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Four exact relations for the effective relaxation function of
linear viscoelastic composites

P. Suquet a

aLMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, F-13402 Marseille Cedex 20, France

Abstract

This study is devoted to viscoelastic composites composed from individual Maxwell constituents. The effective
constitutive relations of such composites exhibit a long memory effect which manifests itself through an integral
kernel (the effective relaxation function of the composite). Four asymptotic relations for this integral kernel are
derived which require only the resolution of linear elastic (or purely viscous) problems. These four relations can
be used in an approximate model with two relaxation times (for incompressible, isotropic composites). The model
is exact for specific microstructures but is an approximation in general. Its accuracy is discussed by comparison
with full-field simulations.

To cite this article: P. Suquet, C. R. Mécanique xxx (2011).

Résumé

Quatre relations exactes pour la fonction de relaxation effective de composites viscoélastiques
linéaires. Cette étude est consacrée à l’étude du comportement effectif de composites dont les constituants
élémentaires sont des matériaux viscoélastiques de Maxwell. Ce comportement effectif, à mémoire longue, s’exprime
à l’aide d’une fonction de relaxation effective. Nous établissons que cette fonction de relaxation satisfait quatre
relations qui peuvent être exprimées par des calculs ne faisant intervenir que des problèmes de type élasticité
linéaire. Ces quatre relations peuvent être utilisées pour proposer un modèle approché du comportement effectif
à deux temps de relaxation. L’analyse détaillée de deux exemples montre que ce modèle est exact dans un cas, et
constitue une bonne approximation du comportement effectif dans le second cas.
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1. Introduction

This study is devoted to the effective behavior of composites made from linear viscoelastic phases, more
specifically Maxwellian phases which are characterized by a relation between the linearized strain ε and
the Cauchy stress σ in the form:

ε̇ =M (r)
e : σ̇ +M (r)

v : σ, (1)

where M (r)
e and M (r)

v denote respectively the elastic and viscous compliance moduli of the phase and
where an overdot denotes derivation with respect to time.

As is well known, even when the individual phases have a "short memory" (such as given by the
Maxwell model (1)), the effective behavior of composites made from different such phases may exhibit
a "long memory" effect which manifests itself in the effective constitutive relations through an integral
kernel (Sanchez and Sanchez [1], Laws and Mc Laughlin [2], Suquet [3], Francfort and Suquet [4], Turner
and Tomé [5], Rougier, Stolz and Zaoui [6] among others):

σ(t) =
d

dt

(∫ t

0

L̃(t− s) : ε(s) ds
)
. (2)

where an overall bar denotes spatial averaging over a representative volume element. L̃(t) is the effective
relaxation function of the composite.

The aim of this study is to derive a set of four tensorial relations which must be satisfied by L̃(t) for
small or large time t, or equivalently by its Laplace transform L̃

∗
(p) for small and large p involving only

quantities which can be evaluated by solving linear elastic problems. In particular, these relations provide
restrictions on models which approximate the integral kernel L̃(t) when it is not explicitly known. A
common practice, called the collocation method, consists in approximating L̃(t) by a Prony series with a
finite number of relaxation times, each of them corresponding to an exponentially decreasing relaxation
function:

L̃(t) '
M∑
i=1

Lie
−t/τ i . (3)

The four relations derived in section 3 impose restrictions on the tensors Li and on the relaxation times
τ i. An approximate model based on these relations and involving 2 relaxation times for incompressible
isotropic composites and 4 for compressible isotropic composites is proposed in section 3.3 and the accu-
racy of this model is discussed in section 4. This model is in fact exact in the specific case of incompressible
particle-matrix composites having a microstructure such the Hashin-Shtrikman’s estimate is exact for the
effective linear elastic properties, but is only an approximation for other microstructures.

2. Maxwellian composites

2.1. Individual phases, local problem and effective behavior

The composite materials considered in the present study are made from N different homogeneous
constituents, or phases, which are assumed to be randomly distributed in a specimen occupying a volume
V , at a length scale that is much smaller than the size of V . Each constituent is linear viscoelastic
(and Maxwellian) governed by the constitutive relations (1) and characterized by elastic and viscous
compliances M (r)

e and M (r)
v (with inverse L(r)

e and L(r)
v ). Define
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M e(x) =

N∑
r=1

M (r)
e χ(r)(x),

(with a similar definition for Mv(x)), where χ(r) is the characteristic function of phase r. The volume
averages of a function f over the composite V and over phase r are denoted as f and f

(r)
respectively.

The local problem to be solved to determine the local stress and strain fields in the volume element
V consists of the equilibrium equations, compatibility conditions, constitutive relations and boundary
conditions 1 .

ε̇(x, t) =M e(x) : σ̇(x, t) +Mv(x) : σ(x, t), for (x, t) ∈ V × [0, T ],

div σ = 0 for (x, t) ∈ V × [0, T ],

〈ε(t)〉 = ε(t) + boundary conditions on ∂V.


(4)

The effective behavior of the composite is defined as the relation between the average stress σ(t) at time
t and the history of the average strain before t, ε(s), 0 ≤ s ≤ t.

2.2. Local problem in Laplace-Carson space

A common practice in the study of linearly viscoelastic systems is to transform the evolution equations
(4) into an elastic problem by means of the Laplace-Carson (LC) transform (see appendix A for the
definition and a few useful properties of the LC transform). Let us denote the LC transform of a function
f(t) as f∗(p). Then the local problem (4) becomes :

ε∗(x, p) =

(
M e(x) +

1

p
Mv(x)

)
: σ∗(x, p) + ε0(x)−M e(x) : σ0(x), for x ∈ V

div (σ∗(x, p)) = 0, for x ∈ V

〈ε∗(p)〉 = ε∗(p) + boundary conditions on ∂V.


(5)

where ε∗(p) and σ∗(p) are the LC transforms of ε and σ while ε0(x) and σ0(x) denote the initial values
of the local fields ε and σ. The "eigenstrain" ε0 −M e : σ0 is the initial viscous strain. For simplicity,
the initial state of the composite will be assumed to be purely elastic, or in other words:

ε0(x)−M e(x) : σ0(x) = 0 for all x ∈ V.

The constitutive equations in Laplace space can be given two equivalent forms reminiscent either of a
linear elastic problem or of a linearly viscous problem. The first writing of (5) relates σ∗(p) to ε∗(p):

σ∗(p) = L(r)∗(p) : ε∗(p) in phase r,

L(r)∗(p) =
(
M (r)∗(p)

)−1
, M (r)(∗)(p) =M (r)

e +
1

p
M (r)

v ,

 (6)

The effective behavior of the composite in Laplace space is characterized by an effective "stiffness" tensor
L̃
∗
(p)

σ∗(p) = L̃
∗
(p) : ε∗(p). (7)

1. Boundary conditions are not specified and discussed here. They are of the classical types, see Suquet [3] or Ponte
Castañeda and Suquet [10] for more details
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The effective relaxation function L̃(t) entering (2) is the inverse LC transform of L̃
∗
(p).

The alternative writing of (5) relates σ∗(p) to ε′∗(p) = pε∗(p) which is the LC transform of ε̇:

σ∗(p) = L(r)∗(p) : ε′∗(p), L(r)∗(p) =
1

p
L(r)∗(p) =

(
pM (r)

e +M (r)
v

)−1
, (8)

and the effective constitutive relations in Laplace space, equivalent to (7), read as:

σ∗(p) = L̃
∗
(p) : ε′∗(p), L̃

∗
(p) =

1

p
L̃
∗
(p). (9)

According to relation (A.2), L̃
∗
(p) is the LC transform of

L̃(t) =

∫ t

0

L̃(s) ds. (10)

The effective tensors L̃
∗
(p) and L̃

∗
(p) can be given explicit forms for specific microstructures. These

expressions will be specified in section 4.

2.3. A Maxwellian approximation to the effective behavior of viscoelastic composites

Given the constitutive relations (1) of the individual phases, it is tempting to approximate the exact
effective behavior of the composite by a Maxwellian relation in the form:

ε̇ = M̃ e : σ̇ + M̃v : σ. (11)

A nice feature of this relation is that it requires only the evaluation of two effective tensors, the effective
stiffness L̃e and the effective viscosity L̃v which can can be obtained by standard "elastic" homogenization
procedures. Unfortunately, it is only an approximation to the actual effective behavior of the composite,
which gives accurate prediction only for small and large t as is well-known (and will be illustrated below).

Indeed the approximation corresponding to (11) in Laplace space amounts to considering that the
effective elastic moduli for a linear composite with elastic moduli L(r)∗(p) (or equivalently L(r)∗(p))
would be:

L̃
∗
Maxw(p) =

(
M̃ e +

1

p
M̃v

)−1
, L̃

∗
Maxw(p) =

(
pM̃ e + M̃v

)−1
. (12)

This is not true, as the homogenized (or effective) tensor of a sum of tensors is not the sum of the
homogenized tensors.

However the approximation (11) is (asymptotically) exact for small and large time t, or equivalently
the approximation (12) is exact in Laplace space for small and large p. It is indeed straightforward to
note that:

lim
p→+∞

L̃
∗
Maxw(p) = L̃e, lim

p→0
L̃
∗
Maxw(p) = L̃v. (13)

Although the exact L̃
∗
(p) and L̃

∗
(p) are not given by (12), they do satisfy the above asymptotic limits

(13) which are the first two relations given below. Two additional asymptotic relations for the derivatives
with respect to p of L̃

∗
(p) and L̃

∗
(p) are also derived.
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3. Four relations for the effective relaxation function

The aim of this section is to study the asymptotic behavior of the relaxation function L̃(t) as t tends
to 0 or +∞, or equivalently of its LC transform L̃

∗
(p) as p tends to +∞ or 0 (according to (A.4) and

(A.5) the asymptotic behaviors of a function and of its Laplace transform are related).

lim
p→0

L̃
∗
(p) = L̃v. (14)

lim
p→+∞

L̃
∗
(p) = L̃e. (15)

lim
p→0

ε′ :
∂L̃
∗

∂p
(p) : ε′ = −〈σv :M e : σv〉, (16)

lim
p→+∞

(
p2ε :

∂L̃
∗

∂p
(p) : ε

)
= 〈σe :Mv : σe〉, (17)

where σv is the solution is the local stress field solution of the purely viscous problem (linearly viscous
composite with the same geometry as the actual one and viscosity moduli L(r)

v in phase r) for a macro-
scopic strain-rate ε′. L̃v is the effective viscosity tensor of this composite. Similarly σe is the solution
is the local stress field solution of the purely elastic problem (linearly elastic composite with the same
geometry as the actual one and elastic stiffness L(r)

e in phase r) for a macroscopic deformation ε. L̃e is
the effective stiffness of this composite.

Note that these 4 relations make use of only the solution of linear elastic (or purely viscous) problems.

3.1. Interpretation

Before proceeding to the interpretation of the first two relations, let us consider first a single Maxwellian
material. When it is deformed at constant strain-rate from an initial undeformed and unstressed state,
its initial response (for small t) is governed by its elastic stiffness Le whereas its large time behavior is
governed its viscous tensor Lv. This can be seen from (1) by noting that for small t, σ(t) is small and
the constitutive relation (1) reduces to σ̇ ' Le : ε̇. In the other limit, as t becomes large, the stress
approaches a stationary value (bearing in mind that the strain-rate is kept constant), the stress-rate σ̇
vanishes and the constitutive relation (1) reduces to σ ' Lv : ε̇.

A similar interpretation holds at the composite level: (15) states that the instantaneous response of
the composite (for small t, or equivalently large p) is governed by the homogenized elastic moduli of the
phases, whereas, according to (14), its long time behavior (for large t, or equivalently small p) is governed
by its purely viscous effective tensor.

Unfortunately, there is no similar explanation for the other two relations (16) and (17). They involve
the second moments per phase of the asymptotic stress fields (for small and large t):

〈σe :Mv : σe〉 =
N∑
r=1

c(r)M (r)
v :: 〈σe ⊗ σe〉(r), 〈σv :M e : σv〉 =

N∑
r=1

c(r)M (r)
e :: 〈σv ⊗ σv〉(r). (18)

The second moments per phase of the stress fields σe and σv entering (16) and (17) depend on the
microstructure of the composite. They are second moments of fields in linear elastic composites and can
be expressed by means of classical relations (see Kreher [11] or Ponte Castañeda and Suquet [10] among
others).
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3.2. Derivation of (14)-(17)

In order to derive (14)-(17), we come back to the local problems (6)-(8) and examine the local fields
solutions of these problems in the two limit cases p = 0 and p = +∞.
• p = +∞: It follows from (6) that

lim
p→+∞

L(r)∗(p) = L(r)
e , (19)

and therefore
lim

p→+∞
σ∗(p) = σe, lim

p→+∞
ε∗(p) = εe, lim

p→+∞
L̃
∗
(p) = L̃e, (20)

where σe and εe are the stress and strain fields solutions of the purely elastic problem under a
macroscopic strain lim

p→+∞
ε(p).

• p = 0: Similarly, it follows from (8) that

lim
p→0

L(r)∗(p) = L(r)
v , (21)

and therefore
lim
p→0

σ∗(p) = σv, lim
p→0

ε′∗(p) = ε̇v, lim
p→0

L̃
∗
(p) = L̃v, (22)

where σv and ε̇v are the stress and strain fields solutions of the purely viscous problem. Note that,
according to relation (A.6), ε′|p=0 may also be interpreted as the asymptotic macroscopic strain-rate
as t tends to +∞.

Relations (14) and (15) result directly from (22) and (20). In order to prove (16), the composite is loaded
at constant (in time) macroscopic strain-rate:

ε(t) = ε′ t,

where ε′ does not depend on t. Then

ε∗(p) =
1

p
ε′ for all p.

Note that σ∗(p) and ε′(p) are solution of the "elasticity" problem

σ∗(p) = L(r)∗(p) : ε′(p), div (σ∗(p)) = 0, 〈ε′(p)〉 = ε′.

Consequently:
ε′ : L̃

∗
(p) : ε′ = 〈ε′(p) : L∗(p) : ε′(p)〉 = inf

ε, 〈ε〉=ε′
〈ε : L∗(p) : ε〉 (23)

When the relation (23) is derived with respect to p, the result of the derivation reads as (thanks to a
lemma given in [10], appendix B, expressing the derivative of a stationary value of an energy):

ε′ :
∂L̃
∗

∂p
(p) : ε′ =

〈
ε′(p) :

∂L∗

∂p
(p) : ε′(p)

〉
. (24)

Taking the derivative with respect to p of the identity

L(r)∗(p) : M(r)∗(p) = I, where M(r)∗(p) = pM (r)
e +M (r)

v ,

yields

∂M(r)∗

∂p
=M (r)

e ,
∂L(r)∗

∂p
(p) = −L(r)∗(p) :

∂M(r)∗

∂p
(p) : L(r)∗(p) = −L(r)∗(p) :M (r)

e : L(r)∗(p). (25)
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In particular when p = 0, making use of relation (22), one gets that:

∂L(r)∗

∂p
(0) = −L(r)

v :M (r)
e : L(r)

v . (26)

Substituting (26) and (22) into (24) yields (16).

As for (17), note that in a similar way to what was done for L(r)∗:

∂L(r)∗

∂p
(p) = −L(r)∗(p) :

∂(L(r)∗)−1

∂p
(p) : L(r)∗(p),

and after due account of the expression (6) of L(r)∗:

∂L(r)∗

∂p
(p) =

1

p2
L(r)∗(p) :M (r)

v : L(r)∗(p).

Therefore

p2ε :
∂L̃
∗

∂p
(p) : ε =

〈
ε∗(p) : L(r)∗(p) :M (r)

v : L(r)∗(p) : ε∗(p)
〉
.

Taking the limit of this relation as p tends to +∞, and after accounting for (20), one gets (17).

3.3. Restrictions on Prony series

The so-called "collocation method" consists in approximating the actual relaxation function by the
Prony series (3), where the relaxation times τ i and the corresponding tensors Li have to be chosen, or
even optimized, to meet certain requirements (see Turner and Tomé [5], Levesque et al [12], Rekik and
Brenner [9]). The approximation (3) is equivalent, after LC transform, to approximating the actual L̃

∗
(p)

as a sum of rational fractions:

L̃
∗
(p) ≈

M∑
i=1

p

p+ 1
τ i

Li, or equivalently L̃
∗
(p) ≈

M∑
i=1

1

p+ 1
τ i

Li. (27)

The four relations (14) to (17) should be imposed to the approximation (27) in order to approach L̃
∗

consistently at small and large t’s. The relaxation times τ i and the corresponding weights Li must satisfy:
M∑
i=1

Liτi = L̃v.

M∑
i=1

Li = L̃e.

M∑
i=1

τi
2ε′ : Li : ε

′ = 〈σv :M e : σv〉 =
N∑
r=1

c(r)M (r)
e :: 〈σv ⊗ σv〉(r),

M∑
i=1

1

τ i
ε : Li : ε = 〈σe :Mv : σe〉 =

N∑
r=1

c(r)M (r)
v :: 〈σe ⊗ σe〉(r).



(28)

In particular, these general relations could be imposed as constraints in an optimization procedure similar
to the one proposed by Rekik and Brenner [9] to determine the collocation times τ i and the corresponding
weights Li (note that only the second relation is imposed in [9]). This is left for future work.
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3.4. An approximate model based on the four relations (28)

The four above relations are in fact 4 tensorial relations (the last two relations are written as scalar
relations but the last two equations hold for arbitrary macroscopic strain ε and for arbitrary macroscopic
strain-rate ε′) respectively. These relations provide a systems of Ne equations which can be used to
determine Ne unknowns. Ne depends on the symmetry of the tensors L̃, but it is a multiple of 4. These
equations can be used to determine Ne/2 relaxation times τ i’s and the Ne/2 corresponding weights Li’s
from which a Prony series in the form (27) can be constructed. This general principle will be illustrated
in section 4.

4. Isotropic incompressible composites

In this section we will give two different examples of the general relations (14)-(17). The first exam-
ple deals with particle-reinforced composites. The second example addresses the model problem of a
checkerboard microstructure. In both cases the individual phases are incompressible. The composite be-
ing incompressible and macroscopically isotropic (by assumption), its effective moduli depend on a single
shear modulus µ̃ (elastic or viscous)

L̃ = +∞J + 2µ̃K, or equivalently M̃ =
1

2µ̃
K, (29)

where J and K are the projector on purely hydrostatic and deviatoric symmetric second-order tensors
respectively. The form (29) applies to L̃e, L̃v, L̃

∗
(p) and Li.

Let us examine in more details the form taken by the two last relations in (28) in the two cases of
interest.
(i) Two-phase isotropic phases. When the individual constituents are isotropic and incompressible,

their elastic or viscous moduli depend on a single shear modulus.

M (r) =
1

2µ(r)
K, (30)

where K is the usual projector on purely deviatoric second-order tensors. Each phase has a relax-
ation time defined as:

τ (r) =
µ
(r)
v

µ
(r)
e

.

As is well-known the second moment of the (incompressible) strain field, solution of the linear elastic
problem with elastic shear modulus µ(r) in phase r, read as:

〈ε : ε〉(r) = 1

c(r)
∂µ̃

∂µ(r)
(µ(1), µ(2))ε : ε.

Therefore:

〈σe :Mv : σe〉 =
2∑
r=1

c(r)
1

2µ
(r)
v

〈σe :K : σe〉(r) =
2∑
r=1

2µ
(r)
e

τ (r)
∂µ̃

∂µ(r)
(µ(1)
e , µ(2)

e ) ε : ε. (31)

Similarly:

〈σv :M e : σv〉 =
2∑
r=1

c(r)
1

2µ
(r)
e

〈σv :K : σv〉(r) =
2∑
r=1

2
(
τ (r)

)2
µ(r)
e

∂µ̃

∂µ(r)
(µ(1)
v , µ(2)

v ) ε′ : ε′. (32)
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(ii) Two-dimensional polycrystals under antiplane shear. The anti-plane problem corresponds to (at
least) two different microstructures: a checkerboard microstructure and 2d polycrystals made of
grains with random orientation (see Bhattacharya and Suquet [13] or Lebensohn et al [14]). The
polycrystals are made of cylindrical grains parallel to a given direction e3 and their microstructure
is therefore two-dimensional (in the plane normal to e3). Each individual grain is the identical copy,
up to a rotation θ(r), of a reference single crystal having two orthogonal slip systems:

m1 = e1 ⊗s e3, m2 = e2 ⊗s e3,

where a ⊗s b denotes the symmetric part of the usual tensorial product a ⊗ b. After rotation, the
slip systems in grain r are

m
(r)
1 = e

(r)
1 ⊗s e3, m

(r)
2 = e

(r)
2 ⊗s e3,

where e(r)1 and e(r)2 are rotated from e1 and e2 by an angle θ(r). When subjected to anti-plane shear,
their deformation is characterized by a scalar displacement along the cylindrical direction e3.
The compliance tensor (elastic or viscous) of the single crystal depends on two shear moduli µ(1)

and µ(2) through:

M (r) =
1

2µ(1)
K

(r)
1 +

1

2µ(2)
K

(r)
2 . (33)

where K(r)
1 and K(r)

2 are two orthogonal projectors defined as:

K
(r)
1 =m

(r)
1 ⊗m

(r)
1 , K

(r)
2 =m

(r)
2 ⊗m

(r)
2 .

Again, the problem involves two relaxation times, τ (1) and τ (2) on each slip system:

τ (r) =
µ
(r)
v

µ
(r)
e

.

Classical relations yield certain second moments of the (incompressible) strain and stress fields,
solution of the linear elastic problem with shear modulus µ(1) and µ(2):〈
ε :K

(r)
1 : ε

〉(r)
=

1

c(r)
∂µ̃

∂µ(r)
(µ(1), µ(2)) ε : ε,

〈
σ :K

(r)
1 : σ

〉(r)
=

4(µ(1))2

c(r)
∂µ̃

∂µ(1)
(µ(1), µ(2)) ε : ε,

and similar relations with K(r)
2 . These relations yield:

〈σe :Mv : σe〉 =
2∑
r=1

2µ
(r)
e

τ (r)
∂µ̃

∂µ(r)
(µ(1)
e , µ(2)

e ) ε : ε, (34)

and:

〈σv :M e : σv〉 =
2∑
r=1

2(τ (r))2µ(r)
e

∂µ̃

∂µ(r)
(µ(1)
v , µ(2)

v ) ε′ : ε′. (35)

The relations involving second moment of the elastic and viscous stress fields (31) and (32) on one hand,
and (34) and (35) are identical. Therefore in both cases the 4 relations (28) take the general form:
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M∑
i=1

µi = µ̃e,

M∑
i=1

τ iµi = µ̃v,

M∑
i=1

µi
τ i

=

2∑
r=1

µ
(r)
e

τ (r)
∂µ̃

∂µ(r)
|e,

M∑
i=1

µiτ
2
i =

2∑
r=1

(τ (r))2µ(r)
e

∂µ̃

∂µ(r)
|v



(36)

where
µ̃e = µ̃(µ(1)

e , µ(2)
e ), µ̃v = µ̃(µ(1)

v , µ(2)
v ) = µ̃(τ (1)µ(1)

e , τ (2)µ(2)
e ),

and
∂µ̃

∂µ(r)
|e =

∂µ̃

∂µ(r)
(µ(1)
e , µ(2)

e ),
∂µ̃

∂µ(r)
|v =

∂µ̃

∂µ(r)
(µ(1)
v , µ(2)

v ),=
∂µ̃

∂µ(r)
(τ (1)µ(1)

e , τ (2)µ(2)
e ).

These 4 equations can be used to identify 4 independent unknowns, namely two relaxation times τ1 and
τ2 and the corresponding weights µ1 and µ2. The resulting Prony series has only two terms and the
corresponding relaxation function and its Laplace transform read as:

L̃(t) = +∞J + 2µ̃(t)K, µ̃(t) = µ1e
− t
τ1 + µ2e

− t
τ2 , µ̃∗(p) =

p

p+ 1
τ1

µ1 +
p

p+ 1
τ2

µ2. (37)

The model (37) is, in full generality, only an approximation, but on the other hand it improves on the
Maxwell model (11) with only one relaxation time.

In order to determine the 4 material parameters τ1, τ2, µ1 and µ2, the equations (36) are solved in
closed form. Upon the change of variables

x1 =
µ1

µ̃e
, x2 =

µ2

µ̃e
, y1 =

τ1
τ̃
, y2 =

τ2
τ̃
, where τ̃ =

µ̃v
µ̃e
.

the systems (36) becomes:

x1 + x2 = 1, x1y1 + x2y2 = 1,
x1
y1

+
x2
y2

= A, x1y
2
1 + x2y

2
2 = B (38)

where

A =
τ̃

µ̃e

2∑
r=1

µ
(r)
e

τ (r)
∂µ̃

∂µ(r)
|e, B =

1

µ̃e τ̃2

2∑
r=1

(τ (r))2µ(r)
e

∂µ̃

∂µ(r)
|v (39)

The solution of (38) is straightforward: after elimination of x1 and x2 it is found that y1 and y2 solve the
quadratic equation

y2 −
(
B +

B − 1

A− 1

)
y +

B − 1

A− 1
= 0.

Noting (see appendix B) that: (
B +

B − 1

A− 1

)2

− 4
B − 1

A− 1
≥ 0, (40)

the solution of (38) reads as:

y1

y2
=

1

2

(
B +

B − 1

A− 1

)
± 1

2

√(
B +

B − 1

A− 1

)2

− 4
B − 1

A− 1
, (41)

10



and
x1 =

y2 − 1

y2 − y1
, x2 =

1− y1
y2 − y1

. (42)

Therefore, for each class of microstructure for which an accurate prediction of the effective moduli for
linear elastic composites is available in the form of a relation µ̃(µ(1), µ(2)), the above quantities A and
B can be computed and an approximate effective viscoelastic model with two relaxation times, matching
exactly the four relations (14) to (17), can be derived for viscoelastic composites.

Note that when the phases are compressible, the same arguments apply separately to the dilatational
and deviatoric parts of the constitutive relations. Therefore in addition to the 2 relaxation times (with their
corresponding weights) which can be determined for the deviatoric response of compressible composites, 2
other relaxation times (and their corresponding weights) can be determined for their dilatational response.

4.1. Particle-reinforced two phase composites

The composites considered in this section are typically made of a matrix reinforced by particles. Both
phases are Maxwellian and incompressible. Phase 1 is the matrix whereas the inclusions are considered
as phase 2. The effective properties of an isotropic composites made of incompressible linear phases with
shear moduli µ(1) and µ(2) can be predicted by the Hashin-Shtrikman bound corresponding to the matrix
as reference medium:

µ̃(µ(1), µ(2)) = µ(1) + c(2)
µ(2) − µ(1)

1 + c(1)β
µ(2) − µ(1)

µ(1)

, β =
2

2 + d
d = 2 or 3 (dimension of space). (43)

Then:
∂µ̃

∂µ(2)
=

c(2)(
1 + c(1)β

µ(2) − µ(1)

µ(1)

)2 ,
∂µ̃

∂µ(1)
=

1

µ(1)

(
µ̃− µ(2) ∂µ̃

∂µ(2)

)
. (44)

The above relations (43) and (44) allow to derive explicit expressions for A and B in (38). The solution
to (38) then reads as:

τ1 = τ (1), τ2 = τ (1)τ (2)
µ
(1)
e (1− βc(1)) + µ

(2)
e βc(1)

τ (1)µ
(1)
e (1− βc(1)) + τ (2)µ

(2)
e βc(1)

,

µ1 = µ(1)
e

c(1)(1− β)
1− βc(1)

, µ2 = µ(1)
e µ(2)

e

1− c(1)

(1− βc(1))
1

µ
(1)
e (1− βc(1)) + µ

(2)
e βc(1)

.

 (45)

Rougier [6], Ricaud and Masson [8] have shown that when the microstructure of the composite is such
that its effective elastic properties are accurately described by the Hashin-Shtrikman bound, the exact
relaxation function is the sum of two exponentials as in (37). The relaxation times and the corresponding
weights that they have derived coincide with (45). Therefore, in this particular case the approximate
model (37) is exact.

4.2. 2d polycrystals under anti-plane shear

The exact effective antiplane elastic and viscous shear modulus of such a composite are given (classically)
as:

µ̃e =

√
µ
(1)
e µ

(2)
e , µ̃v =

√
µ
(1)
v µ

(2)
v , τ̃ =

√
τ (1)τ (2).

11



The exact effective relaxation function of the composite cannot be expressed as a Prony series (see Rougier
et al [6] and Beurthey and Zaoui [15] for a similar result for two-phase isotropic 3d polycrystals). The
equations (36) become:

µ1 + µ2 = µ̃e, µ1τ1 + µ2τ2 = µ̃eτ̃ ,

µ1

1

τ1
+ µ2

1

τ2
=

1

2
µ̃e

(
1

τ (1)
+

1

τ (2)

)
, µ1τ

2
1 + µ2τ

2
2 =

1

2
µ̃eτ̃

(
τ (1) + τ (2)

)
 (46)

and using the general form (41) and (42) of the solution, it is found that

τ1 =
1

4

(√
τ (1) +

√
τ (2)

)2
+

1

2
√
2

(√
τ (1) −

√
τ (2)

)√1

2

(√
τ (1) +

√
τ (2)

)2
+ 2τ̃

τ2 =
1

4

(√
τ (1) +

√
τ (2)

)2
− 1

2
√
2

(√
τ (1) −

√
τ (2)

)√1

2

(√
τ (1) +

√
τ (2)

)2
+ 2τ̃

µ1 = µ̃e
τ2

τ2 + τ̃
= µ̃e

√
τ2√

τ1 +
√
τ2

µ2 = µ̃e
τ1

τ1 + τ̃
= µ̃e

√
τ1√

τ1 +
√
τ2


(47)

In order to check the accuracy of the model (37) with two relaxation times, the composite is subjected to
an antiplane shear loading history consisting of two different stages. In a first stage the shear deformation
is increased at constant strain-rate ε̇0 between 0 and t0. In a second stage the composite is subjected to
a cyclic deformation at frequency ω:

ε13(t) = ε̇0t t ≤ t0, ε13(t) = ε̇0t0 +
ε̇0
ω

sin (ω(t− t0)) t ≥ t0, ε23(t) = 0. (48)

The predictions of (37), which can be obtained in closed form making use of the relations given in appendix
C, are compared with a full-field simulation performed with a computational method based on Fast
Fourier Transforms (introduced in Moulinec and Suquet [16,17] and used in particular in Bhattacharya
and Suquet [13] and Lebensohn et al [14]). The predictions of the effective Maxwell model (11) are also
given for comparison. Two sets of data have been used, the first one corresponding to a moderate contrast
between the relxation times of the individual phases τ (1)/τ (2) = 10, the second one corresponding to a
stronger contrast τ (1)/τ (2) = 100.

Moderate contrast: µ(1)
e = 1 MPa, µ(1)

v = 2 MPa.s, τ (1) = 2 s,

µ(2)
e = 100 MPa, µ(1)

v = 20 MPa.s, τ (2) = 0.2 s.

 (49)

Strong contrast: µ(1)
e = 1 MPa, µ(1)

v = 5 MPa.s, τ (1) = 5 s,

µ(2)
e = 50 MPa, µ(1)

v = 2.5 MPa.s, τ (2) = 0.05.

 (50)

The predictions of the models are compared with the full-field simulations in figure 1. As expected both
models capture correctly the initial slope (elastic response) and the asymptotic response of the composite.
However, even at moderate contrast, the transient response of the composite is not well approximated by
the Maxwell model whereas the predictions of the model with two relaxation times are in good agreement
with the FFT simulations. They deviate from them when the contrast is strong. This observation is
consistent with the fact that the exact relaxation function for this problem is a continuous function with
support between τ (1) and τ (2) and not two Dirac masses.
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Figure 1. Antiplane problem for a checkerboard. Comparison between a full-field simulation (FFT), the Maxwell model
(11) with a single relaxation time and with the model (37) with two relaxation times. Left: data (49) corresponding to a
moderate contrast between the relaxation times of the phases. Right: data (50) corresponding to a strong contrast between
the relaxation times of the phases.

5. Concluding remarks.

Four asymptotic relations for the effective relaxation function of linear viscoelastic composites have
been derived. These relations require the resolution of linear elastic (or purely viscous) problems. Besides
their intrinsic interest, these four relations can be used in (at least) two ways:

– They can be used as constraints for the identification of collocation times (and the corresponding
weights) within a collocation method.

– The relations provide four equations which can be used to determine (at least) two relaxation times
with their corresponding weights.

The second direction has been briefly investigated here for incompressible constituents and the accuracy
of the resulting approximate model has been discussed.

These relations were established here for the relaxation function of composites with Maxwellian con-
stituents. Similar relations exist for the creep functions of these composites and of composites with
Kelvin-Voigt constituents.
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Appendix A. Laplace and Laplace-Carson transforms

The Laplace transform Lf and the Laplace-Carson transform f∗(p) of a function of time f are defined
as

Lf =

∫ +∞

0

e−ptf(t)dt, f∗(p) = p

∫ +∞

0

e−ptf(t)dt = pLf (A.1)
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The following elementary properties of the Laplace-Carson transform are worth noting (similar relations
exist for the Laplace transform):

1) Derivation:
Lḟ(p) = pLf(p)− f(0), ḟ∗(p) = p(f∗(p)− f(0)), (A.2)

2) Riemann and Stieljes convolution:

Riemann : (f ? g)(t) =

∫ t

0

f(t− s)g(s) ds, L(f ? g)(p) = Lf(p)Lg(p),

Stieljes : (f ⊗ g)(t) = d

dt
(f ? g)(t) = f(t)g(0) +

∫ t

0

f(t− s)ġ(s) ds,

(f ⊗ g)∗(p) = f∗(p)g∗(p),

(A.3)

3) Short time behavior:
lim

p→+∞
f∗(p) = lim

t→0+
f(t) (A.4)

4) Long time behavior:
lim
p→0

f∗(p) = lim
t→+∞

f(t), (A.5)

lim
p→0

pf∗(p) = lim
t→+∞

f(t)

t
, (A.6)

Appendix B. Proof of (40)

It is first shown that:
B ≥ 1. (B.1)

To prove (B.1), first note that:

〈σv :M e : σv〉 ≥ σv : M̃ e : σv, where σv = 〈σv〉. (B.2)

Taking into account the overall isotropy and incompressibility of the composite, it is found that

σv : M̃ e : σv =
2µ̃2

v

µ̃e
ε′ : ε′,

and therefore
B =

1

2

1

µ̃eτ̃2
1

ε′ : ε′
〈σv :M e : σv〉 ≥ 1.

In a second step, it is observed that:(
B +

B − 1

A− 1

)2

− 4
B − 1

A− 1
≥ inf

x

(
B2 + 2Bx+ x2 − 4x

)
,

where x stands for (B − 1)/(A− 1). The above infimum is 4(B − 1) and according to the first step, it is
positive. This completes the proof of (40).

Appendix C. Alternative writing of the constitutive equations under the approximation
(27)

It is worth noting, along the lines of Ricaud and Masson [8], that the constitutive relations correspond-
ing to the approximation based on Prony series may be more conveniently expressed by the introduction
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of internal variables (a similar observation is made in [18]). Indeed, under approximation (27), the con-
stitutive relations read in Laplace space as:

σ∗(p) =

M∑
i=1

p

p+ 1
τ i

Li : ε
∗(p) =

M∑
i=1

Li : (ε
∗(p)− β∗i (p)) (C.1)

with
β∗i (p) =

1

τ ip+ 1
ε∗(p). (C.2)

Taking the inverse LC transform of (C.1) and (C.2) yields

σ(t) =

M∑
i=1

Li : (ε(t)− βi(t)) (C.3)

with
τ iβ̇i(t) + βi(t) = ε(t), βi(0) = 0. (C.4)

The model (C.3)(C.4) is a generalized Maxwell model consisting M Maxwell rheological elements assem-
bled in parallel. The i-th element has stiffness Li and viscosity τ iLi and βi is the viscous strain in this
element.

The differential equation
τ β̇ + β = ε(t),

can be integrated explicitely:

β(t) =

∫ t

0

e
s−t
τ ε(s) ds. (C.5)

For instance, under the loading (48), the explicit solution of (C.4) reads as:

Phase 1: t ≤ t0 β(t) = ε̇0

(
t− τ + τe−

t
τ

)
, β̇(t) = ε̇0

(
1− e− t

τ

)
. (C.6)

Phase 2: t ≥ t0



β(t) = β(t0)− τ
(
β̇(t0)−

ε̇0
1 + τ2ω2

)
(e

t0−t
τ − 1)

+
ε̇0

1 + τ2ω2

[
1

ω
sin (ω(t− t0))− τ(cos (ω(t− t0)− 1)

]
β̇(t) =

(
β̇(t0)−

ε̇0
1 + τ2ω2

)
e
t0−t
τ

+
ε̇0

1 + τ2ω2
[cos (ω(t− t0)) + τω sin (ω(t− t0)]

(C.7)

where
β(t0) = ε̇0

(
t0 − τ + τe−

t0
τ

)
, β̇(t0) = ε̇0(1− e−

t0
τ ).
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