let � 2 C1

0 (R) and let ' 2 C1
0 (R) such that '(t) = 1 if jtj � 1 and '(t) = 0 if jtj � 2. Let N � 2,

we set

~�(t; �) =

NX
q=1

�(q)(t)

q!
(i�)q'(�):

then ~� 2 C1
0 (R2) and satis�es

j�@~�(t; �)j � Cj�jN where �@~�(t; �) =
1

2
(@t~� + i@� ~�)(t; �): (A.1)

We call ~� an almost analytic extension of �. Let P a self adjoint operator. We have the following
Hel�er-Sj�ostrand formula

�(h2P ) = � 1

�

Z
R2

�@~�(t; �)(z � h2P )�1dtd� where z = t+ i�: (A.2)

The formula does not depend of N and '. We recall the estimates proved in [30], Lemma A.22, we
have for f = (z � h2P )�1u and =mz 6= 0,

kh2Pfk2L2(
) + khDjfk2L2(
) + khV 1=2fk2L2(
) + kfk2L2(
) � C
hjzji2
j=mzj2 kuk

2
L2(
): (A.3)

Let hn a sequence such that hn > 0 and hn ! 0 when n ! +1. In the sequel, for simplicity we
denote such a sequence by h. We say h! 0 instead of hn ! 0 when n! +1.

Lemma A.1. Let uh and gh satisfying(
h2(Dt + P )uh � iha(h2P )1=2(auh) = hgh in [0; T ]� 


uh = 0 on [0; T ]� @


and we assume that khxi�suhk2L2([0;T ]�
) � 1, hkuh(0)k2L2(
) ! 0 and khxisghk2L2([0;T ]�
) ! 0 when

h! 0. Then sup
t2[0;T ]

hkuh(t)k2L2(
) ! 0.

Proof. Let k(t) = hkuh(t)k2L2(
), using h@tuh = �ihPuh � a(h2P )1=2(auh) + igh, we have

k0(t) = 2<e(h@tuh(t)juh(t))
= 2<e(�ihPuh(t)juh(t))� 2<e(a(h2P )1=2(auh)(t)juh(t)) + 2<e(ighjuh):

Using
<e(iPuh(t)juh(t)) = 0;

and
<e(a(h2P )1=2(auh)(t)juh(t)) = <e((h2P )1=2(auh)(t)jauh(t)) � 0;

we obtain
k0(t) � 2khxisgh(t)kL2(
)khxi�suh(t)kL2(
):

Thus
k(t) � k(0) + 2khxisghkL2([0;T ]�
)khxi�suhkL2([0;T ]�
):

The assumptions and the de�nition of k imply the Lemma.
Let  : R! R such that  (t) = 0 if t � � or t � � where 0 < � < �.
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Lemma A.2. Let a 2 C1
0 (Rd) and s � 1, there exist C > 0, h0 such that, if 0 < h < h0 we have,

for all u 2 L2(
),
khxis[a;  (h2P )](h2P )1=2uk2L2(
) � Ch2kuk2L2(
): (A.4)

Proof. We prove (A.4) for u 2 C1
0 (
).

Taking the adjoint, (A.4) is equivalent to

k(h2P )1=2[a;  (h2P )]hxisuk2L2(
) � Ch2kuk2L2(
);
which is equivalent to

j(hxis[a;  (h2P )](h2
X

@xjajk(x)@xk + h2V )[a;  (h2P )]hxisuju) � Ch2kuk2L2(
):
Thus it is enough to prove

kh@xj [a;  (h2P )]hxisuk � ChkukL2(
); (A.5)

and
khV 1=2[a;  (h2P )]hxisuk � ChkukL2(
): (A.6)

Now we prove (A.5). Following the Hel�er-Sj�ostrand formula, where ~ is an almost analytic
extension of  , we have

h@xj [a;  (h
2P )]hxis = � 1

�

Z
�@ ~ (z)h@xj [a; (z � h2P )�1]hxisdtd�

=
1

�

Z
�@ ~ (z)h@xj (z � h2P )�1[a; z � h2P ](z � h2P )�1hxisdtd�

=
1

�

Z
�@ ~ (z)h@xj (z � h2P )�1[a; z � h2P ]hxis(z � h2P )�1dtd� +A; (A.7)

where A =
1

�

Z
�@ ~ (z)h@xj (z � h2P )�1[a; z � h2P ](z � h2P )�1[hxis; z � h2P ](z � h2P )�1dsd�.

We have

[a; z � h2P ] = h2
dX

j=1

�j(x)@xj + h2c(x); (A.8)

where �j and c are compact supported. Following (A.7), we have two types of terms to control.
First we remark that

(h2
dX

j=1

�j(x)@xj + h2c(x))hxis = h2�j@xj + h2d(x);

where �j and d are compact supported, following (A.7) and estimates (A.3) (with N = 3) we obtain

kh@xj (z � h2P )�1(h2�j@xj + h2d(x))(z � h2P )�1ukL2(
) � Ch
hjzji2
j=mzj2 kukL2(
): (A.9)

Thus following (A.1), we have

k s �@ ~ (z)h@xj (z � h2P )�1(h2�j@xj + h2d(x))(z � h2P )�1udtd�kL2(
) � ChkukL2(
): (A.10)

Second, we have

[hxis; z � h2P ] = h2
dX

k=1


k(x)@xk + h2
(x);

where j
k(x)j+ j
(x)j � Chxis�1 � C 0, with the above notations, we have following (A.3),

kh@xj (z � h2P )�1(h2�j(x)@xj + h2c(x))(z � h2P )�1(h2
k(x)@xk + h2
(x))(z � h2P )�1uk

� Ch2
hjzji3
j=mzj3 kukL2(
);

(A.11)
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thus, following the proof of (A.10), we prove (A.5).
To prove (A.6), following the Hel�er-Sj�ostrand formula we have,

hV 1=2[a;  (h2P )]hxis = 1

�

Z
�@ ~ (z)hV 1=2(z � h2P )�1[a; z � h2P ](z � h2P )�1hxisdtd�:

With the notation above, it is enough to prove

khV 1=2(z�h2P )�1(h2
dX

j=1

�j(x)@xj +h
2c(x))(z�h2P )�1hxisukL2(
) � Ch

hjzji3
j=mzj3 kukL2(
): (A.12)

Writing (z�h2P )�1hxis = hxis(z�h2P )�1+[(z�h2P )�1; hxis], the �rst term is estimated following
the proof of (A.9). To estimate the second term, we follow the proof of (A.11). Thus we obtain
(A.12) which achieve the proof of Lemma.

Lemma A.3. Let s 2 [0; 1] and � a smooth function such that � = 1 for jxj � 1. We set �R(x) =
�(x=R). There exists C > 0 such that for all u 2 L2(
),

k(h2P )1=2hxis[ (h2P ); �R]uk � Chkuk:

Proof. The proof is very close to the one of Lemma A.2. By the same argument it is su�cient
to prove

kh@xj hxis[ (h2P ); �R]uk � Chkuk; (A.13)

khV 1=2hxis[ (h2P ); �R]uk � Chkuk: (A.14)

From the Hel�er-Sj�ostrand formula, we obtain (as in (A.7))

h@xj hxis[ (h2P ); �R] =
1

�

Z
�@ ~ (z)h@xj (z � h2P )�1hxis[(z � h2P ); �R](z � h2P )�1dtd� (A.15)

+
1

�

Z
�@ ~ (z)h@xj [hxis; (z � h2P )�1][(z � h2P ); �R](z � h2P )�1dtd�:

Modulo negative power of =mz, in the �rst term of (A.15) h@xj (z � h2P )�1 is bounded on L2(
)
and, because hxis=R is bounded on the support of �0(x=R), we can write hxis[(z � h2P ); �R] as a
sum of term �(x)h2@xj . This yields that hxis[(z�h2P ); �R](z�h2P )�1 is bounded on L2(
) by Ch
modulo negative power of =mz. This gives the result for the �rst term in (A.15).

Writing
[hxis; (z � h2P )�1] = �(z � h2P )�1[hxis; z � h2P ](z � h2P )�1

and arguing as for the �rst term, we obtain (A.13). By the same arguments and using that hV 1=2(z�
h2P )�1 is bounded on L2(
) modulo negative power of =mz (see [30, Lemma A.22]), we obtain
(A.14).

Lemma A.4. Let s such that jsj � 1, let b 2 C1(
) such that jb(x)j � Chxis and
j@xj b(x)j + j@2xjxkbj � Chxis�1, there exist C > 0, h0 > 0 such that, if 0 < h < h0 we have, for all

u 2 L2(
),
khxi�s[ (h2P ); b]ukL2(
) � ChkukL2(
):

Proof. By Hel�er-Sj�ostrand formula, we have, with the notation of Lemma A.2,

hxi�s[ (h2P ); b] = 1

�

Z
�@ ~ (z)hxi�s(z � h2P )�1[z � h2P; b](z � h2P )�1dtd� (A.16)

=
1

�

Z
�@ ~ (z)hxi�s(z � h2P )�1(h2

dX
k=1


k(x)@xk + h2
(x))(z � h2P )�1dtd�;
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where j
k(x)j+ j
(x)j � Chxis�1.
If s � 0, following (A.3), we have

khxi�s(z � h2P )�1(h2
dX

k=1


k(x)@xk + h2
(x))(z � h2P )�1ukL2(
) � Ch
hjzji
j=mzj kukL2(
); (A.17)

thus, following the proof of (A.10), we achieve the proof of Lemma in this case.
If s < 0, we write

hxi�s(z � h2P )�1 = (z � h2P )�1hxi�s � (z � h2P )�1[hxi�s; (z � h2P )](z � h2P )�1:

Putting this in (A.16), we obtain two terms. The �rst gives

k(z � h2P )�1hxi�s(h2
dX

k=1


k(x)@xk + h2
(x))(z � h2P )�1ukL2(
) � Ch
hjzji
j=mzj kukL2(
): (A.18)

The second gives

k(z � h2P )�1(h2
dX

k=1

~
k(x)@xk+ h2 ~f(x))(z � h2P )�1(h2
dX

k=1


k(x)@xk+ h2
(x))(z � h2P )�1uk

� Ch2
hjzji2
j=mzj2 kuk;

(A.19)

because j~
k(x)j + j~
(x)j � Chxi�s�1 . Following (A.18), (A.19) and the Hel�er-Sj�ostrand formula,
we obtain the Lemma.

Remarks A.5. In the Lemma A.4, we can remove the assumption jsj � 1, by commuting hxis with
(z � h2P )�1 several times, but Lemma A.4 is su�cient for us in the sequel.

Lemma A.6. Let a 2 C1
0 (Rd), there exist C > 0, h0 such that, if 0 < h < h0 we have, for all

u 2 L2(
),
k(h2P )1=2a (h2P )uk2L2(
) � Ch2kuk2L2(
) + Ckauk2L2(
):

Proof. Writing

(h2P )1=2a (h2P )u = (h2P )1=2[a;  (h2P )]u+ (h2P )1=2 (h2P )au;

then using the Lemma A.2 with s = 0,

k(h2P )1=2a (h2P )uk2L2(
) � k(h2P )1=2[a;  (h2P )]uk2L2(
) + k(h2P )1=2 (h2P )auk2L2(
)
� Ch2kuk2L2(
) + Ckauk2L2(
);

which proves the Lemma.

Lemma A.7. For all s 2 [�1; 1], there exists C > 0 such that for all u 2 C1
0 (
)and all h 2 (0; 1],

we have
khxis (h2P )hxi�sukL2(
) � CkukL2(
):

Proof. We have by Lemma A.4

khxis (h2P )hxi�sukL2(
) � k (h2P )ukL2(
) + khxis[ (h2P ); hxi�s]ukL2(
)
� k (h2P )ukL2(
) + ChkukL2(
);

which proves the Lemma.
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Lemma A.8. Let � 2 (�1; 1) and s 2 [�1; 1], then there exist C1 > and C2 > 0 such that for all
u 2 C1

0 (
), we have

C1

+1X
n=0

h�2�n khxis (h2nP )uk2L2(
)�
+1X
n=0

h�2�n k (h2nP )hxisuk2L2(
)� C2

+1X
n=0

h�2�n khxis (h2nP )uk2L2(
);

where  was de�ned in Section 2.1 and hn = 2�n.

Proof. We have

k (h2nP )hxisuk2L2(
) = k (h2nP )hxis
+1X
k=0

 (h2kP )uk2L2(
)

� 2k (h2nP )hxis
n+1X
k=0

 (h2kP )uk2L2(
)

+ 2k (h2nP )hxis
+1X

k=n+2

 (h2kP )uk2L2(
) = 2A+ 2B:

To estimate A, we can write

A � 2khxis (h2nP )
n+1X
k=0

 (h2kP )uk2L2(
) + 2k[ (h2nP ); hxis]
n+1X
k=0

 (h2kP )uk2L2(
) = 2A1 + 2A2:

By support properties of  and by the Lemma A.7, we have

A1 = khxis (h2nP )
n+1X

k=n�1

 (h2kP )uk2L2(
) � khxis
n+1X

k=n�1

 (h2kP )uk2L2(
): (A.20)

By Lemma A.4 we see easily that

A2 � Ch2nkhxis
n+1X
k=0

 (h2kP )uk2L2(
):

Summing with respect n, we obtain

+1X
n=0

h�2�n h2nkhxis
n+1X
k=0

 (h2kP )uk2L2(
) �
+1X
n=0

 
n+1X
k=0

h��+1
n h�k

�
h��k khxis (h2kP )ukL2(
)

�!2

: (A.21)

We have h��+1
n h�k = 2�(1��)(n�k)2�k � 2�(1��)(n�k) and (2�(1��)j)j�0 2 `1 because 1�� > 0. We

can consider the right hand side of (A.21) as a convolution `1 � `2 and we obtain the estimation of

this term by C
+1P
n=0

h�2�n khxis (h2nP )uk2L2(
) which estimates, with (A.20), the term A.

Now we estimate B. By support properties of  and Lemma A.4 it follows that

B = k (h2nP )hxis
+1X

k=n+2

 (h2kP )

k+1X
j=k�1

 (h2jP )uk2L2(
)

= k (h2nP )
+1X

k=n+2

[hxis;  (h2kP )]
k+1X

j=k�1

 (h2jP )uk2L2(
)

� C

0@ +1X
k=n+2

hkkhxis
k+1X

j=k�1

 (h2jP )ukL2(
)

1A2

:
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Summing with respect n, we obtain

+1X
n=0

h�2�n

0@ +1X
k=n+2

hkkhxis
k+1X

j=k�1

 (h2jP )ukL2(
)

1A2

�
+1X
n=0

0@ +1X
k=n+2

h��n h1+�k

0@h��k khxis
k+1X

j=k�1

 (h2jP )ukL2(
)

1A1A2

:

We have h��n h1+�k = 2�(1+�)(k�n)2�n � 2�(1+�)(k�n) and (2�(1+�)j) 2 `1 since 1 + � > 0. We can
conclude as for the term A above. We have proved the right inequality of the Lemma.

We prove the other inequality.
We have,

khxis (h2nP )uk2L2(
) = khxis (h2nP )hxi�s
+1X
k=0

 (h2kP )hxisuk2L2(
)

� 2khxis (h2nP )hxi�s
n+1X
k=0

 (h2kP )hxisuk2L2(
)

+ 2khxis (h2nP )hxi�s
+1X

k=n+2

 (h2kP )hxisuk2L2(
) = 2D + 2E:

We have by properties of support of  ,

D � 2k (h2nP )
n+1X

k=n�1

 (h2kP )hxisuk2L2(
) + 2k[hxis;  (h2nP )]hxi�s
n+1X
k=0

 (h2kP )hxisuk2L2(
):

The estimate of the �rst term is clear, for the second using Lemma A.4, we get

+1X
n=0

h�2�n k[hxis;  (h2nP )]hxi�s
n+1X
k=0

 (h2kP )hxisuk2L2(
)

�
+1X
n=0

 
n+1X
k=0

h��+1
n h�k

�
h��k k (h2kP )hxisukL2(
)

�!2

:

We have h��+1
n h�k � 2�(1��)(n�k) and we can conclude as above by convolution argument.

For E, it follows from the support properties of  , Lemma A.7 and Lemma A.4,

E = khxis (h2nP )hxi�s
+1X

k=n+2

 (h2kP )

k+1X
j=k�1

 (h2jP )hxisuk2L2(
)

� khxis (h2nP )
+1X

k=n+2

[hxi�s;  (h2kP )]
k+1X

j=k�1

 (h2jP )hxisuk2L2(
)

� Ckhxis
+1X

k=n+2

[hxi�s;  (h2kP )]
k+1X

j=k�1

 (h2jP )hxisuk2L2(
)

� C

0@ +1X
k=n+2

hkk
k+1X

j=k�1

 (h2jP )hxisukL2(
)

1A2

:

27



Summing with respect n, we obtain,

+1X
n=0

h�2�n khxis (h2nP )hxi�s
+1X

k=n+2

 (h2kP )hxisuk2L2(
)

�
+1X
n=0

0@ +1X
k=n+2

h��n h1+�k

0@h��k k
k+1X

j=k�1

 (h2jP )hxisukL2(
)

1A1A2

:

We have h��n h1+�k � 2�(n�k)(1+�) and we can conclude by convolution argument.

Lemma A.9. Let s 2 [�1; 1], � 2 (�1; 3=2) there exists C > 0 such that for all u 2 L2(
), we have

+1X
k=0

h�1k khxis[ (h2kP ); a](h2kP )1=2a(h2kP )��=2uk2L2(
) � Ckuk2L2(
):

Proof. Following the properties of  , we have

(h2kP )
1=2 =

+1X
j=0

hkh
�1
j  0(h

2
jP )

where  0(�) = �1=2 (�) and

(h2kP )
��=2 =

+1X
n=0

h��k h�n 1(h
2
nP )

where  1(�) = ���=2 (�). Thus we must prove,

+1X
k=1

h�1k k
X

(j;n)2N�2

h1��k h�1j h�nhxis[ (h2kP ); a] 0(h2jP )a 1(h2nP )uk2L2(
) � Ckuk2L2(
): (A.22)

Let us introduce for each k the following partition of N2.

A1
k = f(j; n) 2 N2; k � j � 2 or k � n� 2; and j � n� 2g;

A2
k = f(j; n) 2 N2; k � j � 2 or k � n� 2; textandj � n� 3g;

A3
k = f(j; n) 2 N2; k � j � 3 and k � n� 3g:

In the sequel, for each set Apk we will prove (A.22).
Let  2 2 C1

0 (0;+1) such that  2 = 1 on the support of  . We have,

+1X
k=0

h�1k k
X

(j;n)2A1
k

h1��k h�1j h�nhxis[ (h2kP ); a] 2(h2jP ) 0(h2jP )a 1(h2nP )uk2L2(
) � 2A+ 2B;

where

A =

+1X
k=0

h�1k k
X

(j;n)2A1
k

h1��k h�1j h�nhxis[ (h2kP ); a] 2(h2jP )a 0(h2jP ) 1(h2nP )uk2L2(
)

� C

+1X
k=0

h�1k

0BBB@ X
(j;n)2A1

k

jj�nj�1

h1��k h�1+�n khxis[ (h2kP ); a] 2(h2jP )a 0(h2jP ) 1(h2nP )ukL2(
)

1CCCA
2

� C

+1X
k=0

0@ X
n�k+4

h
3=2��
k h�1+�n k 1(h2nP )ukL2(
)

1A2

(by Lemma A.4): (A.23)
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We have h
3=2��
k h�1+�n = 2�(k�n)(3=2��)2�n=2 � 2�(k�n)(3=2��) and we can see (A.23) as a convolu-

tion `1 � `2 if � < 3=2 which prove (A.22) for this term.
For B, we can see that

B =

+1X
k=0

h�1k k
X

(j;n)2A1
k

h1��k h�1j h�nhxis[ (h2kP ); a] 2(h2jP )[ 0(h2jP ); a] 1(h2nP )uk2L2(
)

� 2C + 2D;

where

C =

+1X
k=0

h�1k k
X

(j;n)2A1
k

h1��k h�1j h�nhxis[ (h2kP ); a][ 0(h2jP ); a] 2(h2jP ) 1(h2nP )uk2L2(
):

In the last sum jj � nj � 1, then we can estimate this term as the term A.
We have

D =

+1X
k=0

h�1k k
X

(j;n)2A1
k

h1��k h�1j h�nhxis[ (h2kP ); a][ 2(h2jP ); [ 0(h2jP ); a]] 1(h2nP )uk2L2(
)

�
+1X
k=0

0@ X
(j;n)2A1

k

hjh
3=2��
k h�nk 1(h2nP )ukL2(
)

1A2

(by Lemma A.4 and Lemma A.10):

In A1
k, we have j � n� 2 then the sum over j gives a constant time hn. Then,

D � C

+1X
k=0

0@ X
n�k+4

h
3=2��
k h1+�n k 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

h3�2�k

0@ X
n�k+4

h2+2�
n

1A0@ X
n�k+4

k 1(h2nP )uk2L2(
)

1A ;

by Cauchy-Schwarz inequality and as all the sums converge if � 2 (�1; 3=2), we obtain (A.22).
Now we will estimate the sum over A2

k. We have with the function  2 de�ned above, as
 0(h

2
jP ) 2(h

2
nP ) = 0, because j � n� 2,

+1X
k=0

h�1k k
X

(j;n)2A2
k

h1��k h�1j h�nhxis[ (h2kP ); a] 0(h2jP )a 2
2(h

2
nP ) 1(h

2
nP )uk2L2(
)

=

+1X
k=0

h�1k k
X

(j;n)2A2
k

h1��k h�1j h�nhxis[ (h2kP ); a] 0(h2jP )[[a;  2(h2nP )];  2(h2nP )] 1(h2nP )uk2L2(
)

� C

+1X
k=0

0@ X
(j;n)2A2

k

h
3=2��
k h�1j h2+�n k 1(h2nP )ukL2(
)

1A2

(by Lemma A.4 and the Lemma A.10).

As
P

j�n�3

h�1j � Ch�1n , we can end the proof as for the term D above.

Finally we treat the sum over A3
k. We have, as  (h2kP ) 0(h

2
jP ) = 0.
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+1X
k=0

h�1k k
X

(j;n)2A3
k

h1��k h�1j h�nhxis[ (h2kP ); a] 0(h2jP )a 1(h2nP )uk2L2(
)

=

+1X
k=0

h�1k k
X

(j;n)2A3
k

h1��k h�1j h�nhxis (h2kP )a 0(h2jP ) 2(h2jP )a 2(h2nP ) 1(h2nP )uk2L2(
)

� 2E + 2F;

where,

E =

+1X
k=0

h�1k k
X

(j;n)2A3
k

h1��k h�1j h�nhxis (h2kP )[[a;  0(h2jP )];  2(h2jP )][a;  2(h2nP )] 1(h2nP )uk2L2(
)

�
+1X
k=0

0@ X
(j;n)2A3

k

h
1=2��
k hjh

1+�
n k 1(h2nP )ukL2(
)

1A2

:

If (j; n) 2 A3
k, we have j � k + 3 then the sum over j is less than Chk. We obtain,

E � C

+1X
k=0

0@ X
n�k+3

h
3=2��
k h1+�n k 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

h3�2�k

0@ X
n�k+3

h2+2�
n

1A0@ X
n�k+3

k 1(h2nP )uk2L2(
)

1A
� C

+1X
k=0

h5kkuk2L2(
) � Ckuk2L2(
):

And we have

F =

+1X
k=0

h�1k k
X

(j;n)2A3
k

jj�nj�1

h1��k h�1j h�nhxis (h2kP )[[a;  0(h2jP )];  2(h2jP )] 2(h2nP )a 1(h2nP )uk2L2(
)

� C

+1X
k=0

h1�2�k

0@ X
n�k+3

h1+�n k 1(h2nP )ukL2(
)

1A2

(by Lemma A.10)

� C

+1X
k=0

h1�2�k

0@ X
n�k+3

h2+2�
n

1A0@ X
n�k+3

k 1(h2nP )uk2L2(
)

1A � C

+1X
k=0

h3kkuk2L2(
):

Which achieve the proof of Lemma.

Lemma A.10. Let b 2 C1(
) with support in fjxj � Rg, let �1; �2 2 C1
0 (R), let s 2 [0; 1] there

exist h0 > 0 and C > 0 such that for all u 2 L2(
) and h 2 (0; h0) we have,

khxis[[�1(h2P ); b]; �2(h2P )]ukL2(
) � Ch2kukL2(
):

Proof. We give only a sketch of proof, we use the same technic than before. By the Hel�er-
Sj�ostrand formula, we have

[[�1(h
2P ); b]�2(h

2P )]u =
1

�2

Z
R4

�@ ~�1(t1; �1)�@ ~�2(t2; �2)[[(z1 � h2P )�1; b]; (z2 � h2P )�1]dtd�;
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where z = (z1; z2) and zj = tj + i�j .
First, we can write

[[(z1 � h2P )�1; b]; (z2 � h2P )�1]

= (z1 � h2P )�1(z2 � h2P )�1[[z1 � h2P; b]; z2 � h2P ](z1 � h2P )�1(z2 � h2P )�1;

and
[[z1 � h2P; b]; z2 � h2P ] = h4

X
j;k


jk(x)@
2
jk + h4

X
j


j(x)@j + h4
0(x);

where the 
's are compactly supported. Second, as

hxis(z1 � h2P )�1(z2 � h2P )�1 =(z1 � h2P )�1(z2 � h2P )�1hxis
+ [hxis; (z1 � h2P )�1](z2 � h2P )�1

+ (z1 � h2P )�1[hxis; (z2 � h2P )�1];

and [hxis; (z�h2P )�1] = �(z�h2P )�1[hxis; (z�h2P )](z�h2P )�1, then we can obtain the Lemma
by using the estimate (A.3) and writing the commutator [hxis; (z � h2P )] as in the Formula (A.16).

Lemma A.11. Let s 2 [�1; 1], � < 3=2, there exists C > 0 such that for all u 2 L2(
), we have

+1X
k=0

h�1k khxisa(h2kP )1=2[ (h2kP ); a](h2kP )��=2uk2L2(
) � Ckuk2L2(
):

Proof. We follow the same strategy than the one for the proof of Lemma A.9. We have to prove,

+1X
k=0

h�1k k
X

(j;n)2N2

h1��k h�1j h�nhxisa 0(h2jP )[ (h2kP ); a] 1(h2nP )uk2L2(
) � Ckuk2L2(
): (A.24)

If [j � kj � 2 and jn � kj � 2, the corresponding term in the sum is null. If jj � kj � 1 (the case
jn � kj � 1 is symmetric and let to the reader). We consider two cases, the �rst if n � k + 2, term
A in the sequel, and the second if k � n+ 2 term B in the sequel.

A � C

+1X
k=0

0B@ X
jj�kj�1
n�k+2

h
�1=2��
k h�nkhxisa 0(h2jP ) (h2kP )a 2(h2nP ) 1(h2nP )ukL2(
)

1CA
2

� C

+1X
k=0

0@ X
n�k+2

h
�1=2��
k h�nk (h2kP )[a;  2(h2nP )] 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

0@ X
n�k+2

h
�1=2��
k h1+�n k 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

h�1�2�k

0@ X
n�k+2

h2+2�
n

1A0@ X
n�k+2

k 1(h2nP )uk2L2(
)

1A
� C

+1X
k=0

hkkuk2L2(
) � Ckuk2L2(
):
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B � C

+1X
k=0

0B@ X
jj�kj�1
k�n+2

h
�1=2��
k h�nkhxisa 0(h2jP ) 2(h2kP ) (h2kP )a 1(h2nP )ukL2(
)

1CA
2

� C

+1X
k=0

0@ X
k�n+2

h
�1=2��
k h�nk[ 2(h2kP ); [ (h2kP ); a]] 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

0@ X
k�n+2

h
3=2��
k h�nk 1(h2nP )ukL2(
)

1A2

� C

+1X
k=0

0@ X
k�n+2

2�(k�n)(3=2��)k 1(h2nP )ukL2(
)

1A2

� Ckuk2L2(
);

because the last term can be seen as a convolution `1 � `2 if � < 3=2. The estimations on A and B
prove (A.24).
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