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Reactive power compensation is an important problem in electrical distribution systems, 

involving the sizing and location of capacitors (sources of reactive power). The installation of 

capacitors also contributes to releasing system capacity and improving voltage level. A multi-

objective simulated annealing approach to provide decision support in this problem is 

presented. This approach is able to compute a set of well-distributed and diversified solutions 

underlying distinct trade-offs, even for a challenging network. The characterization of the non-

dominated front is relevant information for aiding planning engineers to select satisfactory 

compromise solutions (compensation schemes) to improve the network operation conditions.  

 

1. Introduction 

The installation of shunt capacitors in electricity distribution networks is often necessary for the 

compensation of reactive power due to inductive loads. Those sources of reactive power are 

aimed at guaranteeing an efficient delivery of active power to loads, releasing electric system 

capacity, improving the bus voltage profile and reducing losses. The problem of reactive power 

compensation involves determining the network nodes and the size of the capacitors to be 

installed. The merit of the solutions (characterized by the location and size of capacitors) is 

evaluated according to economical, technical and quality of service objectives. These multiple, 

conflicting and incommensurate evaluation aspects must be explicitly incorporated (and not just 

combined into a questionable monetary function) into mathematical models for decision 

support, in order to identify the non-dominated frontier and grasping the compromises at stake 

between the competing objective functions. Therefore a multi-objective model has been 
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developed (Antunes et al. 2009) including cost and power losses as objective functions. The 

voltage profile has been considered as a set of constraints, according to technical and quality of 

service requirements. This offers planning engineers a broad view of the trade-offs between 

cost (economical dimension) and losses (technical dimension) that can be established in 

different regions of the search space where solutions with distinct characteristics can be 

computed. 

Mathematical models for this problem require binary, integer and real-valued decision 

variables, also involving linear and nonlinear (associated with physical laws in networks) 

constraints. Due to these characteristics and the intrinsic combinatorial nature of this problem, 

meta-heuristic approaches have been revealed to be quite adequate for computing solutions and 

identifying the non-dominated (Pareto optimal) frontier. 

The reactive power compensation problem has been studied in the last four decades. 

Algorithmic approaches to tackle the problem include mathematical programming techniques 

(generally requiring some less realistic assumptions on the network characteristics for the sake 

of computer tractability) and, more recently, meta-heuristics. Simulated Annealing, Ant Colony 

Optimization, Particle Swarm Optimization, Tabu Search and Evolutionary/Genetic Algorithms 

have been used to deal with this problem, considering both single and multi-objective models 

(Zhang et al. 2007). Meta-heuristics have indeed been shown to be quite adequate to cope with 

model complexity and tractability as well as to reduce the exhaustive search in large spaces by 

appropriately sampling the search space. Moreover, experiments with real-world challenging 

problems indicate that meta-heuristics with an adequate parameterization can lead to truly (or 

near) non-dominated solutions (Glover and Kochenberger, 2003). 

The interest and motivation of the study have been provided in this Introduction. An overview 

of the multi-objective model for reactive power compensation in distribution networks is 

presented in section 2. An approach based on simulated annealing for characterizing the non-

dominated front (costs vs. power losses) for the multi-objective model is presented in section 3. 

Results are presented in section 4, and some conclusions are drawn in section 5. 

 

2. Overview of a multi-objective mathematical model 

The reactive power compensation problem has been formulated as a non-linear mixed integer 

problem with two (conflicting and incommensurate) objective functions to be minimized: active 

power losses and investment costs. The main constraints include voltage limits at each bus, 

impossibility to locate capacitors in certain nodes, operational constraints due to the required 

load to supply at each node, and the power flow equations in the network (physical laws). A 
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solution consists in a compensation scheme, that is, the size of the capacitors to be located in 

each network node establishing a compromise between active power losses and costs, while 

satisfying the sets of constraints. 

An example of a radial electrical distribution network is displayed in Figure 1. SE is the sub-

station, from which power flows into the network. The nodes indicate the load demand points 

or derivations to lateral buses in which capacitors may be installed. 

 

 

Fig. 1 - Example of a radial electrical distribution network 

 

The connection between network buses is illustrated in Figure 2. Load and compensation 

devices (capacitors) are directly connected to bus m. which is fed by a preceding bus and 

supplies other subsequent buses (j, j+1,…, j+n). The connection branches are characterized by 

their resistance and reactance. The power flow algorithm computes the (active and reactive) 

power, as well as the voltage, at each network node resulting from a given compensation 

scheme, that is, a solution representing a given location and sizing of the capacitors. This 

iterative algorithm has been implemented with MATLAB using complex numbers to achieve 

more accurate results. It takes advantage of the radial structure of distribution networks to 

simplify the computation. For more technical details on the power flow algorithm, see Pires et 

al. (2009). 
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Fig. 2 - Connection between buses 

 

The real-valued variables are the (active and reactive) power magnitudes flowing in the 

network and the node voltage. The integer decision variables encode the decision whether a 

new capacitor of a certain type is installed in a given node. New capacitors are characterized by 

their capacity and the acquisition cost. Standard units, generally used in distribution systems, 

are considered. 

The multi-objective mathematical model is presented in Appendix A (see also Pires et al. 2009, 

for further details). 

 

3. A Multi-Objective Simulated Annealing Approach 

The multi-objective simulated annealing approach relies on the use of the non-dominance 

relation and it just uses some form of aggregation whenever the acceptance probability function 

is required to intervene. Three main processes may be distinguished: random generation of 

compensation solutions, generation of compensation solutions using different types of 

neighbourhood structures, and selection of non-dominated solutions. This particular application 

of the multi-objective simulated annealing approach to the case study in reactive power 

compensation includes an additional process concerning the analysis of the power flow in the 

radial electrical distribution network, which is responsible for assessing the feasibility of 

solutions. 

Each solution (compensation scheme), generated either by a random location of capacitors or a 

move to a neighbour solution in the operational framework of the simulated annealing 

procedure, is analyzed for the satisfaction of the system operation (power flow) equations and 
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lower/upper bounds of voltage at the nodes (these resulting from quality of service aspects 

generally imposed by regulations). Only feasible solutions regarding to the sets of constraints 

are retained for further analysis.  

The initial solutions are generated randomly, although other techniques could be envisaged 

such as distributing capacitors more or less regularly along the network. The random generation 

of solutions involves defining, within the range of capacity values and technically feasible 

nodes to install capacitors: 

- the network nodes where a capacitor is installed; 

- the capacity of the capacitors to install. 

A routine for selecting the non-dominated solutions is called to build up the archive, thus 

consisting of non-dominated solutions only, for the simulated annealing procedure. 

Solutions are encoded by a string of integers indexed by the network node (Figure 3): 0 means 

that no capacitor is installed in that node and non-zero values indicate the capacitor type 

installed therein. 

 

0 0 2 7 
 

0 5 0 3 

Fig. 3 - Solution encoding 

 

The procedure samples the neighbourhood of all solutions currently in the archive, evaluating 

new solutions derived from the current solution. New solutions are generated from the initial 

compensation schemes by defining feasible moves transforming a solution s into a solution s' ∈ 

N(s), that is, within its neighbourhood. The solutions in N(s) are the ones that can be obtained 

from s by one of the following operations: 

• Relocating a capacitor (possibly changing its value) currently installed to an 

uncompensated node (Figure 4 (a)). 

• Reducing the capacity of the capacitor installed in a given node to the immediate lower 

size (Figure 4 (b)). 

• Increasing the capacity of the capacitor installed in a given node to the immediate upper 

size (Figure 4 (c)). 

• Removing the capacitor installed in a given node (Figure 4 (d)). 

• Installing a new capacitor in a currently uncompensated node (Figure 4 (e)). 

• Relocating the capacitor installed in a given node to an adjacent node (Figure 4 (f-g)). 

Besides these neighbourhood structures another possibility of exploring new regions of the 

search space is based on the composition of the current solution with another solution of the 

Page 5 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

archive using components of both in the spirit of the crossover operator in genetic algorithms 

(Figure 4 (h)). 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 0 ⋯ 0 5 7 3 

(a) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 6 ⋯ 0 5 0 3 

(b) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 8 ⋯ 0 5 0 3 

(c) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 0 ⋯ 0 5 0 3 

(d) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 7 ⋯ 4 5 0 3 

(e) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 7 ⋯ 5 0 0 3 

(f) 

 

0 0 2 7 ⋯ 0 5 0 3 → 0 0 2 7 ⋯ 0 0 5 3 

(g) 

 

Solution A      Break Point 

0 0 2 7 ⋯ 0 5 0 3 

                              A                            B 

A 

0 0 2 7 ⋯ 5 7 0 0 

            B            Break Point 

Solution B   

0 0 3 4 ⋯ 5 7 0 0 

    Break Point  (h) 

 

Fig. 4 – Examples of neighbourhood structures (8 different types of capacitors are considered) 

 

Note that some of these operations (removing a capacitor or decreasing the capacity of a 

capacitor previously installed) guarantee the improvement of the cost objective function if the 

solution obtained remains a feasible one. However, the direction of the change of the active 

power losses objective function cannot be taken for granted, since it also depends on the 

capacitor location, load profile, etc. The change of the losses objective function can only be 

assessed after the power flow algorithm is executed for each configuration. 
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Those new solution construction strategies are used randomly and the corresponding rate of 

success is recorded in order to introduce a small bias for this process in the next temperature 

step. The aim is to endow the neighbourhood selection process with some adaptive features. 

Temperature is decreased exponentially. For each value of temperature all the solutions in the 

archive are taken as the current solution and its neighbourhood is exploited. This exploitation 

(intensification phase) is performed involving the competition of a new solution (resulting from 

one of the neighbourhood strategies above) with the current solution (one in the current 

archive). 

This competition may lead to different situations: 

• If the new solution is dominated by the current solution, then the decision whether its 

neighbourhood is explored depends on the acceptance probability.  

• If the new solution is neither dominated nor dominates the current solution as well as 

any other solution in the archive, then it is directly included in the archive.  

• If the new solution is neither dominated nor dominates the current solution but it is 

dominated by at least one solution in the archive, then the decision whether its 

neighbourhood is explored depends on the acceptance probability.  

• If the new solution is neither dominated nor dominates the current solution but it 

dominates at least one solution in the archive, then it is directly included in the archive.  

• If the new solution dominates the current solution and it is not dominated by any 

solution in the archive, then it replaces directly the current solution in the archive. 

• If the new solution dominates the current solution and it is dominated by at least one 

solution in the archive, then the decision whether its neighbourhood is explored depends 

on the acceptance probability.  

Therefore, for a given temperature level the archive may include dominated solutions, vis-à-vis 

other solutions in the archive. The aim is to allow temporarily dominated solutions in order to 

enable escaping from local non-dominated fronts. For each temperature level a given number of 

iterations is performed to foster a more effective local search. Before decreasing the 

temperature the archive is filtered and non-dominated solutions only are retained for the 

neighbourhood sampling, as described above, at a lower temperature. 

The consideration of the multiple objective function performances is a critical issue to establish 

the acceptance probability function in multi-objective simulated annealing approaches. Distinct 

acceptance probability functions have been tested: scalar linear, Chebycheff (strong), weak 

rules (see also Kubotani and Yoshimura, 2003; Suman and Kumar, 2006), and logistic curve. 

The difference of performance between the competing solutions is a weighted sum of the 

Page 7 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

difference of the normalized objective function values. This aggregation takes into account the 

ranges of values that each objective function attains in the non-dominated frontier computed so 

far (for normalization purposes, thus avoiding the undesirable effects of aggregating objectives 

functions expressed in different orders of magnitude).  

The difference of performance between the competing solutions s’ and s in objective function j 

is given by: 

δ j = f j (s') − f j (s)         j =1,..., p       (1) 

The aggregation of these differences is made by a weighted-sum: 

∆ = w j  
j =1

p

∑ δ j , in which wj is the “weight” assigned to the objective function fj(x). 

The acceptance probability according to the distinct rules is given by 

Logistic curve:  P =
2

1+ e

∆

Tk

        (2) 

Scalar Linear: P = min  1, e

−∆

Tk

 

 
  

 

 
           (3) 

Chebyshev (Strong): P = min  1, min j 1, e

−w j  δ j

Tk

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 
     (4) 

Weak: P = min  1, max j e

−w j  δ j

Tk

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 
 ,       (5) 

in which Tk is the temperature at iteration k. 

According to the computational experiments carried out in order to select the most favourable 

acceptance probability function, the weak rule exhibits a large range of acceptance thus 

imposing a high computational time, although being able to obtain good results. At the other 

extreme is the Chebyshev (strong) rule that imposes a lower computational burden due to its 

large range of rejection, but leads in general to a lower number of non-dominated solutions and 

worst values for the objective functions. The other rules, logistic curve and scalar linear, also 

lead to good results but the logistic curve has a better computational time on average. 

Therefore, the acceptance probability function used in the case study is based on the logistic 

curve. The computational results of this phase of tuning the acceptance probability function 

(APF) in this multi-objective setting are reported in Appendix B. 
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The procedure stops when the final temperature specified is attained. 

The pseudo-code of this multi-objective simulated annealing approach is presented below. 

 

begin 

Create the set of initial random solutions, SIRS;  

Determine the set of non-dominated solutions, SNDS; 

for k = 1 to Max_iterations do 

T := Tmax; 

while T>Tmin do 

for i = 1 to size(SNDS) do 

Pick a solution s=SNDS(i) from SNDS  

repeat 

 Select a solution s’ in the neighbourhood of solution s; 

 if s’  is not dominated by s then 

 if  s’  is not dominated by any solution in SNDS then  

  if s’ dominates SNDS(i) then  

s’ replaces solution i in SNDS  

  else 

s’ is included in SNDS  

  end if 

else if (rand ∈ [0,1] < APF (s, s’, T)) then s ← s’;   

else s’ is discarded;  

end if 

else if (rand ∈ [0,1] < APF (s, s’, T)) then s ← s’;  

else s’ is discarded; 

end if 

until s’ have been discarded or included in SNDS ; 

end for 

T:= cooling_coefficient×T; 

end while 

Update the set of non-dominated solutions, SNDS; 

end for 

end 
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4. Case Study and Illustrative Results 

The proposed methodology has been applied to an actual Portuguese radial distribution system 

with 94 nodes, with some difficult features due to its extension in a rural (sparse) region and 

poor voltage profile. The network layout is displayed in Figure 5, and its physical 

characteristics are summarized in Table 2. Full details about the network are available in Pires 

et al. (2009). 

 

 

Fig. 5 - Actual radial electrical distribution network with 94 nodes 

 

Table 2 - Network Characteristics 

 Minimum Maximum Average St. Dev. 

Line length (m) 256 4027 856 559.6 

Resistance (Ω/Km) 0.213 1.5 0.745 0.393 

Inductance (Ω/Km) 0.356 0.395 0.379 0.011 

 

The capacitors are characterized by their capacity and the acquisition cost (Table 3 - from 

catalogue prices of a supplier). The study is done for peak load conditions, in which the active 

power losses are 320.44 kW and the number of nodes not respecting the voltage lower bounds 

is 39 (in 94 nodes). That is, the network is not working according to regulations in peak load 

conditions and therefore capacitors must be installed (the zero cost solution is not feasible) for 

reactive power compensation and voltage profile improvement purposes. 
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Table 3 - Capacitor dimension and acquisition costs 

 Maximum capacity (kVAr) Cost (Euros) 

C1 50 2035 

C2 100 2903 

C3 140 4545 

C4 200 4875 

C5 240 5716 

C6 300 6578 

C7 360 7337 

C8 400 9395 

 

Parameters have been tuned through experimentation and the following values were adopted. 

Temperature is decreased in each step by a factor 0.8. The initial temperature is 1 and the final 

temperature is 0.0001. The process is repeated 10 times using the information obtained in the 

previous search. 

Figure 6 shows the results obtained with the multi-objective simulated annealing approach 

described in section 3. The results obtained for this network, operating under the same 

conditions, with the NSGA II algorithm approach, in which crossover and mutation 

probabilities have been properly tuned, are also presented for comparison purposes. Both 

algorithms start with the same set of random initial solutions for the sake of comparison. 

The non-dominated frontier is well defined and the solutions are spread all over it. The 

simulated annealing approach enables the computation of a diverse front, namely regarding the 

extension towards extreme solutions, that is, in the regions where the cost and the resistive 

losses objective functions attain their best (minimum) values. In the region with more balanced 

solutions (the knee of the front) this approach also determined a well-distributed set of solutions 

organized in a “staircase” structure. The steps are due to the installation of more capacitors 

while the smooth slope within each step is due to the change of the type of capacitor. 

Table 5 presents the objective function values for a representative sample of non-dominated 

solutions with different characteristics. 

Each point displayed in Figure 6 corresponds to a physical compensation scheme (decision 

variable space). A set of well-dispersed solutions is given in Table 4 leading to resistive power 

losses and cost given in Table 5 (objective function space). For instance, for solution 1, a 

capacitor of type 5 is located in node 3, of type 3 in node 4, etc. Solutions 1 and 10 are the 

extreme solutions, which optimize individually the active power losses and the cost objective 

functions, respectively. 
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Fig. 6 - Non-dominated front obtained with the multi-objective simulated annealing approach 

compared with the front computed using NSGA II  

 

Table 4 - Compensation configurations 

Solution Compensation scheme (capacitor installed in each node) # capacitors 

1 00530070000006000004000000002000000100030001002

02000400007400000100000000000002000050011001000 
20 

2 00000070000004000000002003000100004000002000004

00004000407000000200000001000400000060000000000 
15 

3 00000070000007000000000004000000000000002000004

00000006007000000200000000000400000060000000001 
11 

4 00000000000007000000000005000000000000002000007

00000000700700000000000000000002000070000000000 
8 

5 00000000000007000000007000000000000000000000000

02000000700700000000000000000000000070000000000 
6 

6 00000000000007000000007000000000000000000000000

00000000007000000200000000000000000070000000000 
5 

7 00000000000000007000000005000000000000000000000

00000000000700000000000000000000000070000000000 
4 

8 00000000000000000000007000000000000000000000000

00000000000700000000000000000000000070000000000 
3 

9 00000000000000000000000005000000000000000000000

00000000000000000000000000000500000070000000000 
3 

10 00000000000000000000000000007000000000000000000

00000000000000000000000000000000000000000700000 
2 
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Table 5 - Sample of non-dominated solutions (solution id. refers to Figure 6) 

Solution Resistive Losses (kW) Cost (€) 

1 235.371 80221 

2 235.515 67826 

3 236.019 57633 

4 237.250 48207 

5 239.996 39588 

6 244.948 32251 

7 249.288 27727 

8 256.095 22011 

9 265.276 18769 

10 278.278 14674 

 

These results have been obtained with 10 simulations. The rate of success of each 

neighbourhood structure is reported in Table 6. 

 

Table 6 – Percentage of success of each neighbourhood structures 

Neighbourhood 

Structure 

Average feasible 

solutions 

Average # 

solutions directly 

included in the 

archive 

Average # 

solutions directly 

replacing other 

solutions in the 

archive 

  (a) 10.9095 2.395 2.719 

  (b) 10.8677 5.623 21.372 

  (c) 11.3256 1.218 18.516 

  (d) 10.3408 1.337 12.746 

  (e) 11.3270 0.446 6.336 

  (f) 11.2471 44.103 1.936 

  (g) 11.3344 34.619 1.369 

  (h) 22.6478 10.26 35.005 

Note: Structures (a-h) refer to the example in Figure 4 (a-h). 

 

The voltage profiles at each node before and after the optimization with the multi-objective 

simulated annealing procedure, as well as results under different network operating conditions 

and CPU running times are reported in Appendix C.  
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Even though it cannot perform actual work, reactive power is required to form the magnetic 

field in motors and other electric equipment. Therefore, reactive power should be supplied 

locally to decrease the loading of lines and transmission system losses as well as to improve the 

voltage profile and steady-state and dynamic stability. A decrease in reactive power causes 

voltages to fall and a voltage collapse occurs whenever the system is trying to serve much more 

load than the voltage can support. Shunt capacitors banks adequately sized and located near the 

loads along the distribution feeders provide several benefits in the exploration of distribution 

networks, namely in heavy load periods. Shunt capacitors are generally simple devices, in 

which an insulating dielectric is placed between two metal plates. Capacitors installed in 

distribution networks may be pole-mounted (least expensive, providing up to 3000 kVAr) or 

pad-mounted (generally placed underground). These devices may be controlled either locally or 

centrally by means of communication systems. Automatic capacitor banks consist of steps 

controlled by a reactive power controller, which ensures that the required reactive power is 

always connected to the system. The devices may also contribute to improve power quality by 

providing harmonic filtering. 

 

5. Conclusions 

Reactive power compensation is a relevant problem in electrical distribution systems. The 

adequate sizing and location of capacitors (sources of reactive power that locally supply this 

demand) contributes to release system capacity and improve voltage level. The case study 

herein presented is a challenging one because the network is lengthy and is operating in adverse 

conditions. 

A multi-objective simulated annealing approach has been developed, which is specifically 

designed to provide decision support for planning tasks in this problem. Findings indicate that 

the simulated annealing approach is able to compute a set of well-distributed and diversified 

solutions underlying distinct trade-offs between the competing objective functions of 

economical and technical nature. The thorough characterization of the non-dominated front is 

valuable information for planning engineers in the selection of satisfactory compromise 

solutions (compensation schemes) to improve the network operation conditions.  

Research is currently underway to design new adequate solution moves and exploit the adaptive 

behaviour of neighbourhood structures, also for the sake of replicability in other combinatorial 

problems. Moreover, techniques to provide decision support regarding the selection of a 

solution for implementation or a set of solutions for further screening are also being developed 

taking into account the decision maker's preferences. 
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Appendix A – Multi-objective mathematical model 

Figure A.1 illustrates the meaning of the variables and parameters associated with in the 

electrical network. A feeder is characterized by a resistance, r, and a reactance, x, value 

(measured in Ohms, Ω), which constitute the characteristic impedance of the power line, Z . 

 

 
Fig. A.1 - Electrical feeder and corresponding variables 

 

SB – Substation; 

k – iteration number; 

t – next bus index; 

m – previous bus index; 

M – number of network buses; 

Bm – bus m; 

Y – maximum number of capacitors that can be installed; 

mP - active power vector entering bus m; 

mQ - reactive power vector entering bus m; 

mS - apparent power vector entering bus m; 

CmQ - reactive compensation installed in bus m; 

CmS - apparent compensation power vector installed in bus m; 

LmP - active power demand vector at bus m; 

LmQ - reactive power demand vector at bus m; 

LmS - apparent  power demand vector at bus m; 

Plosses(m )- total active power losses vector in all branches subsequent to bus m; 

Qlosses(m )- total reactive power losses vector in all branches subsequent to bus m; 

S losses(m )- total apparent power losses vector in all branches subsequent to bus m; 

mV - root mean square (rms) voltage vector of bus m;  

δm –voltage angle in bus m; 

mI - current vector that enter bus m; 

mtr - resistance of the connection branch from bus m to bus t branch; 

mtx - reactance  of the connection branch from bus m to bus t branch; 

mtZ - impedance  of the connection branch from bus m to bus t branch; 

QFu –capacity of capacitor of type u; 

Cu – cost  of capacitor of type u; 
*X - conjugate vector of a generic  vector X . 
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dm – real part of voltage vector. 

em – imaginary part of voltage vector. 

am

u - binary decision variable denoting whether or not a capacitor of type u is installed in Bm  

bm – coefficient denoting whether or not it is technically possible to install a capacitor in Bm  

 

The vectors structure is described in equations (A.1) to (A.6): 

mtmtmt jxrZ +=  (A.1) 

  

mmm jQPS +=  (A.2) 

  

mmm jedV +=  (A.3) 

  

LmLmLm jQPS +=  (A.4) 

  

CmCm jQS −=  (A.5) 

  

)()()( mlossesmlossesmlosses jQPS +=  
(A.6) 

 

The apparent power equation at bus m is written as 

CmLm

n

i it

it
itm
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i

itm SS
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V S= S ++
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


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∗
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=
+
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0

 (A.7) 

 

Active and reactive powers can be obtained by calculating the real and imaginary parts of 

mS respectively, (A.8) and (A.9) 

)Re( mm SP =  (A.8) 

  

)Im( mm SQ =  (A.9) 

 

Apparent power is computed from the last bus of the branch to the first bus, and voltages are 

computed from the first bus to the last one of the network. The new power values calculated are 

immediately used in their predecessors’ equations and the new voltage values calculated are 

immediately used in their successors’ equations.  

The objective functions are the minimization of the system resistive losses (A.10) and the 

capacitor installation cost (A.11): 
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The index t denotes the identification of the first bus of the lateral. 

Min am

u c j

u = 1

Y

∑
m =0 

M

∑  (A.11) 

 

am

u =
1     if the new capacitor  QFu is installed  in Bm

 0    otherwise

 
 
 

 (A.12) 







=
otherwise    0 

at  capacitor  a  locate  topossible isit  if     1
m

B

mb

 

(A.13) 

 

The coefficients bm represent the technical feasibility of installing capacitors at Bm. 

QC m
=bm am

u
 QFu 

u = 1

Y

∑  ∀ m  (A.14) 

  

am

u =1
u = 1

Y

∑ ,∀m  (A.15) 

 

The upper and lower bounds for the nodes voltage magnitude is given in (A.16). 

 m          V  V V m ∀≤≤ maxmin  (A.16) 

 

This model is nonlinear and contains both discrete and continuous variables. 
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Appendix B - Selection of the acceptance probability function 

This appendix reports some results of the computational experiments carried out in the phase of 

tuning the acceptance probability function for the multi-objective problem. Considering the 

same initial solutions and the same input parameters, the results of each acceptance probability 

function (10 simulations) are presented in Figure B.1 and Table B.1. The results obtained for 

each acceptance probability function are similar. The weak rule tends to generate solutions 

closer to the individual optima of each objective function, and the scalar linear rule gives 

mostly origin to solutions closer to the best values of the resistive losses objective function. In 

general, the logistic curve rule and the Chebycheff rule produce solutions well spread in the 

non-dominated front. 

 

 

 

Fig. B.1 - Comparison between the non-dominated fronts of all simulations for each 

acceptance probability function 
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Table B.1 – Comparison between the non-dominated fronts (NDF) for each acceptance 

probability function  

Probability 

functions 
# NDF 

Minimum 

Losses 

Minimum 

Cost 

Largest 

consecutive 

#acceptances 

Acceptation 

vs. 

Rejection 

Time (s) 

Logistic Curve 

Rule 
64.5 236.662 17114.1 49.9 

50.66% vs. 

49.34% 
13.081 

Scalar Linear 

Rule 
63.9 236.527 17229.5 50.2 

51.25% vs. 

48.75 
13.991 

Chebyshev Rule 
58.8 236.734 17641.8 3.6 

4.87% vs. 

95.13% 
7.0744 

Weak Rule 
78.2 236.163 15208.6 167.5 

92.44% vs. 

7.56% 
77.6 

Note: These values are 10 simulations averages for each probability function. 
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Appendix C - Voltage profiles, network operating conditions and CPU times. 

 

Voltage profiles 

 

The study has been carried out for peak load conditions. The active power losses are 320.44 

kW. The number of nodes not satisfying the voltage lower bounds is 39 (in 94 nodes; nodes 16-

33 and 74-94), with a minimum 0.8697 (in p.u., that is, with respect to the sub-station SE in 

which V= 15.75 kV) in node 33 (see Fig. 5). The voltage profiles after optimization respect the 

lower bounds, with a minimum ranging between 0.9004 in node 94 for solution 10 (the 

individual optimum to the cost objective function) and 0.9268 in node 33 for solution 1 (the 

individual optimum to the resistive losses objective function). 

 

Results for different network operating conditions 

 

 

Fig. C.1 - Comparison between non-dominated fronts with 7% and 10% deviation 

 

For the same tuned input parameters, the algorithm presents different results when considering 

more (1 p.u. ± 7%) or less (1 p.u. ± 10%, according to current regulations in distribution 

networks) stringent constraints of the maximum voltage amplitude deviation in nodes. This is 

mainly due to the adverse conditions in which the network is operating. Solutions obtained with 
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the 1 p.u. ± 10% constraint become infeasible for 1 p.u. ± 7% and the non-dominated front is 

not as diverse as in the former case because the scope of solutions become narrower. 

 

CPU time and other computational statistical data 
 

Table C.1 – CPU time for different network operating conditions (7% and 10% deviation), 

including the time spent in running - and number of calls to - the power flow algorithm (10 

runs).  
 

CPU time 1 2 3 4 5 6 7 8 9 10 

Deviation=7%                     

Total time (s): 385.201 282.744 300.385 337.387 309.612 361.033 367.741 368.348 360.874 368.949 

Power Flow time (s): 291.270 217.236 227.182 256.923 233.207 274.203 280.638 277.809 270.200 276.548 

Power Flow calls (num): 150616 111558 118800 133271 122926 141310 144920 144434 141851 144121 

Power Flow time (%): 75.62 76.83 75.63 76.15 75.32 75.95 76.31 75.42 74.87 74.96 

MOSA time (s): 93.931 65.508 73.203 80.464 76.405 86.830 87.103 90.539 90.674 92.401 

MOSA time (%): 24.38 23.17 24.37 23.85 24.68 24.05 23.69 24.58 25.13 25.04 

                      

Deviation=10%                     

Total time (s): 958.00 1005.00 786.00 825.00 976.00 971.00 1028.00 856.00 1040.00 854.00 

Power Flow time (s): 313.491 330.702 257.296 270.934 323.386 323.505 339.128 284.459 346.474 280.557 

Power Flow calls (num): 590600 616420 501528 520671 598234 598110 625265 537651 631962 536478 

Power Flow time (%): 32.72 32.91 32.73 32.84 33.13 33.32 32.99 33.23 33.31 32.85 

MOSA time (s): 644.509 674.298 528.704 554.066 652.614 647.495 688.872 571.541 693.526 573.443 

MOSA time (%): 67.28 67.09 67.27 67.16 66.87 66.68 67.01 66.77 66.69 67.15 

 

Table C.2 – Minimum, maximum and average CPU time for different network operating 

conditions (7% and 10% deviation), including the time spent in running - and number of calls to 

- the power flow algorithm (10 runs).  
 

Deviation=7% Min. Max. Average 

Total time (s): 282.744 385.201 344.227 

Power Flow time (s): 217.236 291.27 260.522 

Power Flow calls (num): 111558 150616 135380.7 

Power Flow time (%): 74.87 76.83 75.71 

MOSA time (s): 65.508 93.931 83.706 

MOSA time (%): 23.17 25.13 24.29 

Deviation=10% Min. Max. Average 

Total time (s): 786 1040 929.9 

Power Flow time (s): 257.296 346.474 306.993 

Power Flow calls (num): 501528 631962 575691.9 

Power Flow time (%): 32.72 33.32 33.00 

MOSA time (s): 528.704 693.526 622.907 

MOSA time (%): 66.68 67.28 67.00 
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