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Wireless sensor network layout, also known as sensor node deployment,
is a complex NP-complete optimization task that determines most of the
functioning features of the wireless sensor network. Coverage, connectivity
and lifetime (handled through its opposing parameter, power consumption),
are three of the most important characteristics of the service, and are taken
into consideration in this work within a multi-objective approach of the
problem. Leveraging on the specific properties of the wireless sensor nodes and
networks, the Proximity Avoidance Coverage-preserving Operator (PACO) for
local improvement is presented, described and tested. The testbed consists of
a set of state-of-the-art multi-objective optimization algorithms with different
configurations, and problem instances of varying size. In all the scenarios,
and more specially in the algorithmic settings that already produce high
performance solutions, PACO has proven to be a robust enhancement to the
raw optimization technique without requiring additional computation, that
easily scales through problem complexity.
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Nomenclature

HECN High Energy Communication Node
HV Hipervolume quality indicator
MOCell Multi-Objective Cellular genetic algorithm
NSGA-II Non Sorting Genetic Algorithm II
PACO Proximity Avoidance Coverage-preserving Operator
PAES Pareto Archived Evolution Strategy
RCOMM Communication radius of a sensor node
RSENS Sensing radius of a sensor node
RGX Rectangular Geographic Crossover
SBX Simulated Binary Crossover
SPEA2 Strenght Pareto Evolutionary Algorithm 2
TTFF Time To First Failure criterion
WSN Wireles Sensor Network
WSNL Wireless Sensor Network Layout problem

1. Introduction

Wireless Sensor Networks (WSNs) have become a hot topic in research (Akyildiz et al.
(2002), Culler et al. (2004)). Their capabilities for monitoring large areas, accessing re-
mote places, reacting in real-time, together with their relative ease of use have brought
scientists a whole new horizon of possibilities. WSNs have so far been employed in many
applications (Dargie and Poellabauer (2010)): militar activities such as reconnaissance,
surveillance and target acquisition, environmental activities such as forest fire prevention,
geophysical activities such as volcano activity study, biomedical purposes such as health
data monitoring or artificial retina, or civil engineering such as structural health mea-
surement. Their uses increase by the day and their potential applications seem boundless.
The wide variety of applications results in a wide variety of networks bearing different
constraints and having different features, yet most of them share some common issues
that allow them to be treated homogenously.

One of the main features of WSNs is their geographical ubiquity, this makes the de-
ployment of the nodes a critical task (Nan and Li (2008)). The coverage of the network,
which depends directly on the positions of the nodes, is one such feature. For instance, in
the countersniper system (Lédeczi et al. (2005)), the physical distribution of the nodes
determine their capability to locate the shooter. In a forest fire prevention, the origin
and evolution of the fire can also be known if the nodes are properly deployed (Mladineo
and Knezic (2000)).

Another feature of the uttermost importance in WSNs, that also depends on the node
deployment, is node energy consumption. In most scenarios, it is practically unfeasible
to substitute nodes or recharge their energy: the high number of nodes or the hostility of
the environment they are deployed in makes the task impossible. However, WSNs should
work for the longest possible time. This causes energy saving to be one of the principal
policies in a WSN in order to increase the network lifetime. The main source of energy
consumption for WSNs is widely considered to be wireless communication (Ganesan et al.
(2006), Li et al. (2006)), which depends on the communication structure of the network,
which in turn depends on the node deployment. Therefore, an optimal layout of nodes
involves considering several conflicting design objectives. In the adopted approach, these
objectives are the network coverage, the lifetime, and the cost of the network (taken
as the number of nodes). Thus, the problem at hand is a multi-objective optimization
problem.

The WSN deployment or layout problem (WSNL problem for short), which was proven
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to be NP-complete in (Wu et al. (2007)), is a complex task that has received much at-
tention in the literature. The NP-completeness of the WSNL problem makes using meta-
heuristics (Blum and Roli (2003)) mandatory so as to deal with the increasingly-sized,
real-world instances in affordable times. The point is that, even though metaheuristics
have been used to some extent, the use of these optimization techniques is limited to
almost canonical forms of the algorithms, with little-to-no adaptation to the problem
particularities. Yet the use of specific problem knowledge is an important issue, and
should not be overlooked.

Therefore, the main contributions of this work are as follows. First, a new local im-
provement operator, the “Proximity Avoidance Coverage-preserving Operator” (PACO),
is presented here that takes advantage of specific problem knowledge to solve the WSNL
problem. The operator is characterized and its parameters are tuned. Second, it is com-
bined with different state-of-the-art multi-objective optimization techniques, and its ef-
fectivity and robustness are assessed. Finally, a scalability study is carried out on the
problem instance size (size of the terrain, number of nodes), demonstrating not only that
the operator scales well, but also that its efficiency increases for larger problem instances.
This last effect is specially important, since the number of nodes of a WSN is expected
to grow in the future.

The rest of the paper is structured as follows. The next section is devoted to providing
the reader with a review of the related literature. The WSNL problem is formally depicted
in Section 3. Then the PACO operator is presented and described in Section 4. The
multi-objective optimization techniques, as well as the integration of PACO into them,
are presented in Section 5. Then in Section 6, the results of the experimental evaluation
of PACO are shown and discussed. Finally, the main conclusions are drawn in Section 7,
where future lines of research are also sketched.

2. Related work

In its most basic form, the WSNL problem amounts to selecting the geographic locations
for the deployment of each single node of the network. This problem is widely consid-
ered one of the fundamental tasks in WSNs (Nan and Li (2008)) and, as such, has been
extensively studied in the literature. The point is that, in this research field, each author
has used a formulation which is strongly scenario dependent and, as a consequence, there
exist many papers that use different approaches to the problem, make different assump-
tions, set different optimization objectives, and use different models for the problem,
the network, and the sensor nodes. A comprehensive review of the main models used
in the existing literature for dealing with the problem is presented in (Molina (2010)).
This section is therefore devoted to presenting the most popular approaches to solve the
WSNL problem and their related works.

There are many works in the literature that tackle the WSNL problem. Interesting
surveys on coverage problems defined for WSNs, that are mostly related to the defined
WSNL problem can be found in (Cardei and Wu (2006), Younis and Akkaya (2008), Thai
et al. (2008)). Specifically, in (Younis and Akkaya (2008)), the authors classify node place-
ment problems into two categories: static and dynamic. This work belongs to the first
category. As stated previously, different proposals have used different approaches, differ-
ent models, different objectives and constraints, etc., what makes the related literature
to be quite heterogeneous. The most popular approaches to the WSN node deployment
problem are distinguished among:
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• Assume that nodes follow a random deployment.

• Use a regular geometric deployment.

• Define the problem as a continuous optimization problem in which the location of the
nodes to be deployed have to be selected.

Most of the early work on node deployment assume that nodes cannot be placed de-
terministically, but occupy random positions instead. This line of work usually follows
one of two leads: in the first, the authors assume a given distribution function and get
the resulting performance statistics form the network (usually, expected values, and up-
per/lower bounds). Examples of such approach are the works of Brass (2007), Cevher and
M.Kaplan (2009), Lazos and Poovendran (2006), Manohar et al. (2009), or Shrivastava
et al. (2009). In the second, the distribution function of the random node deployment can
be optimized (for instance, a parametric function may be defined) so that the resulting
network has the best possible performance statistics (Wettergren and Costa (2009)).

Regular or systematic node deployment strategies have also been researched, as they
present the advantage of simplicity and scalability. Examples for this kind of deployment
are the placement of the nodes according to a regular lattice, such as a square or hexag-
onal grid. The goal of these approaches is to reach efficient deployments in the sense of
using the minumum number of nodes to provide full area coverage (Bai et al. (2006),
Jain and Liang (2005), Kar and Banerjee (2003), Zheng et al. (2007)), but robustness
(to be considered as looking for the maximun number of paths between two nodes) is
also an issue (Biagioni and Sasaki (2003), Esseghir et al. (2005)).

However, this work is focused on non-systematic deterministic node placement, that is,
the location of the nodes to be deployed have to be determined. This is the most general
and interesting approach to the WSNL problem since random and regular deployments
either do not address the problem (random deployments) or rely on a very simple problem
model (regular deployments). So, when the problem lies in finding the location of the
nodes, a very large body of research knowledge can be found because some forms of the
optimization problem defined have been demonstrated to be NP-complete (Wu et al.
(2007)). Also, the problem can be reduced to the set covering problem, by restricting
the available positions of the sensor nodes to a set of discrete locations (for instance a
regular point grid); and the set covering problem is well known to be a NP-complete
problem (Cheng et al. (2005)). Therefore, the WSNL problem is NP-complete as well.
This fact has made researchers to use heuristic algorithms for tackling large instances of
the problem (exact or complete algorithms are discarded due to the time and/or memory
required for them to find the optimal solution).

The heuristic algorithms applied to solve the WSNL problem can be mainly classified
into two types. The first group includes works that use specific methods, often referred
to as ad-hoc heuristic methods, tailored after the specifics of the problem instances
at hand. A recurrent case is the use of greedy methods. In (Dhillon and Chakrabarty
(2003)), a regular grid is used to compute the detection probability of a WSN and to
place the nodes in order to obtain differentiated coverage. The authors propose two
greedy strategies for the node deployment: the first one places a node at each step in the
position that maximally reduces the accumulated probability of non-detection, and the
second one places a node at each step in the position with minimal detection probability.
Zhang and Wicker (2005) study the positioning of sensors in a terrain from the point of
view of data transmission. They divide the terrain into cells, then analyze how N sensors
should be distributed among the cells, in a way that avoids network bottlenecks and data
loss. An ad-hoc heuristic algorithm is proposed for node distribution. The deployment of
the nodes to reduce the distortion and the energy consumption (due to transmissions) is
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studied in (Ganesan et al. (2006)). Two codification systems for the data, joint-entropy
and Slepian-Wolf, are considered. An ad-hoc heuristic solution based on concentric circles
is proposed. A sensor placement for perimeter coverage is presented in (Jourdan and Roy
(2008)), with the purpose of detecting a moving agent. The field is assumed convex, and
the moving agent has to be detected as it enters or leaves the field. The Position Error
Bound (PEB) is obtained, and a greedy method that minimizes the PEB is proposed.
An estimation of the detection of moving targets by a WSN is given in (Lazos et al.
(2009)), along with a node deployment strategy. Based on the analogy with the line set
intersection problem, the detection probability is obtained for a single node, and it is
found to depend only on the perimeter of its coverage. The proposed deployment strategy
seeks to maximize the internode distance so as to minimize the overlap between coverage
cells; it achieves so by solving the circle packing problem. A set of base stations for node
location purposes has to be selected from a pool of deployed nodes in (Paschalidis and
Guo (2009)). The basic idea is to divide the network in as many regions as possible,
where for every region pair there is one base station that can discriminate with low error
probability using the received signal from the new node. Lifetime is also the main concern
in (Chen et al. (2005)), but instead of raw lifetime, they study the lifetime per node, that
is, the ratio between the network’s lifetime and the number of nodes in the network. The
authors propose a greedy algorithm for node placement along the WSN axis, and derive
the optimal number of nodes and their positions.

The second group includes the works that use general-purpose flexible optimization
methods, namely metaheuristics (Blum and Roli (2003)). This body of research contains
a high number of publications, among which the most relevant ones that tackle prob-
lems resembling the WSNL problem have been selected. Jourdan and de Weck solved an
instance of WSNL using a multi-objective genetic algorithm in (Jourdan and de Weck
(2004)). In their formulation a fixed number of sensors has to be placed in order to
maximize the coverage and the lifetime of the network. Djikstra’s algorithm is repeat-
edly applied to determine the number of rounds that can be performed provided each
node has a predefined starting energy. The NP-completeness of the WSNL problem with
heterogeneous sensor nodes is demonstrated in (Wu et al. (2007)), by assimilating it the
knapsack problem. The authors use a grid model of the terrain and propose a genetic
algorithm (GA) to obtain the optimal deployment to maximize the average detection
probability over the sensor field, with budget constraints on the number and types of
nodes. Specific genetic crossover and mutation operators are proposed as well. The pro-
posed GA outperforms two greedy algorithms which are based on an uniform placement
of the nodes. A multi-objective GA is used in (Kang and Chen (2009)) to obtain 3D dif-
ferentiated coverage by placing N sensors in a 3D field and selecting the sensing radius for
the nodes. The coverage achieved has to be maximized, while the total energy consump-
tion in the network has to be minimized. A similar problem definition, the differentiated
coverage in 2D, is solved in (Aitsaadi et al. (2008)) with a Tabu Search (TS). Instead
of reducing the consumed energy, the number of nodes placed has to be minimized. The
proposed TS is shown to outperform several greedy algorithms. A GA to deploy sensors
on a planar grid with obstacles and differentiated coverage is proposed in (Xu and Yao
(2006)). The results have pointed out that the proposed GA has reached more accurate
solutions than previously proposed heuristic algorithms. A multi-objective approach to
the WSN layout, where the coverage and lifetime are the opposing objectives, and the
number of nodes is fixed, is adopted in (Pradhan et al. (2009)); a multi-objective parti-
cle swarm optimization algorithm (MOPSO) is used to solve this problem. The authors
of Woehrle et al. (2010) used a multi-objective evolutionary algorithm (MOEA), named
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IBEA, to solve a multi-objective sensor placement problem where the optimization ob-
jectives are the cost (measured by the number of sensor nodes) and the transmission
reliability (measured by the expected transmission failure rate). The authors employ
a geographic crossover operator, and two types of mutation: Voronoi-based and Gaus-
sian. The deployment and power assignment problem is solved using a multi-objective
evolutionary algorithm called MOEA/D in (Konstantinidis et al. (2010)). The authors
propose a decomposition of the problem into several scalar problems in which the ob-
jectives, coverage and lifetime, are merged with different weights, and reconstruct the
Pareto set from the solutions to the different problems. Specific genetic operators are
proposed that operate in a different manner depending on the current objective weight-
ing, to guide the search process towards the specific region of interest. The technique is
shown to outperform the well-known NSGA-II algorithm.

To the best of our knowledge, the next work describes the only algorithm which is en-
dowed with a improvement operator that uses problem specific knowledge for the WSNL
problem (all the algorithms described above are mostly used in their canonical forms).
This work is presented in (Ferentinos and Tsiligiridis (2010)), in which a GA-based
memetic algorithm is proposed to solve the dynamic design of WSNs. In this problem
formulation, the WSN, which operates by rounds, consists of regular grid-deployed nodes;
for each round, every node must be assigned one state out of four possibilities: cluster
head, high energy operation, low energy operation, and non active. A set of objectives
including active node density, energy consumption, and connectivity, are aggregated into
a single weighted fitness function, and a mono-objective approach is adopted. An initial
GA solution method is improved by adding a local search process that operates on a
threshold basis: at each round, every node state has a corresponding remaining battery
threshold; nodes that do not surpass the threshold cannot be in the corresponding state.
This problem is a bit different from the one addressed in this work (regular deployment
of the nodes), but it has been included because of the use of a local search operator.

In summary, the first type of techniques, i.e., ad-hoc heuristics, regroups specific tech-
niques to solve a particular type of WSNL problem. This group includes, among others,
several greedy-like techniques; these techniques are very scenario-specific and thus hard
to extrapolate to a different scenario, but leverage on problem knowledge and show
high performances. The second type contains high-level optimization techniques, i.e.,
metaheuristic algorithms. These techniques are robust and versatile and can be used to
solve a wide range of –arbitrarily large– problem instances. The NP-completeness of the
WSNL problem makes these algorithms to become the most appropriate choice. In all
the works in which metaheuristics have been compared to ad-hoc heuristics, the results
have shown that the formers usually outperform the latter, thus indicating the suitability
of metaheuristics to address the WSNL problem. However, the proposed metaheuristic
approaches also lack deep knowledge of the problem features that could help enhancing
their performance. Indeed, the use of problem-specific knowledge is restricted to just
the use of special genetic operators or different fitness functions in some works, and a
particular single-objective local search operator in only one single contribution (which
deals with an optimization problem that is slightly different from the WSNL problem
addressed in this work). The contribution of this paper is therefore to propose a com-
bined use of versatile metaheuristic solvers with a problem-specific heuristic to enhance
their performances. To the best of our knowledge, the Proximity Avoidance Coverage-
preserving Operator (PACO) is the first attempt at presenting such a problem-specific
heuristic that is targeted to multi-objective metaheuristics.
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Figure 1.: Example WSN.

3. The wireless sensor network design problem

This section details the formulation of WSNL problem addressed in this work. A WSN is
a wireless network composed of sensor nodes which sense or monitorize an area around
itself called its sensing area. A parameter called sensing radius (RSENS) determines the
sensitivity range of the sensor node and thus the sensing area. The nodes communicate
among themselves using wireless communication links. These links are determined by the
parameter communication radius (RCOMM ), the maximum distance at which two nodes
can establish a link. A special node in the WSN, called High Energy Communication
Node (HECN), is the gateway for external access to the network. The administrator of
the network gathers the measured data and sends commands through it. Therefore every
sensor node in the network must have communication with the HECN. An example WSN
graphical representation is shown in Figure 1. In this illustration the HECN is located at
the centre of the terrain, and the nodes are represented using dots. The network topology
(communication links between nodes) is represented by lines and the covered terrain is
shown in grey. In this topology, nodes may be connected to the HECN, or to all nodes
within communication range that are 1 hop closer to the HECN, and also to all nodes
whithin communication range that are 1 hop farther from the HECN. For conveniency,
when two nodes are connected, the closest to the HECN is referred to as the “parent”,
and the farthest from the HECN is referred to as the “child”.

The definition of the WSNL problem used here has adopted the following models for the
different WSN elements (Molina (2010)): binary coverage at node level, area coverage
for the sensor network with a discrete grid model used for the terrain (each point in
the grid represents one square meter of the terrain), and N-to-1 communications over a
flat network structure. A simple routing algorithm is considered: every node sends its
(re)transmitted information packets to the HECN itself if it is within communication
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range, or distributes them among all neighbors that are closer (in hop count) to the
HECN. When there are several neighbors closer to the HECN, each of them receives a
traffic share proportional to the inverse of the link power (see Eq. 2). Every node has a
traffic (number of packets to send) equal to the packets received form nodes farther from
the HECN, and additionnally produces one data packet per round (corresponding to its
own sensed data, see Eq. 3). Formally:

Sent(xi, xj) = Traffic(xi) · ProbSend(xi, xj) (1)

ProbSend(xi, xj) =

1
LinkPower(xi,xj)

∑

xk

1
LinkPower(xi,xk)

(2)

Traffic(xi) = 1 +
∑

xj

Sent(xj, xi) (3)

where LinkPower(xi, xj) is defined by the wave propagation model detailed below
(Eq. 8).

With these models, the objectives of the WSNL problem are to obtain a full coverage
network (set as a constraint) with minimum cost and maximum lifetime. The lifetime
of a WSN is the period of time during which the network functions properly. As time
passes, nodes will eventually run out of energy and stop operating, which results in
a degradation of the network performance. The exact moment when the WSN stops
functioning properly is subjective, but a broadly used measure for it is the time until the
first node fails (Time To First Failure or TTFF, Singh et al. (1998)). Formally, let ~x be
a non-fixed length vector of nodes xi where each node is a 2D coordinate representing
the node location, then the WSNL problem is defined as:

f1(~x) = Length(~x) (4)

f2(~x) = Max
(

{EnergyConsumed(xi)}
f1(~x)
i=1

)

(5)

subject to

C(~x) = 100, (6)

where the coverage function, C(~x), is defined as

C(~x) = 100 ·

(

CoveredPoints(~x)

TotalGridPoints

)

, (7)

and CoveredPoints(~x) is the function that, for any given solution ~x, returns the number
of grid points covered by some node xi in ~x. The wave propagation model defines the
function EnergyConsumed(xi) (Eq. 9).

That is, the number of sensor nodes and their locations have to be chosen in a way
that minimizes the cost of the network which, in this case, is calculated as the number
of deployed sensor nodes (f1), and the energy spent in communications by the most
loaded node in the network (f2). The load in the most loaded node of the network is
minimized since this node constitutes the bottleneck of the network with respect to
the network lifetime; the most loaded node will be the first node to run out of energy,
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hence determinating the network lifetime according to the TTFF criterion. The two
objectives are opposed, since the higher the number of nodes, the lower the share of
retransmissions. The WSNL problem definition also includes a contraint (Eq. 6) so that
any feasible solution has to provide full sensing coverage.

In order to determine the energy spent in communications by any node of the WSN,
the number of transmissions performed is calculated. The WSN operates by rounds: in
a round every node collects the data from its measurements and sends it to the HECN
encapsulated in a packet; between rounds the nodes are in a low-energy state. It is
assumed that the main source of energy consumption is packet transmission; besides,
packet (re)transmission is the sole energy-consuming process of the WSN that is di-
rectly affected by node deployment (and its resulting topology), and thus susceptible
of being optimized in order to extend network lifetime. Therefore, all sources of energy
consumption are neglected besides packet transmissions in this work.

To calculate the energy spent by transmissions the simple wave propagation model
shown in Eq. 8 is applied for the power required per data packet to be transmitted over
from node xi to node xj. Assuming free-space path loss sets α = 2. Since the β constant
value does not affect the optimization problem results, it will be neglected. The total
energy consumed by a node xi is shown in Eq. 9, where β = 1 and α = 2. The function
Sent(a, b) indicates the number of data packets sent from node a to node b (see Eq. 1).

LinkPower(xi, xj) = β · ||xi − xj ||
α (8)

EnergyConsumed(xi) =
∑

xj∈neighbors(xi)

Sent(xi, xj) · ||xi − xj ||
2 (9)

These models and problem objectives have been chosen because of two main facts.
On the one hand, they have been widely used in the literature and represent a rather
general approach to the problem, that is, they avoid strong problem-specificness that
would hinder this work from drawing useful and relevant conclusions about using PACO.
On the other hand, defining an improvement operator for the more general case will
surely make easier its adaptation to the specific scenarios that may appear in this field.

4. The PACO operator

This paper presents a new operator for local improvement in a WSN conceived to be in-
tegrated into an optimization algorithm: the “Proximity Avoidance Coverage-preserving
Operator” (PACO). The basis of its functioning is identifying locally suboptimal config-
urations and trying to fix them.

4.1. Operator description

It is understandable that, for the purpose of an efficient WSN deployment, having nodes
too close to one another produces inefficiency due to two reasons:

• An extra node is deployed (increased cost) that provides little-to-no coverage improve-
ment (since most of its sensing area is already covered by the other node).

• An extra information packet (reduced energy efficiency) containing the extra node’s
data has to be relayed.

Thus, the purpose of PACO is to replace the pair of nodes that are close to one another
by a single node, provided that this single node can safely replace them:

• The node guarantees that the area covered by the two initial nodes is still covered.
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• The connectivity of the WSN is maintained.

Thus PACO has to find an “equivalent deployment area” for the node pair, such
that any node placed inside this area is capable of maintaining both the coverage and
connectivity of the network after the pair has been removed. This area is found as the
intersection of two zones: the “coverage preserving zone”, which is the area where a
single node guarantees coverage, and the “connectivity preserving zone”, which is the
area where a single node maintains the network connectivity.

It has to be pointed out that node position and covered area points are subject to
a reciprocity property. If a sensor node covers a disk-shaped area around it, then any
given terrain point can be covered by a sensor node placed anywhere inside that same
disk-shaped area around it. This property shall be used to define a reciprocal WSN
whose coverage will identify the coverage equivalent area. The same property holds for
the connectivity.

The operation of PACO can be summed up in the following steps:

(1) Choose a pair of close nodes. The PACO operator first explores the whole WSN
in search for all pairs of close nodes; this can be considered as a preliminary step.
A threshold parameter defines which pairs of nodes are considered to be close: all
nodes na, nb whose Euclidean distance is below it. This threshold value should
typically be some fraction of RSENS.

(2) Obtain the “coverage preserving zone” for that pair. To do so, PACO identifies the
area that is exclusively covered by the selected pair (note that the connectivity
constraint is not taken into account here). A reciprocal WSN is then created
with a node in every terrain point of this area, and the coverage of this reciprocal
network is computed; the area that is covered by all the nodes in the reciprocal
WSN is the “coverage preserving zone”. Thus, a single node placed in this zone
can effectively replace the selected pair in terms of coverage.

(3) Obtain the “connectivity preserving zone” for that pair. Regarding the connec-
tivity, the node has to fulfill the following constraints:

• All children nodes of the two nodes removed must be within communicating
range of the placed node.

• At least one of the parent nodes must be within communicating range of the
placed node.
To locate this “connectivity preserving zone” the same principle as before is ap-

plied: each child and each parent defines a disk-shaped connectivity zone around
itself (with radius RCOMM). The intersection or ovelap zone (if any) of all the
zones defined by the children guarantees that a single node will keep all the chil-
dren connected. The union of all the zones defined by the parent nodes guarantees
that at least one parent one is connected. The final “connectivity preserving zone”
is the intersection of the children and parent zones.

(4) Obtain the “equivalent deployment area” as the intersection of both the coverage
and connectivity preserving zones.

(5) If the “equivalent deployment area” is empty, i.e., no overlap is found between
the two previous zones, the two removed nodes must be restored and the operator
does nothing. Otherwise, when there is an overlap zone (non-empty “equivalent
deployment area”), then a single node is placed inside it that effectively replaces
the two initially chosen nodes.

The general PACO procedure is an iterative procedure (Algorithm 1). The steps above
are performed for each pair of close nodes found in the WSN.
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Algorithm 1 Pseudocode for PACO.

1: input: a WSN layout wsn = n1n2 . . . nk, ni ∈WSN , a threshold value th
2: wsnBackup← wsn // Store a copy of the current layout
3: stop ← false
4: for All (na, nb) ← NodePair(wsn) do

5: if NearbyNodes(na,nb, th) then

6: CovEq ← ComputeCovEq(wsn,na,nb) // Step 1
7: ConEq ← ComputeConEq(wsn,na,nb) // Step 2
8: CovConEq ← CovEq ∩ConEq // Step 3
9: if CovConEq 6= ∅ then

10: np ← ChooseNode(wsn,CovConEq)
11: wsn← Remove(wsn,na,nb)
12: wsn← Deploy(wsn,np)
13: Evaluate(wsn)
14: end if

15: end if

16: if NodesDeployed(wsn) < NodesDeployed(wsnBackup) &
EnergyConsumption(wsn) < EnergyConsumption(wsnBackup) then

17: wsnBackup← wsn // wsn dominates wsnBackup
18: else

19: wsn← wsnBackup // restore the assignment
20: end if

21: end for

22: return wsnBackup
23: output: a possibly improved WSN layout

4.2. PACO formal specification

A formal description of PACO’s operation is as follows. Let T be the set of terrain points p
(the discretized terrain grid), and let WSN be the points where a sensor node is deployed
(WSN ⊆ T ). Assume the functions converage() that for each node n ∈ WSN returns
the set of points in T covered by that node, parentNodes() that for each node n ∈WSN
returns the set of nodes in WSN that are parent nodes of n, and childNodes() that for
each node n ∈ WSN returns the set of nodes in WSN that are children nodes of n.
Select a pair of nodes na and nb such that na, nb ∈WSN and ||na − nb|| < threshold.

• Step 1 Define E as the set of points covered only by {na, nb}, i.e. p ∈ E ≡ p ∈
coverage(na) ∪ coverage(nb); ∀n ∈ WSN,n 6= na, nb, p /∈ ∪coverage(n). Find the set
of points CovEq that guarantee coverage to the set E: n ∈ CovEq ≡ ∀p ∈ T : p ∈
E → p ∈ coverage(n).

• Step 2 Define the sets P and C such that: P = parentNodes(na) ∪ parentNodes(nb)
and C = childNodes(na) ∪ childNodes(nb). Then find the set ConEq that maintains
the connectivity of the network: n ∈ ConEq ≡ ∀nc ∈ WSN : nc ∈ C → nc ∈
childNodes(n),∃np ∈ P : np ∈ parentNodes(n).

• Step 3 Define CovConEq as the set of points that guarantee both coverage and con-
nectivity: CovConEq = CovEq ∩ ConEq.

Then as long as CovConEq 6= ∅, a single sensor placed in any n ∈ CovConEq may
replace the pair {na, nb} without loss of coverage or connectivity.
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5. Algorithms

This section provides the reader with a general background on multi-objective optimiza-
tion required to later describe the multi-objective algorithms used in the experimental
section. The solution encoding and the genetic operators used by the algorithms are
presented next. Finally, the integration of the PACO operator into these algorithms is
detailed.

5.1. Multi-objective background concepts

A general multi-objective optimization problem (MOP) can be formally defined as follows
(assuming minimization without loss of generality):

Definition 5.1 MOP Find a vector ~x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) which satisfies the m in-

equality constraints gi (~x) ≥ 0, i = 1, 2, . . . ,m, the p equality constraints hi (~x) = 0, i =

1, 2, . . . , p, and minimizes the vector function ~f (~x) = (f1(~x), f2(~x), . . . , fk(~x)), where
~x = (x1, x2, . . . , xn) is the vector of decision variables.

The set of all values satisfying the constraints defines the feasible region Ω and any
point ~x ∈ Ω is a feasible solution.

As mentioned before, the Pareto Optimal Set is seeked. Before its definition some
concepts must be introduced.

Definition 5.2 Pareto Optimality A point ~x∗ ∈ Ω is Pareto optimal if for every ~x ∈ Ω
and I = {1, 2, . . . , k} either ∀i∈Ifi (~x) = fi(~x

∗) or there is at least one i ∈ I such that
fi (~x) > fi (~x

∗).

This definition states that ~x∗ is Pareto optimal if no feasible vector ~x exists which
would improve some criterion without causing a simultaneous worsening in at least one
other criterion. Other important definitions associated with Pareto optimality are the
following:

Definition 5.3 Pareto Dominance A vector ~u = (u1, . . . , uk) is said to dominate ~v=
(v1, . . . , vk) (denoted by ~u 4 ~v) if and only if ~u is partially smaller than ~v, i.e., ∀i ∈
I, ui ≤ vi ∧ ∃i ∈ I : ui < vi.

Definition 5.4 Pareto Optimal Set For a given MOP ~f(~x), the Pareto optimal set is

defined as P∗ = {~x ∈ Ω|¬∃~x′ ∈ Ω, ~f(~x′) 4 ~f(~x)}.

Definition 5.5 Pareto Front For a given MOP ~f(~x) and its Pareto optimal set P∗, the

Pareto front is defined as PF∗ = {~f(~x)|~x ∈ P∗}.

5.2. Algorithm description

Four multi-objective evolutionary algorithms (EAs, Coello Coello et al. (2007)) are used
in this study, namely NSGA-II, SPEA2, PAES, and MOCell. The first two algorithms
are the two most widely used ones in the literature, while PAES is a simple trajectory-
based algorithm, and MOCell is a fairly new proposal that achieves state-of-the-art
performances for some problems. The implementation of these algorithms provided by
jMetal (Durillo et al. (2010)), an object-oriented Java-based framework aimed at the
development, experimentation, and study of metaheuristics for solving multi-objective
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Algorithm 2 Pseudocode for a generic multi-objective EA.

1: P (0)← GenerateInitialPopulation()
2: EvaluateObjectives(P (0))
3: PF ← CreateParetoFront() //Create an empty front
4: t← 0
5: while not Termination Condition() do

6: parents ← Selection(P (t));
7: offspring←EvolutionaryOperators(parents);
8: Improvement(offspring); /* PACO goes here */
9: EvaluateObjectives(offspring);

10: P (t + 1)←UpdatePopulation(P (t), offspring)
11: UpdateFront(PF,P (t + 1))
12: t← t + 1
13: end while

optimization problems1, is used in this work.
Starting from the pseudocode of a generic multi-objective EA included in Algorithm 2,

the main features of the algorithms used in this work are outlined. For a detailed de-
scription, interested readers are referred to the references provided for each solver.

Both NSGA-II (Deb et al. (2002)) and SPEA2 (Zitzler et al. (2002)) use the scheme of
Algorithm 2. They differ one each other in the mechanism used to keep a diverse approx-
imated Pareto front. PAES (Knowles and Corne (2000)) in turn has a population with
one single solution that it is iteratively modified by using a mutation operator only (no
crossover is required). MOCell (Nebro et al. (2009)) is a structured (cellular) EA, where
each solution has a neighborhood of solutions inside with which it can cross. Though
none of these algorithms includes an improvement operator (line 8 of Algorithm 2) in
their canonical definition, the position where PACO comes in has been indicated in the
pseudocode nonetheless.

In order to deal with constrained optimization problems such as the WSNL problem, all
the algorithms have used the constraint domination principle presented in (Deb (2001)).
It is based on considering feasible solutions as better solutions than non-feasible ones.
Among non-feasible solutions, those with a smaller overall constraint violation are better
(constraints are normalized to be greater than or equal to zero).

5.3. Solution encoding

According to the definition of the problem provided in Section 3, the following solution en-
coding is adopted: a WSN is represented by an array of sensor nodes. Each sensor node in
this array has a two-level definition: a single bit determines whether the node is deployed
or not (first layer), then two coordinates determine the location of the node in the ter-
rain should it be deployed (second layer). This coding scheme uses a fixed-length variable
(the array) to represent a non fixed-sized solution (the deployed WSN); this means only
those nodes that are selected for deployment (in the first layer) should compute for the
network features and cost, and that the coordinate values of the non-deployed nodes have
no significance whatsoever. The length of the array should be large enough to enable the

1jMetal is freely available for download at the following URL:
http://jmetal.sourceforge.net/.
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Figure 2.: Example rectangular geographical crossover. All nodes in the extracted rect-
angles are exchanged between solutions.

handle of large WSNs: in this article the value will be 4×TerrainArea/(RSENS ·RCOMM )
approximately.

5.4. Genetic operators

This section presents the different crossover and mutation operators used to evaluate the
suitability of PACO under different operating conditions.

5.4.1. Crossover operators

Two crossover operators are used: SBX (Deb and Agrawal (1995)) crossover and a
geographic crossover (Wu et al. (2007)). Whereas the former is the most widely applied
operator in the evolutionary multi-objective community, the latter is engineered to cap-
ture the particularities of the WSNL problem. In a crossover, two solutions called parents
produce one or more new solutions called offsprings by exchanging information with some
probability (the crossover probability, pc).

The main issue when adapting the SBX crossover to the solution encoding presented
in Section 5.3 concerns the management of deployed vs. non-deployed sensors. Let p1

and p2 be the individuals to be crossed and let sp1

i and sp2

i be the sensors at position i
of each individual, at which SBX is operating. Let o1 and o2 also be the two generated
offsprings and so1

i and so2

i be the corresponding sensors at the same position (i). The
following cases may arise:

• Neither sp1

i nor sp2

i is deployed: neither so1

i nor so2

i are deployed either.
• Either sp1

i or sp2

i is deployed, but not both: the deployed sensor in the parent (sp1

i or
sp2

i ) is independently copied to each offspring with a chance of 50%.

• Both sp1

i and sp2

i are deployed: the coordinates of so1

i and so2

i are computed by using the
coordinates of sp1

i and sp2

i and the standard SBX operations. The distribution index
is set to ηc = 20, a widely used value in the literature.

The other crossover operator used is the geographic crossover, called RGX (Rectangular
Geographic Crossover, Wu et al. (2007)). In it, nodes are exchanged among solutions
based on their geographic locations. A rectangular-shaped area is defined, and all nodes
belonging to that area are exchanged between the two solutions (see Figure 2).
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5.4.2. Mutation operators

Two different mutation operators have been used: a fully random mutation and a
geographic mutation which is based on the polynomial mutation defined in (Deb and
Agrawal (1995)). Both mutation operators modify each potential node (which can be
either deployed or not) of a given solution with some probability (the mutation probability,
pm); different nodes are affected by the mutation independently. When a node is chosen
to be modified, the performed procedure differs, depending on the mutation operator
that is used. Both first check whether the node is deployed or not. If not, it is placed in a
random location. Otherwise, it is either removed or repositioned with equal probability:

• Random mutation: The node is moved to any terrain point with uniformly distributed
probability.

• Geographic mutation: The node is moved to a point in the surrounding area of the
node’s current position. This bounded movement is computed by using the polynomial
mutation operator separately on the two coordinates of the node.

5.5. PACO integration

The approach used to include PACO in the multi-objective algorithms frame is straight-
forward, as can be seen in the Algorithm 2. Whenever a new solution is produced by the
evolutionary operators (line 7), PACO may be applied onto it (line 8). An elitist crite-
rion is applied: the solution produced by PACO is kept if and only if both the number of
deployed sensors and the energy consumption are reduced, i.e., the new solution is said
to dominate the older one (see Section 5.1). Otherwise it is rejected and the previous one
is kept.

Another important remark has to be done here. Note that each replacement operation
by PACO consumes one function evaluation. As explained in Section 4, the function
evaluations consumed by PACO are properly accounted for into the computational effort,
to ensure fairness in the comparisons between configurations using PACO and not using
PACO.

6. Experimental study

A set of experiments are conducted to assess the performance of PACO on different
scenarios. The base problem instance is defined with the following properties:

• Square terrain 250 × 250m2

• Maximum number of nodes 250
• Initial node deployment probability 50%, uniform distribution

• Sensor node features: RSENS = 30m, RCOMM = 30m

First, the methodology and tools used to analyze the experimental results are described
in Section 6.1. The initial tuning of PACO’s own parameters is performed in Section 6.2.
The robustness and performance of PACO are studied in Section 6.3, where the operator
is applied on a wide set of algorithmic configurations (with varying algorithm and genetic
operator configuration). As an additional contribution, high-performing algorithmic con-
figurations will be detected. Finally, the scalability is tested by using PACO-equipped
algorithms on problem instances of growing sizes in Section 6.4.
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6.1. Experimental methodology

Comparing different multi-objective sets is not a trivial issue, since the tools from the
mono-objective domain (mean and standard deviation) cannot be extended. Therefore,
two specific approaches followed in this work are described here: the hypervolume indica-
tor, HV (Zitzler and Thiele (1999)) (Section 6.1.1) and the attainment surfaces (Knowles
(2005)) (section 6.1.2). When sets of scalar values are compared, a statistical analysis is
performed (Section 6.1.3).

6.1.1. Hypervolume indicator

HV calculates the (hyper)volume (in the objective space of solutions) covered by mem-
bers of a nondominated set of solutions Q for problems where all objectives are to be
optimized in the same direction (either minimized or maximized). Since the problem is a
minimization one, the minimization version of HV is described. For each solution i ∈ Q,
a hypercube vi is constructed with the solution i and a reference point W as the diagonal
corners. This reference point is common to all the hypercubes, and is generated here as
a vector containing the worst objective function values per objective found in the global
pool of non-dominated solutions of each problem instance. Only those points that domi-
nate the reference point are computed for the HV. Thereafter, the union of all hypercubes

is computed and its hypervolume (HV ) is calculated as HV = volume
(

⋃|Q|
i=1 vi

)

.

Finally, a normalization procedure is performed that translates the hypervolume val-
ues to the range [0.0,1.0]. For this, the set of globally non-dominated solutions found
among all executions is produced, this set is called the reference Pareto front. Let
fmax = [fmax

1 , fmax
2 , . . . , fmax

k ] and fmin =
[

fmin
1 , fmin

2 , . . . , fmin
k

]

be the vectors of max-
imum and minimum values for the k objectives in the reference Pareto front. Then every
nondominated solution f = [f1, f2, . . . , fk] is normalized, assuming a minimization prob-

lem, as follows: fnorm
i = fi−fmin

i

fmax
i −fmin

i

if fmin
i ≤ fi ≤ fmax

i , i = 1, . . . , k. Higher values of

the hypervolume metrics are desirable.

6.1.2. Attainment function and surface

From the point of view of a decision maker, knowing the HV value gives little infor-
mation, because it indicates nothing about the shape of the front. However, there is a
need of knowing the general shape of the front, and thus of a way of representing the
expected non-dominated front. For this, the concept of empirical attainment function
is used (EAF, see (Knowles et al. (2006)). In short, the EAF is a function α from the
objective space R

n to the interval [0, 1] that estimates for each n-dimensional point in
the objective space the probability of being dominated by the Pareto front from a single
run of the multi-objective algorithm. Given r approximate Pareto fronts obtained in that
same number of different runs, the EAF is defined as:

α(z) =
1

r

r
∑

i=1

I(Ai � {z}) (10)

where Ai is the i-th approximate Pareto optimal set and I is an indicator function
that takes value 1 when Ai dominates solution z, and 0 otherwise. From the attainment
function it is possible to define the concept of k%-attainment surface (Knowles (2005)):
the level curve with α value k/100. Informally, the 50%-attainment surface in the multi-
objective domain is analogous to the median in the mono-objective one.

The attainment surface provides the decision maker with a tool for quick evaluation
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Table 1.: Results of different PACO configurations: HV. Median and IQR
Threshold Prob. NSGAII SPEA2 PAES MOCell

– 0.00 0.5480.067 0.5180.066 0.5350.083 0.5060.074

5

0.01 0.5360.029 0.5000.050 0.5290.073 0.5000.045

0.50 0.5580.081 0.4980.068 0.5480.063 0.5070.078

1.00 0.5430.053 0.5190.046 0.5370.058 0.5100.073

15

0.01 0.5600.056 0.5220.074 0.5250.034 0.5050.048

0.50 0.5610.071 0.5330.063 0.5610.092 0.5180.073

1.00 0.5560.051 0.5160.043 0.5870.073 0.5170.065

30

0.01 0.5480.038 0.5400.046 0.5180.060 0.5010.063

0.50 0.5740.049 0.5360.048 0.5900.054 0.5440.066

1.00 0.5670.052 0.5570.053 0.5910.086 0.5530.047

of the variability of an algorithm. When the number of objectives of the MOP does not
surpass three, the attainment surfaces can be represented graphically and constitute a
helpful visual tool.

6.1.3. Statistical analysis

Since EAs are stochastic algorithms their results have to be given statistical signifi-
cance. The following statistical procedure is used. First, 30 independent runs for test case
(an algorithm with a given configuration used on a problem instance) are performed. The
HV indicator and the attaiment surfaces are then computed. In the case of HV, the fol-
lowing statistical analysis are carried out (Sheskin (2007)). First a Kolmogorov-Smirnov
test is performed in order to check whether the samples are distributed according to a
normal distribution or not. If so, an ANOVA I test is performed; otherwise a Kruskal-
Wallis test is performed. Since more than two algorithms are involved in the study, a
post-hoc testing phase which allows for multiple comparison of samples (multicompare)
is been performed. Because of room constraints, the full details of the statistical analysis
are not displayed in the paper. However, their results will be properly discussed when
needed.

6.2. PACO general operating characteristics

The first set of experiments serves to outline the main features of the proposed optimiza-
tion operator, PACO, as well as for tuning its internal parameters. For this, the different
configurations of PACO are tested on the four algorithms with a standard configuration:
NSGA-II, SPEA2, and MOCell use a population size equal to 100, the genetic operators
are SBX crossover and polynomial mutation with rates pc = 0.9 and pm = 1.0/L (where
L is the maximum number of sensors), respectively. Each run stops after completing
1,000,000 solution evaluations.

Within PACO, the threshold parameter takes the values 5, 15, and 30, while the
application probability takes the values: 1%, 50% and 100%. Additionally, the results
without PACO (application probability 0.0) are obtained as a test case to assess the
operator’s performance. The results are displayed in Table 1, under the format of median
and interquartile range (IQR) of the HV indicator; for each algorithm, the best and
second best configurations found are highlited using dark and light grey background,
respectively.

For all the algorithms but NSGA-II, the best configuration is found to be the one
with the most intensive use of PACO: threshold = 30, and probability = 1.00. NSGA-
II, however, reaches the best HV value with a very similar setting (threshold = 30,
and probability = 0.50). What remains clear is that, in general, the higher the value
of the threshold parameter, the higher the value of the HV. Similarly, the higher the
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Table 2.: Influence of the initial conditions on PACO: HV. Median and IQR

X
NSGAII SPEA2 PAES MOCell

no PACO PACO no PACO PACO no PACO PACO no PACO PACO

50% 0.5480.067 0.5670.052 0.5180.066 0.5570.053 0.5350.083 0.5910.086 0.5060.074 0.5530.047

75% 0.5520.055 0.5710.045 0.5070.047 0.5590.052 0.5500.065 0.6010.081 0.4980.056 0.5320.058

100% 0.5430.044 0.5820.051 0.4970.027 0.5420.045 0.5360.082 0.6070.055 0.5010.045 0.5560.041

application probability, the higher the HV (especially when the threshold parameter is
high). As for the benefits of using PACO, the results are encouraging: for threshold ≥ 15
and probability ≥ 50%, most of the configurations with PACO (all but three) have
outperformed the one without, in each of the four algorithms.

The next step is to test the sensibility of PACO towards the node density in the
WSN. This issue is dealt with by modifying the initial node deployment probability
X. Besides the predefined probability of X = 50% for the problem the values X =
75% and X = 100% are also tested. The results of this experiment (HV median and
IQR) are shown in Table 2. Again the results show clearly the benefits of using PACO:
in the twelve scenarios consisting of combining algorithm and starting node density,
the configuration using PACO outperforms the one without it. Furthermore the results
obtained with PACO-equipped algorithms are fairly stable over the range of initial node
densities, while the configurations without PACO always experience some performance
degradations (SPEA2 specially), therefore demonstrating the robustness of the operator
for varying node densities.

As a result, the ideal configuration of PACO is set to threshold = 30, probability = 1.00
for the remainder of this article; similarly, the initial node density is set to X = 50%.

6.3. Performance of PACO with different genetic operators

The set of experiments in this section will test the effect of using PACO with differ-
ent algorithms, genetic operators and parametric configurations, in order to assess the
general robustness and performance of the operator. The genetic operators used are
two crossover operators (SBX and RGX), and two mutation operators (random and
polynomial mutation), previously described in sections 5.4.1 and 5.4.2, respectively. The
parametric configurations are the different combinations of crossover probability with
values pc = 0.0, pc = 0.1, pc = 0.5 and pc = 0.9, and mutation probability such that
on average 1 node, 5 nodes and 10 nodes are modified (for conveniency referred to as
pm = 1.0, pm = 5.0 and pm = 10.0, respectively). Table 3 displays all the results ob-
tained in this study; in this table, algorithms and parametric configurations are sorted
by rows, while genetic operators and application/not of PACO, by columns. Again, the
best results obtained (per line) are highlighted with grey background color.

The HV values displayed in Table 3 vary from 0.0 to 0.721 (they are normalized to
unity). The configurations integrating PACO produce higher HV than the same configu-
rations without PACO in 113 of 132 test configurations, that is improved efficiency with
85.61% probability. But some of these test configurations correspond to poor perform-
ing configurations, and their results are not extremely meaningful; if the comparison is
restricted to the upper half (the best performing half) of the test configurations, then
PACO yields improved performance with 98.48% probability. Hence PACO is a robust
technique, and its performance improves for high performing configurations.

Regarding the mutation operator, it is clear that random mutation does not bring
high performances and is largely outperformed by polynomial mutation: for the 132 test

Page 18 of 26

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

N
ov

em
b
er

2
9
,
2
0
1
0

1
2
:4

0
E

n
g
in

eerin
g

O
p
tim

iza
tio

n
w

sn

19

Table 3.: Performance of PACO with different genetic operators: median and IQR of the HV indicator.
Crossover operator SBX RGX

Mutation operator Polynomial Random Polynomial Random

Algorithm pm pc no PACO PACO no PACO PACO no PACO PACO no PACO PACO

NSGAII

1.0

0.0 0.5910.031 0.6210.053 0.4420.040 0.5290.047 0.5910.031 0.6210.053 0.4420.040 0.5290.047

0.1 0.5920.041 0.6310.027 0.4590.052 0.5430.040 0.6510.047 0.6860.060 0.5080.083 0.6190.066

0.5 0.5920.050 0.6180.034 0.4570.054 0.5300.069 0.6240.057 0.6880.070 0.4720.087 0.5780.057

0.9 0.5480.067 0.5690.049 0.4340.032 0.5150.065 0.6150.044 0.6600.054 0.4750.061 0.5740.052

5.0

0.0 0.4690.027 0.4820.059 0.4200.037 0.4320.038 0.4690.027 0.4820.059 0.4200.037 0.4320.038

0.1 0.4660.043 0.4860.034 0.4080.046 0.4120.037 0.4830.044 0.4990.035 0.4350.046 0.4530.042

0.5 0.4160.050 0.4310.041 0.3540.043 0.3700.034 0.5240.041 0.5410.032 0.4890.048 0.5010.037

0.9 0.2950.066 0.2640.067 0.2380.058 0.2310.072 0.5290.065 0.5580.033 0.4760.067 0.5240.069

10.0

0.0 0.1090.031 0.1260.036 0.0660.023 0.0910.034 0.1090.031 0.1260.036 0.0660.023 0.0910.034

0.1 0.0930.016 0.1100.035 0.0580.030 0.0700.029 0.1180.030 0.1230.030 0.0740.031 0.0780.027

0.5 0.0560.029 0.0570.025 0.0240.020 0.0270.022 0.1310.036 0.1480.033 0.1040.047 0.1020.051

0.9 0.0000.007 0.0000.000 0.0000.000 0.0000.000 0.1540.039 0.1660.040 0.1300.044 0.1260.034

SPEA2

1.0

0.0 0.5210.057 0.5870.037 0.4020.044 0.4840.064 0.5210.057 0.5870.037 0.4020.044 0.4840.064

0.1 0.5270.051 0.5920.034 0.4250.068 0.4930.055 0.5600.044 0.6130.086 0.4620.054 0.5410.072

0.5 0.5360.053 0.5750.064 0.4170.067 0.5020.074 0.5830.044 0.6280.061 0.4390.041 0.5400.054

0.9 0.5180.066 0.5420.047 0.4180.058 0.4560.056 0.5660.050 0.6230.070 0.4440.071 0.5050.088

5.0

0.0 0.4460.036 0.4780.029 0.4000.052 0.4080.055 0.4460.036 0.4780.029 0.4000.052 0.4080.055

0.1 0.4390.045 0.4720.036 0.3950.030 0.4090.035 0.4680.042 0.4970.041 0.4240.054 0.4370.055

0.5 0.4050.038 0.4170.050 0.3640.050 0.3790.049 0.4990.048 0.5180.076 0.4650.045 0.4820.056

0.9 0.3180.069 0.2700.110 0.2790.071 0.2430.072 0.5120.054 0.5380.044 0.4640.052 0.5020.053

10.0

0.0 0.1120.023 0.1290.021 0.0820.029 0.0910.021 0.1120.023 0.1290.021 0.0820.029 0.0910.021

0.1 0.1030.033 0.1230.025 0.0680.026 0.0780.022 0.1260.042 0.1440.024 0.0840.023 0.1050.031

0.5 0.0590.024 0.0620.023 0.0390.023 0.0320.022 0.1450.027 0.1560.031 0.1050.018 0.1250.029

0.9 0.0050.011 0.0000.005 0.0000.001 0.0000.000 0.1770.049 0.1740.041 0.1450.051 0.1510.036

PAES

1.0 N/A 0.5350.083 0.6320.083 0.3980.110 0.5000.052 0.5350.083 0.6320.083 0.3980.110 0.5000.052

5.0 N/A 0.4960.058 0.5450.084 0.3940.095 0.4550.077 0.4960.058 0.5450.084 0.3940.095 0.4550.077

10.0 N/A 0.1860.051 0.2110.062 0.1580.065 0.1620.062 0.1860.051 0.2110.062 0.1580.065 0.1620.062

MOCell

1.0

0.0 0.5980.044 0.6570.033 0.4480.055 0.5390.063 0.5980.044 0.6570.033 0.4480.055 0.5390.063

0.1 0.5950.034 0.6490.033 0.4650.058 0.5310.053 0.6870.054 0.7170.044 0.5570.066 0.6300.039

0.5 0.5550.059 0.6050.041 0.4350.071 0.5170.037 0.6850.045 0.7210.060 0.5210.064 0.6250.049

0.9 0.5060.074 0.5490.050 0.3910.079 0.4720.062 0.6580.055 0.7100.046 0.5130.070 0.6190.090

5.0

0.0 0.3970.044 0.4120.055 0.3430.044 0.3630.044 0.3970.044 0.4120.055 0.3430.044 0.3630.044

0.1 0.3750.041 0.4060.068 0.3320.036 0.3580.055 0.3980.050 0.4300.048 0.3570.037 0.3690.067

0.5 0.3170.080 0.3370.070 0.2820.027 0.2920.054 0.4690.048 0.5010.049 0.4510.042 0.4460.059

0.9 0.3340.051 0.3290.066 0.3090.084 0.2960.089 0.5210.046 0.5220.067 0.4750.051 0.5120.054

10.0

0.0 0.0450.016 0.0620.026 0.0230.018 0.0400.018 0.0450.016 0.0620.026 0.0230.018 0.0400.018

0.1 0.0400.022 0.0550.016 0.0200.021 0.0320.014 0.0520.020 0.0620.024 0.0250.024 0.0420.027

0.5 0.0150.014 0.0180.030 0.0030.005 0.0030.010 0.0820.042 0.0960.030 0.0400.025 0.0590.019

0.9 0.0040.013 0.0010.005 0.0000.000 0.0000.000 0.1150.045 0.1120.036 0.0900.030 0.0980.025
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configurations, the HV obtained with polynomial mutation was never lower thant the one
obtained with random mutation (97.73% improved efficiency). For the crossover operator,
it is RGX that produces the best results: in the 108 test configurations (excluding the ones
with PAES and the ones having pc = 0 since there is no crossover involved there), RGX
always obtained higher HV than SBX (again 100% improved efficiency). Furthermore,
for the three algorithms including crossover (NSGA-II, SPEA2 and MOCell), the best
configuration with crossover outperforms 100% of the time the one without crossover.

In the parametric configuration, the dominant factor seems to be the mutation proba-
bility, with the highest HV values obtained for pm = 1.0. For the crossover, the rate does
not have such a big influence, but the best results are generally obtained with pc = 0.5.
The statistical analysis results prove that the algorithmic configurations with SBX, ran-
dom mutation, and PACO/noPACO are statistically similar, and they are statistically
worse than the rest. At the same time, the configuration the uses RGX, polynomial
mutation and PACO is statistically better than the rest.

Finally, for the comparison of the algorithms, the results are less clear. MOCell obtains
the highest HV values (the 10 best performing configurations obtain their highest HV
values if MOCell is used), but is quite sensitive to the operator configuration and is
outperformed by NSGA-II in the big picture (of the 84 test configurations, NSGA-II
outperforms MOCell in 57, hence in 67.86%). SPEA2 and PAES produce lower HV
values. In the statistical tests, the best configuration of MOCell is the one that most often
outperforms any other configuration; as a matter of fact, for any combination of mutation,
crossover and PACO operator, MOCell with pm = 1.0 and pc = 0.5 systematically obtains
the highest number of wins against other algorithms and/or configurations, or is at least
tied for highest number of wins.

The 50%-attainment surfaces obtained by the best configuration of each algorithm
both with PACO and without PACO are plotted in Figure 3. For all the four algorithms
the attainment surfaces when PACO is used completely dominate the ones where PACO
is not used. For NSGA-II the region where the number of nodes is below 70 is clearly
improved with PACO, where the one where the number of nodes is beyond 70 differences
are tighter. Finally, the same behavior emerges for MOCell: the attainment surface of
PACO when the number of nodes is below 80 clearly dominates the one without PACO
and, beyond 80 nodes, the surfaces get closer each other. From the problem’s perspective,
this means that for a given number of nodes (i.e., for a fixed cost), the algorithmic
configuration with PACO achieves full terrain coverage with lower energy consumption
than the configuration without PACO, these differences being more apparent as the
number of nodes is reduced.

Finally, the 50%-attainment surfaces obtained by the best configuration of each algo-
rithm with PACO are shown in Figure 4. NSGA-II and MOCell dominate each other
below and beyond configurations with 70 nodes, respectively, and both noticeably dom-
inate SPEA2 and PAES.

As a result of the experiments in this section, the following conclusions are drawn:

• PACO offers a robust enhancement to the performances of the optimization algorithms.

• The polynomial mutation and RGX crossover are best suited for the WSNL problem.

• NSGA-II and MOCell outperform SPEA2 and PAES.

6.4. Scalability study

The experiment in this section explore the robustness of PACO when solving instances
of higher complexity. The basic problem instance is thus extended into the following:
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(a) NSGA-II (b) SPEA2

(c) PAES (d) MOCell

Figure 3.: 50%-attainment surfaces of the optimization algorithms with and without
PACO. The global non-dominated fronts are represented for comparison, labeled as ’PF’.

• Square terrain: 500 × 500m2, maximum number of nodes: 1000

• Square terrain: 750 × 750m2, maximum number of nodes: 2000

While the rest of features are left unchanged. These two instances shall be named “in-
stance 500” and “instance 750” for brevity. The best configuration found in the previous
section is maintained in this study: polynomial mutation with pm = 1.0, RGX crossover
with pc = 0.5.

Table 4 shows the results for the algorithms both with and without PACO. The first
remark is that PACO produces greater gains in performance for larger instances: in the
instance 250, the HV value increases by less than 18%, in the instance 500 by at least 24%,
and in the instance 750 by more than 292%. Regarding the algorithms, the population-
based techniques (NSGA-II, SPEA2 and MOCell) suffer HV degradation when the in-
stance grows, MOCell still outperforms the other two. PAES, on the other side, seems to
be the least affected; in the instance 750, PAES is the best performing technique. This
can be explained because the number of function evaluations has been kept the same
for all the instance sizes, hence PAES, which converges faster than the population-based
techniques, obtains higher HV values.
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Figure 4.: 50%-attainment surface comparison of the optimization algorithms using
PACO.

Table 4.: Scalability properties of the different algorithmic instances (HV. Median and
IQR)

Instance
NSGAII SPEA2 PAES MOCell

no PACO PACO no PACO PACO no PACO PACO no PACO PACO

250 0.6240.057 0.6880.070 0.5830.044 0.6280.061 0.5350.083 0.6320.083 0.6870.054 0.7170.044

500 0.4700.078 0.6820.080 0.3400.109 0.5880.063 0.4600.084 0.6360.077 0.5740.087 0.7120.093

750 0.0000.000 0.1840.108 0.0000.000 0.0830.092 0.1030.102 0.4040.103 0.0000.003 0.2520.127

6.5. Solutions obtained

The quality estimation parameters are useful tools to compare different techniques or de-
cide the best configuration for a given algorithm, but give poor insight on what solutions
can actually be expected from the algorithm. Therefore, this section will briefly discuss
the solutions produced by the optimization techniques. Figure 5 shows the solutions at
the two opposite extremes of the non-dominated front generated by PACO: The solution
with the minimum number of nodes (Figure 5(a)) and the one with minimum energy
consumed (Figure 5(b)). As expected from the nature of the problem, solution 5(b) re-
quired a higher number of nodes, in order to build more spokes (seven instead of three)
that share the traffic load.

7. Conclusions and future work

The Proximity Avoidance Coverage-preserving Operator (PACO) for local improvement
of the Wireless Sensor Network layout problem (WSNL) is presented in this paper. The
WSNL problem consists in deciding the number and geographical locations of the nodes
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(a) Minimum of number of nodes (b) Minimum of consumed energy

Figure 5.: Best performing solutions produced by MOCell using PACO for the basic
instance: 250× 250m2

of a sensor network to guarantee field coverage by the sensors, while minimizing the
cost (number of nodes) and maximizing the lifetime (minimize the energy consump-
tion). Given the twofold opposed optimization objectives, a multi-objective approach is
adopted. The main idea behind PACO is to detect local inefficiencies in the network due
to redundancy by close neighbors, and look for an equivalent configuration that fixes the
inefficiency by replacing the two close nodes by a single node. The equivalent configu-
ration, which must maintain the network connectivity and coverage levels, reduces the
number of nodes, and possibly the energy consumption (since less information packets
are generated).

In the experimental tests, PACO has demonstrated to produce a significant enhance-
ment of the quality of the fronts produced (measured with hypervolume and attainment
surfaces) in four different multi-objective techniques. The proposed operator has dis-
played a robust behavior on the one hand, and an improved performance when the basic
algorithm (without PACO) obtains high HV values on the other. Furthermore, the bene-
fits of the operator show good scaling properties towards the size of the problem instance:
the difference between PACO-equipped algorithms and basic optimization algorithms in-
crease as the problem instance grows in size.

Further research will focus in testing PACO on new and more complete contexts. In
this sense, the consideration of the network’s robustness against node failures, or the use
of more complex, irregular terrain models to simulate specific environments are inmediate
steps.
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