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ABSTRACT

Saturn’s rings host two known moons, Pan and Daphnis, which are mas-

sive enough to clear circumferential gaps in the ring around their orbits. Both

moons create wake patterns at the gap edges by gravitational deflection of the

ring material (Cuzzi and Scargle (1985), Showalter et al. (1986)). New Cassini

observations revealed that these wavy edges deviate from the sinusoidal wave-

form, which one would expect from a theory that assumes a circular orbit of

the perturbing moon and neglects particle interactions. Resonant perturbations

of the edges by moons outside the ring system, as well as an eccentric orbit of

the embedded moon, may partly explain this behavior (Porco et al. (2005); Tis-

careno et al. (2005); Weiss et al. (2005, 2009)). Here we present an extended

non-collisional streamline model which accounts for both effects. We describe

the resulting variations of the density structure and the modification of the non-

linearity parameter q. Furthermore, an estimate is given for the applicability of

the model. We use the streamwire model introduced by Stewart (1991) to plot

the perturbed ring density at the gap edges.

We apply our model to the Keeler gap edges undulated by Daphnis and to

a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of

the latter ringlet, induced by the perturbations of Pan (Burns et al. (2005)), can

be well described by our analytical model. Our analysis yields a Hill radius of

Pan of 17.5 km, which is 9% smaller than the value presented by Porco et al.

(2005), but fits well to the radial semi-axis of Pan of 17.4 km. This supports

the idea that Pan has filled its Hill sphere with accreted material (Porco et al.

(2007)). A numerical solution of a streamline is used to estimate the parameters

of the Daphnis Keeler gap system, since the close proximity of the gap edge to the

moon induces strong perturbations, not allowing an application of the analytic
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streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge

variation of 8 km, and an eccentricity for Daphnis of 1.5 · 10−5. The latter two

quantities deviate by a factor of two from values gained by direct observations

(Jacobson et al. (2008); Tiscareno et al. (2005)), which might be attributed to

the neglect of particle interactions and vertical motion in our model.

Subject headings: PLANETARY RINGS; SATURN, RINGS; SATURN, SATELLITES;

SATELLITES, DYNAMICS; RESONANCES, RINGS; DISKS
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1. Introduction

Saturn’s dense rings consist mainly of icy particles with sizes ranging from centimeters

up to several meters (e.g. Zebker et al. (1985)). Recent observations by the spacecraft

Cassini have shown that a large number of small moons (moonlets) are embedded in

Saturn’s dense rings being much larger than the usual ring particles (Tiscareno et al.

(2006); Sremčević et al. (2007); Tiscareno et al. (2008)). The gravity of the moons induces

characteristic density structures in their vicinity. Depending on their gravitational action

on the ring material one can classify the moonlets in two size classes.

On the one hand there exist large moonlets with diameters roughly larger than 1

km, which are able to clear a almost empty gap around their orbit due to their gravity

(Henon (1981); Lissauer et al. (1981); Petit and Henon (1988); Spahn and Wiebicke (1989)).

Particles close to the orbit of the moon are scattered efficiently out of the gap region while

particles at larger radial distance are just deflected moderately. In the latter case the

change of the particles’ semimajor axes due to the moon gravity is negligible, while their

eccentricities change significantly. This systematic deflection results in a sinusoidal spatial

oscillation of the particles relative to the moon, leading to a modulation of the gap edge and

a wavy appearance of the ring surface density close to the edge (Cuzzi and Scargle (1985);

Showalter et al. (1986)). This pattern is known as moonlet induced wakes and should not be

confused with the wakes caused by the self gravity of the ring particles (Salo (1992, 1995);

Colwell et al. (2006); Thomson et al. (2007)). If necessary, the terms moonlet wakes and

self gravity wakes will be used to distinguish both ring phenomena. The particles orbiting

closest to the moonlet orbit move on horseshoe orbits which can only become unstable if

other perturbations are taken into account. Thus, a ringlet can exist on the orbit of the

moon (Spahn and Wiebicke (1989)). The observation of wakes at the edges of the Encke

gap and a central ringlet inside this gap indicated the existence of a moon (Showalter et al.
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(1986); Spahn and Wiebicke (1989); Spahn and Sponholz (1989)). Finally, Showalter (1991)

discovered the moon Pan in Voyager images. Fourteen years later a second moon, called

Daphnis, was identified in the Keeler gap by the Cassini imaging team (Porco (2005)).

In contrast to the action of larger embedded moonlets the gravity of smaller moonlets

(. 1 km) is not sufficient to create complete gaps in the ring going around the whole

circumference. Diffusion of the ring material due to particle interactions (collisions, self

gravity) smoothes out the induced density modulation before it can propagate around the

circumference. Thus, a static S-shaped structure, called propeller, appears as a consequence

of the interplay of moon gravity and particle collisions (Spahn and Sremčević (2000);

Sremčević et al. (2002); Seiß et al. (2005)), which could be detected by the spacecraft

Cassini (Tiscareno et al. (2006); Sremčević et al. (2007); Tiscareno et al. (2008)).

The present study concentrates on the formation of wakes induced by embedded

moonlets. Showalter et al. (1986) developed a non-collisional streamline model to investigate

the Pan wakes. The following restrictions were made by their model:

(i) particles move on circular orbits before they are scattered by the moon,

(ii) they have no additional (thermal) velocities relative to each other,

(iii) they do not interact with each other,

(iv) the moon is assumed on a circular orbit

(v) the moonlet wakes damp completely during one synodic period and

(vi) the motion of moon and ring particles is restricted to Saturn’s equatorial plane.

Several extensions to the model proposed by Showalter et al. (1986) were made in the

following years. Stewart (1991) included the effect of thermal velocities of particles, still
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neglecting particle collisions. Spahn et al. (1994) included the effect of multiple scattering

by the moon, because the wakes are not always damped out after one synodic period (Horn

et al. (1996)). Furthermore, the damping of the wakes has been modelled numerically by

Borderies et al. (1989) using a hydrodynamic model and by Hertzsch et al. (1997) and

Lewis and Stewart (2000) using N-body simulations.

Cassini observations showed that the perturbed edges of the Encke and Keeler gap

deviate from the strict sinusoidal form (Porco et al. (2005); Tiscareno et al. (2005)) expected

from the basic analytical model (Cuzzi and Scargle (1985); Showalter et al. (1986)).

Resonances perturbing the gap edges, as well as a gap moon on an eccentric orbit, were

proposed and could at least explain the observations partly (Weiss et al. (2005, 2009)).

Moreover, a small but perhaps significant eccentricity of Pan of 1.4 · 10−5 was determined

(Jacobson et al. (2008)) which was earlier suggested by models of the central Encke gap

ringlet (Spahn et al. (1992b)). This motivated a further development of the analytical

models of Showalter et al. (1986) and Stewart (1991) accounting for particles and moonlets

on eccentric orbits which is presented in this paper.

No model has so far considered the effect of non-planar motions of moon and particles

on the edge waves and for simplicity we also neglect this effect. However, this might turn

out to be important to understand the vertical variations of the edge waves induced by

Daphnis, which become apparent from shadows of the wakes in images (Weiss et al. (2009);

Hahn (2007)).

The article is organized as follows: In the next section the analytical solution by

Moons et al. (1988), accounting for initially eccentric orbits of moonlet and ring particles,

is extended to the fourth order of the inverse impact parameter and by an additional

parameter (azimuthal guiding center position at t = 0, see next section) which has not been

considered so far. This solution can be used to model perturbed gap edges if the distance
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to the moon is sufficiently large. The limit of applicability of the analytical model is

quantified. Furthermore, the analytical streamline solution is used to derive the perturbed

ring density in the wake region (section 3) applying the method outlined by Borderies et al.

(1982) and Showalter et al. (1986), but accounting also for initially non-circular orbits

of moon and ring particles. This solution is suitable to model the optical depth profiles

gained from occultation scans provided by the Cassini instruments (UVIS, VIMS, RSS).

The density model derived in section 3 cannot describe the wakes directly at the gap edges.

Thus, in section 4 we used an extension of the Stewart (1991) streamwire model, in order

to compute the density at the edges using the anlytical streamline solution. In section 5 we

use a numerical solution for streamlines in order to fit the gap edges. In this way we are

able to judge the applicability of the analytical model depending on the eccentricities and

the impact parameter. We summarize and discuss our results in section 6.

2. Streamline Model

In order to investigate the influence of the moon gravity on the ring density one needs

to calculate the deflection of the particles. Therefore, the equation of motion has to be

solved, describing an encounter of two particles moving around a central body. The solution

for large impact parameters is derived as proposed by Henon and Petit (1986). Later, this

solution is used in order to calculate the ring density in the wake regions.

2.1. Equations of Motion

In general we have a system of three massive bodies moving under their mutual

gravitational interaction (general three body problem). Several assumptions can be made

in order to get a simpler set of equations. First of all, the mass of the central body is much
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larger than the mass of the moon and the ring particles. This also means that the gravity

field of the central body dominates the motion of particle and moon most of the time. Only

close encounters of moon and ring particle lead to noticeable deflections. Furthermore,

the mass of the moon is much larger than the mass of a ring particle. Finally, a planar

motion of all three bodies (central body, moon, ring particle) is assumed restricting the

particle motion to two dimensions. With these simplifications, the equation of motion can

be linearized around the orbit of the particle and the moon. Introducing the relative radial

and azimuthal coordinates x = xp −xm and y = yp − ym (subscripts p and m denote particle

and moon position respectively), the equations of the relative motion reduce to the Hill

equations

ẍ = 2ẏ + 3x − 3
x

ρ3
(1)

ÿ = −2ẋ − 3
y

ρ3
, (2)

where ρ =
√

x2 + y2 denotes the distance between moon and particle (Hill (1878)). The

time is normalized by the inverse of the Keplerian frequency Ω0 =
√

GMc/a3
m and the space

coordinates are written in units of the Hill radius

h = am

(

Mm

3Mc

)1/3

, (3)

where am, G, Mc and Mm denote the semimajor axis of the moon, the gravitational

constant, the mass of the central body and the mass of the moon, respectively. The origin

of the relative coordinate system is located at the center of mass of moon and particle which

we identify with the position the moon in our case (x∗ = xm and y∗ = ym). The equation of

motion for the center of mass can be written in the form

ẍ∗ = 2ẏ∗ + 3x∗ (4)

ÿ∗ = −2ẋ∗. (5)

Relative and center of mass coordinates are favorable because we can translate the problem

of moon and particle being on eccentric orbits to a problem where only the particle is on
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an eccentric orbit. (Only the relative coordinates depend on the moonlet perturbation.)

An effective eccentricity and longitude of pericenter can be identified with the orbit in the

relative coordinate system, as defined later (see eq. (41)-(42) in section 2.4). After solving

the set of equations (1)-(2) and (4)-(5) the particle postions can be reconstructed in the

form xp = x + x∗ and yp = y + y∗.

2.2. Unperturbed Solution

In the asymptotic limit the distance between moon and particle becomes infinity

(ρ → ∞). This simplifies equations (1)-(2) to the same form as equations (4)-(5). In this

case one can write the unperturbed solution of positions and velocities as

x(t) = C + A sin t + B cos t (6)

y(t) = D −
3

2
Ct + 2A cos t − 2B sin t (7)

u(t) = A cos t − B sin t (8)

v(t) = −
3

2
C − 2A sin t − 2B cos t, (9)

with the constants of integration A, B, C and D. The solution of the center of mass

motion has the same form as (6)-(9), only that the variables and parameters are labeled by

the superscript ∗. The solution (6)-(9) is linear in the constants of integration. Therefore,

one can easily relate the constants A, A∗, Am and Ap to each other by Am = A∗ and

Ap = A∗ + A and the same holds for the constants B, C or D.

In this paper the scaled eccentricities ei = ẽi am/h as well as the relations

Ai = −ei sin τi (10)

Bi = −ei cos τi (11)

are used, where τi denotes the longitude of pericenter and index i stands for p or m denoting
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particle and moon parameters, respectively. The semimajor axes ai and the unscaled

eccentricities ẽi of particle and moon in physical units are related to the constants Ai, Bi,

Ci by the equations

ai = am + h Ci (12)

ẽi =
h

am

√

A2
i + B2

i , (13)

where Cm is set to zero.

2.3. Asymptotic solution of a moon-particle encounter for a large impact

parameter

The solution of the perturbed equations (1)-(2) is derived by the method of the

variation of the constants A, B, C and D as they appear in the solutions of the unperturbed

solutions. Thus, this set of parameters becomes time dependent and a set of differential

equations is obtained for their time evolution using the equations (6)-(9)

Ȧ = Fx cos t − 2Fy sin t (14)

Ḃ = −Fx sin t − 2Fy cos t (15)

Ċ = 2Fy (16)

Ḋ = −2Fx + 3Fy t (17)

The radial and azimuthal forces are denoted by Fx = −3x/ρ3 and Fy = −3y/ρ3, respectively.

If prior to the encounter the moon and ring particle move on circular orbits their radial

separation x = xp − xm = Cp −Cm = C can be identified with the impact parameter. Here,

the notation ”impact parameter” will be used for C also in the more general context of

elliptical orbits.
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We aim at deriving a solution that is valid for large impact parameters such that

C ≫ 1, C ≫ A, C ≫ B and C ≫ D. Thus, the perturbations of the particle orbits

are small and an approximate solution can be derived in powers of the inverse impact

parameter. Although, the condition C ≫ D is formally not fullfilled in general, the problem

can be avoided if a new time variable is introduced, shifting t by a constant,

t′ = t −
2D0

3C0

, (18)

and defining a new set of parameters as

A′ = A cos

(

2D0

3C0

)

− B sin

(

2D0

3C0

)

(19)

B′ = A sin

(

2D0

3C0

)

+ B cos

(

2D0

3C0

)

(20)

C ′ = C (21)

D′ = D − D0. (22)

The solutions (6)-(9) must be rewritten accordingly

x(t′) = C ′ + A′ sin t′ + B′ cos t′ (23)

y(t′) = −
3

2
C ′t + 2A′ cos t′ − 2B′ sin t′. (24)

u(t′) = A′ cos t′ − B′ sin t′ (25)

v(t′) = D′ −
3

2
C ′ − 2A′ sin t′ − 2B′ cos t′. (26)

The parameters C0 and D0 denote the initial values of C and D, respectively. For a

sufficiently large impact parameter the changes in D′ are small and are negligible compared

to C ′. Additionally, a modified longitude of pericenter τ ′ = τ − 2D0/(3C0) can be defined,

whereas the eccentricity remains unchanged e′ = e. The equations (14)-(17) keep their form

when exchanging A, B, C, D and t by A′, B′, C ′, D′ and t′.

Next the forces Fx and Fy are expanded in terms of C ′−1
0 and rewritten using the

equations (23)-(26). The condition of a large impact parameter guarantees a small deflection
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of the particle. Thus, the parameters A′, B′ and C ′ on the right hand side of the equations

(23)-(26) can be approximated by the initial values A′

0, B′

0, C ′

0, where D′

0 equals zero. The

lengthy equations for the expanded forces are given in Appendix A (eqs. (A1)-(A2)). The

equations (14)-(17) can now be expanded in the form

Ȧ′ =

{

1

C ′2
0

· a1(t
′) +

A′

0

C ′3
0

· a2(t
′) +

B′

0

C ′3
0

· a3(t
′) +

A′2
0

C ′4
0

· a4(t
′) +

A′

0B
′

0

C ′4
0

· a5(t
′)

+
B′2

0

C ′4
0

· a6(t
′)

}

· sign(C ′

0) + O(C ′−5
0 ) (27)

Ḃ′ =

{

1

C ′2
0

· b1(t
′) +

A′

0

C ′3
0

· b2(t
′) +

B′

0

C ′3
0

· b3(t
′) +

A′2
0

C ′4
0

· b4(t
′) +

A′

0B
′

0

C ′4
0

· b5(t
′)

+
B′2

0

C ′4
0

· b6(t
′)

}

· sign(C ′

0) + O(C ′−5
0 ) (28)

Ċ ′ =

{

1

C ′2
0

· c1(t
′) +

A′

0

C ′3
0

· c2(t
′) +

B′

0

C ′3
0

· c3(t
′) +

A′2
0

C ′4
0

· c4(t
′) +

A′

0B
′

0

C ′4
0

· c5(t
′)

+
B′2

0

C ′4
0

· c6(t
′)

}

· sign(C ′

0) + O(C ′−5
0 ) (29)

Ḋ′ =

{

1

C ′2
0

· d1(t
′) +

A′

0

C ′3
0

· d2(t
′) +

B′

0

C ′3
0

· d3(t
′) +

A′2
0

C ′4
0

· d4(t
′) +

A′

0B
′

0

C ′4
0

· d5(t
′)

+
B′2

0

C ′4
0

· d6(t
′)

}

· sign(C ′

0) + O(C ′−5
0 ) (30)

using the expanded forces, where the coefficients ai(t
′), bi(t

′), ci(t
′) and di(t

′) with i = 1...6

are given in Appendix A (eqs. (A4)-(A27)). This expansion up to the order C ′−4
0 is an

extension of the solution derived by Moons et al. (1988) and increases significantly the

accuracy in the applications considered later.

One can calculate the net effect of the encounter by integrating the equations from

−∞ to +∞, which yields a correction to the unperturbed solution in the form

∆A′ =

{

A1
1

C ′

0
2 + A3

B′

0

C ′

0
3 + A4

A′

0
2

C ′

0
4 + A6

B′

0
2

C ′

0
4

}

· sign(C ′

0) (31)

∆B′ =

{

B2
A′

0

C ′

0
3 + B5

A′

0B
′

0

C ′

0
4

}

· sign(C ′

0) (32)

∆C ′ =

{

C2
A′

0

C ′

0
3 + C5

A′

0B
′

0

C ′

0
4

}

· sign(C ′

0) (33)
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∆D′ =

{

D1
1

C ′

0
2 + D3

B′

0

C ′

0
3 + D4

A′

0
2

C ′

0
4 + D6

B′

0
2

C ′

0
4

}

· sign(C ′

0), (34)

where the constants Ai, Bi, Ci and Di correspond to the integrated coefficients ai(t
′), bi(t

′),

ci(t
′) and di(t

′). Their numerical values are listed in Table 4 in Appendix A.

In principle one can use the solutions (31) - (34) to derive the second order correction

from the equations (27)-(30), but this would lead to terms of order C ′−5 and smaller, which

are already neglected.

All integrations over t′ yield finite numbers except for the term D1 which corresponds

to the diverging integral

D1 =

∫ +∞

−∞

6(1 + 9t′2/4)−1/2dt′. (35)

This divergence is an artifact of neglecting the curvature in the Hill equations. However, we

can choose the initial D0 arbitrarily since we are interested only in the closer vicinity of the

moon. The problem with the divergence can be avoided by integrating the considered term

only from t′min to t′. Then D1 can be rewritten in the form

D1(t
′) = 4 arcsinh

(

3

2
t′
)

− 4 arcsinh

(

3

2
t′min

)

. (36)

Using this approach, the factor D1(t
′) is very small for all applications in the paper and will

henceforth be neglected (see Appendix B).

At this point it should be noted that the solution derived here is also applicable for

encounters of satellites with arbitrary mass ratio (Henon and Petit (1986)).

2.4. Streamline equations

The investigations presented above serve as a base to construct the wake-streamlines,

in an analogous manner as for the circular model (Showalter et al. (1986)). The streamline
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solution is restricted to orders C−3 in the main text. However, the order C−4 can be derived

in the same way and is given in Appendix C.

The origin of our coordinate system is fixed to the gyrocenter of the moon so that

Cm = 0 and Dm = 0. Further, the initial positions of the particles’ gyrocenters are defined

by x0 and y0, and thus Cp0 = x0 and Dp0 = y0. For our purpose a streamline is defined as a

line which includes all possible positions of particles with a fixed parameter x0 (at a certain

time t), where y0 varies from −∞ to +∞.

Initial particle eccentricities ep0 can be caused by resonant perturbations, for example.

They are induced by a satellite exterior to the rings and characterized by a mean eccentricity

and common phase for all ring particles in a small ring annulus. Thermal excitations

correspond to a random component for the initial particle eccentricity and an associated

uniformly distributed longitude of pericenter. Summarizing, the following expressions for

the initial values of the system apply

A0 = Ap0 − Am = −ep,0 sin τp + em sin τm (37)

B0 = Bp0 − Bm = −ep,0 cos τp + em cos τm (38)

C0 = Cp0 = x0 (39)

D0 = Dp0 = y0. (40)

In practice it is convenient to use an effective eccentricity e and an effective longitude

of pericenter τ which are related to ep, τp, em and τm by the equations

e2 = e2
p + e2

m − 2epem cos(τp − τm) (41)

tan τ =
−ep sin τp + em sin τm

−ep cos τp + em cos τm

(42)

The initial effective eccentricity and effective longitude of pericenter are denoted by e0 and

τ0, respectively.
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Applying the initial conditions to the solutions (31)-(34) we write

∆A′ =

{

A1

x2
0

−
A3

x3
0

e0 cos

(

τ −
2 y0

3 x0

)}

· sign(x0) (43)

∆B′ =

{

−
B2

x3
0

e0 sin

(

τ −
2 y0

3 x0

)}

· sign(x0) (44)

∆C ′ =

{

−
C2

x3
0

e0 sin

(

τ −
2 y0

3 x0

)}

· sign(x0) (45)

∆D′ =

{

D1

x2
0

−
D3

x3
0

e cos

(

τ −
2 y0

3 x0

)}

· sign(x0), (46)

using the transformation τ ′ = τ − 2y0/(3x0). Now the post-encounter parameter

A′ = A′

0 + ∆A′ can be determined (B′, C ′ and D′ accordingly). Using them together with

the transformations (18)-(22) and the solutions (23)-(24) one can calculate the equations

for the particle trajectories

xp(x0, y0, t) = x0 − ep,0 cos(t − τp0) + sign(x0)

{

−
C2

x3
0

e0 sin

(

τ −
2 y0

3 x0

)

+

[

A1

x2
0

−
A3

x3
0

e0 cos

(

τ −
2 y0

3 x0

)]

sin

(

t −
2 y0

3 x0

)

−
B2

x3
0

e0 sin

(

τ −
2 y0

3 x0

)

cos

(

t −
2 y0

3 x0

)}

(47)

yp(x0, y0, t) = y0 −
3

2
x0t + 2 ep,0 sin(t − τp0) +

{

D1

x2
0

−
D3

x3
0

e0 cos

(

τ −
2 y0

3 x0

)

−

[

y0 −
3

2
x0t

]

·
C2

x4
0

e0 sin

(

τ −
2 y0

3 x0

)

+ 2
B2

x3
0

e0 sin

(

τ −
2 y0

3 x0

)

sin

(

t −
2 y0

3 x0

)

+2

[

A1

x2
0

−
A3

x3
0

e0 cos

(

τ −
2 y0

3 x0

)]

cos

(

t −
2 y0

3 x0

)}

sign(x0). (48)

The equations (47) - (48) describe the particle trajectories depending on time t. However

for fixed t they also describe the streamlines, if the particles’ dispersion velocity is much

smaller than the moonlet induced velocity. In this case the parameter which has to be

varied is y0. Particle trajectory and streamline generally deviate from each other because

the streamline changes its form in time, which is equivalent to the statement that the flow

of ring material is no longer stationary.
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The solution (47) for the x-component of the motion is valid to order C−3. It was first

derived by Julian and Toomre (1966) in the context of stellar discs to the order C−2, and

Goldreich and Tremaine (1980) gave a similar solution in context of planetary rings. Moons

et al. (1988) derived a solution for semimajor axis and eccentricity vector up to order C−3.

2.5. Comparison of analytical and numerical solution

In this section the effect of initially eccentric orbits on the shape of the streamlines is

illustrated. Further, the analytical model is compared with a full numerical integration of

the equations of motion (1)-(2).

Figure 1 shows streamlines for different moon eccentricities em at x0 = 4.5 and

x0 = 6.0, respectively. The eccentricity of the particles ep,0 is set to zero, only em and

τm are varied. However, this does not affect the comparison of analytical and numerical

solution which is of major interest here. The top panels of figure 1 (em = 0) show that

analytical and numerical solution approach each other after a quarter orbital period. Then

the particles are distant enough from the moon so that the asymptotic solution gives a fair

approximation. For larger initial eccentricities streamlines deviate more from the sinusoidal

shape. For small initial eccentricities em, however, the analytical solution provides a good

approximation (em < 0.5 for x0 = 4.5 and em < 2 for x0 = 6.0). Deviations become

larger with increasing azimuthal distances y, caused by the Keplerian shear which amplifies

initially small deviations of C, meaning that the azimuthal separation of two particles on

one streamline increases downstream.

Please, insert figure 1 here.

The strength of the moonlet’s gravity felt by a particle varies additionally with the

epicyclic motion of the moon if the moonlet moves on an eccentric orbit. Thus, the
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agreement between analytics and numerics also dependends on the longitude of pericenter

τm. Figure 2 shows the streamlines for different moon phases τm at x0 = 4.5 and x0 = 6.0

where em = 1.0 has been chosen. In both cases the analytics shows a fair agreement with

the numerical solutions, while, as expected, the quality of the analytical approximation

depends on τm. The postion of the moon on its epicycle only dependends on the difference

t − τm. Thus, plots for different τm can also be interpreted as snapshots taken at different

times t but constant τm, and thus figure 2 also shows the shape of the streamlines at

different times.

Please, insert figure 2 here.

In a next step the applicability of the analytical solution is quantified in dependence on

the model parameters (impact parameter x0, initial effective eccentricity e0, initial effective

pericenter of longitude τ0). For this purpose a measurement s(x0, e0, τ) is introduced by

calculating the maximum deviation between analytical xa(yi) and numerical xn(yi) solution.

s(x0, e0, τ) =

∣

∣

∣

∣

max(xa(yi) − xn(yi))

max(xn(yi)) − min(xn(yi))

∣

∣

∣

∣

(49)

In order to relate the deviation to a measureable quantity the deviation is normalized by

the radial amplitude of the streamline. Note that the maximal deviation between

analytical and numerical solution is used here rather and not the standard

deviation. This results in a more conservative estimate providing higher values

for s(x0, e0, τ).

Figure 3 shows three contour plots of s(x0, e0, τ) for different x0. As expected, the

deviation s is generally an increasing function of the effective eccentricity e0 and a decreasing

function of x0. Further, s also depends on τ0 and has its largest values for π/4 < τ0 < π/2.

As a conservative estimate, the maximum of s with respect to τ0 is calculated. The results

are plotted in figure 4 versus e0 and x0, where analytical solutions are used to order x−3
0

(left panel) and x−4
0 (right panel). From figures 1 and 2 we conclude that em = 0.5 for
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x0 = 4.5 and em = 2 for x0 = 6.0 are still fair approximations. Comparing to figure 4 (right

panel) this suggests that s > 0.15 gives a rough boundary for the applicability of the model.

The condition

x0 > x0,crit = 0.25 · e2 + 0.8 · e + 3.5 (50)

can then be used as a simple approximation of the isoline s = 0.15. For the order x−3
0

solution the deviations of the analytical model from the exact solution are

larger (s = 0.3 rather than s = 0.15); to get the same accuracy s = 0.15 with the

x−3
0 solution one is restricted to x0 > x0,crit = 0.43 · e2 + 1.4 · e + 3.5. Comparison

between this criterion and equation (50) allows to decide if a 3rd or 4th order

solution is needed for a given set of parameters. Summarizing, the analytical

model of order x−4
0 is well applicable at least within 15% (< 2% mean deviation)

as long as condition (50) is fullfilled.

Please, insert figure 3 here.

Please, insert figure 4 here.

3. Streamline wake model

From the analytical expression for the streamlines, we can calculate the pattern in the

surface mass density of the rings in the region of the moonlet induced wakes. This is of

special interest because an anlytical expression of the expected density (or optical depth)

can be compared to optical depth profiles from stellar and radio occultation.

As mentioned before, the streamlines are no longer stationary for the case of an

eccentric moon, and they do not coincide with the particle trajectories as it is the case

for stationary streamline models of pertubed planetary rings (Borderies et al. (1982)).

Nevertheless, the density can be determined in the same way as for the stationary case.
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Figure 5 shows families of streamlines at different times t. The moon parameters are

set to em = 0.75 and τm = 0. Due to the radial eccentricity gradient of the particles, and

especially due to the Kepler shear, there are regions where the distance of neighboring

streamlines varies locally, corresponding to regions of higher and lower densities. In this

picture the streamlines can be interpreted as mass loaded lines. Streamlines can cross in

our simple kinematic model, which would lead to a diverging density. In reality, particle

interactions avoid such a behavior, bending the shape of the streamlines, so that they

cannot cross.

Please, insert figure 5 here.

The fact that surface density increases, when streamlines approach locally, is

mathematically described by the Jacobian determinant (or compression factor; Borderies

et al. (1982))

J =

∣

∣

∣

∣

∣

∣

∂(xs)
∂(x0)

∂(xs)
∂(y0)

∂(ys)
∂(x0)

∂(ys)
∂(y0)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(xs)

∂(x0)

∂(ys)

∂(y0)
−

∂(ys)

∂(x0)

∂(xs)

∂(y0)

∣

∣

∣

∣

. (51)

Then, the perturbed surface density Σ is defined as

Σ = J−1Σ0 (52)

where Σ0 denotes the unperturbed density. Using the steamline equations (47)-(48) the

Jacobian can be determined, replacing x0 and y0 by the guiding center coordinates X = x0

and Y = y0 − 3x0/2

J(X,Y, t) = 1 − sign(X)

{

2 C2 e sin(t − τ + 2 Y
3 X

)

X4
+

2D3 e sin(t − τ + 2 Y
3 X

)

3 X4

+ sin

(

2 Y

3 X

)

[

2A1

3 X3
+

(4B2 − 5A3) e cos(t − τ + 2 Y
3 X

)

3 X4

+
2 (A3 + B2) e Y sin(t − τ + 2 Y

3 X
)

3 X5

]

+ cos

(

2 Y

3 X

) [

2A1 Y

3 X4
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−
2 (A3 + B2) e Y cos(t − τ + 2 Y

3 X
)

3 X5
+

(4A3 − 5B2) e sin(t − τ + 2 Y
3 X

)

3 X4

]}

.(53)

Guiding center coordinates are convenient to describe the density because they approximate

the radial x and azimuthal y coordinates in zeroth order and differ from them just by the

moon induced eccentricity ≈ A1/X
2 if one neglects initial particle eccentricities. Of course,

if one has systematic initial particle eccentricties, the guiding centers correspond in zeroth

order to X = x + ep,0 cos(t − τp,0) and Y = y − 2 ep,0 cos(t − τp,0). For a more accurate

solution the equations (47)-(48) have to be solved for X and Y , which becomes important

if the nonlinearity parameter (see eq. (59)), is close to unity.

The resulting pattern of the surface density is shown in figure 6 at different times t

where bright and dark grayscale represents high and low density regions, respectively. Here

the approximation X = x and Y = y has been used. The position of the wake crests and

their maximal surface mass density varies with time. The double peak in some density

maxima is a result of the streamline crossing and could be avoided by implementing particle

interactions in the model.

Please, insert figure 6 here.

Figure 7 shows the radial profiles of the wakes at different times. The positions x and

y, corresponding to density and the guiding center positions, are calculated from equations

(47)-(48). Besides the crests’ variations in maximal densities and positions, the whole

shape is time dependent. At one time the crests appear flattend, then stretched or the

profiles develop a saw tooth shape tilted once to the right and once to the left. However,

the distance between the crests remains almost constant. For this figure, a zero initial ring

eccentricity ep = 0 is assumed. A non-zero ring eccentricity would mainly lead to a shift of

the whole density structure in radial and azimuthal direction.

Equation (53) for the compression factor J can be rewritten in form of a Fourier series,
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with the eigenfunctions cos(n · 2Y/(3X)) and sin(n · 2Y/(3X)). This makes clear why the

corresponding radial and azimuthal wavelengths have the form λx = 3πX2/Y ≈ 3πx2/y

and λy = 3πX ≈ 3πx and are nearly independent of the moonlet eccentricity.

Please, insert figure 7 here.

Moreover, equation (53) can also be written in the form

J = 1 + p + q cos

(

2Y

3X
+ γ

)

, (54)

which is similar to the form used in the literature (see Borderies et al. (1982); Showalter

et al. (1986)). The nonlinearity parameter and the density phase shift are denoted by q

and γ, respectively. Additionally, the parameter p is introduced describing the density

response to the change in streamline parameters C and D. At the first non-trivial order,

X−3 (circular orbits), the Showalter et al. (1986) density solution can be reproduced, with

p = 0 (55)

q =
2A1 sign(X) Y

3 X4

√

1 +
X

Y
(56)

γ = arctan

(

X

Y

)

(57)

In the cases of interest the azimuthal coordinate is usually much larger than the radial one

Y ≫ X and the equations above can be simplified (q = q0 = (2A1 sign(X) Y )/(3 X4) and

γ = γ0 = 0). The next order solution (O(X−4) and using again Y ≫ X) can be written as

p = −
2 (3 C2 −D3)

3 X4
e sign(X) sin

(

t − τ +
2Y

3X

)

(58)

q = q0

[

1 −
(A3 + B2)

A1 X
e cos

(

t − τ +
2Y

3X

)]

(59)

γ = γ0 +
(A3 + B2)

A1 X
e sin

(

t − τ +
2Y

3X

)

. (60)

The effects of an initial eccentricity of the streamline as well as an eccentricity of the

perturbing moon, are described by the parameters p, q and γ, which are periodic functions
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of time. The variations of p and q cause variations of the wake crest maxima, where the q

term dominates the p term in the tight winding limit (Y ≫ X). The phase shift γ leads to

a periodic modulation of locations of the wake maxima. However, it has no term linear in

Y which would correspond to a perturbation of the wavelength of the density pattern. The

next order solution of p, q and γ is given in Appendix C.

The point of steamline crossing can be calculated for initially circular orbits as

X0,crit = (2A1 sign(X) Y/3)1/4 from equation (56) for Y ≫ X. The inclusion of initially

eccentric orbits requires a correction to this equation, and one can use equation (59) to

derive a correction at linear order of the initial eccentricity e0. Here a conservative estimate

is derived, where the cosine is set to unity which results in the equation

Xcrit = X0,crit −
A3 + B2

4A1

·
e0

X0,crit

sign(X0,crit). (61)

4. Streamwire model

The model presented in the previous section is well suitable to describe the perturbed

ring density beyond the gap edges, but not directly at the edges where the initial density

drops off. Addionally, the streamline model neglects the thermal velocity of the particles

compared to the systematic moonlet induced velocity. In order to lift these restrictions,

Stewart (1991) introduced a nonlinear wake model considering the effect of velocity

dispersion. He derived a particle phase space distribution and calculated the zero and first

moments in terms of a series expansion. The thermal motion leads to a displacement of

the particles from the streamline giving the streamline a finite width. In this case the

streamlines become steamwires and as a consequence the density keeps finite when the

streamwires cross or merge. In this section the concept of streamwires is used to calculate

the surface density at the gap edge.
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4.1. Boltzmann equation and characteristic equations

The phase space distribution of the particles f(~r,~v, t) (describing for example the

velocity dispersion) and its evolution is determined by the Boltzmann equation

∂tf + ~v · ∇~rf + ~G · ∇~vf = (∂tf)coll, (62)

where

~G =

(

2v + 3x + Fx

−2u + Fy

)

(63)

denotes the generalized specific force field (force per mass) as used in equation (1) and (2).

The change of the distribution due to particle collisions is represented by (∂tf)coll.

The Boltzmann equation is an integro-differential equation. However, collisions are

neglected in the following consideration. Thus, the equation reduces to a first order partial

differential equation, which can be solved with the method of characteristics. The partial

differential equation can be written in terms of the total derivative of f(~r,~v, t)

df

dt̃
=

dt

dt̃
∂tf +

d~r

dt̃
· ∇~rf +

d~v

dt̃
· ∇~vf. (64)

Comparing the equations (62) and (64) the characteristic equations can be obtained

df

dt̃
= 〈∂tf〉coll = 0 (65)

dt

dt̃
= 1 (66)

d~r

dt̃
= ~v (67)

d~v

dt̃
= ~G (68)

where t̃ is the parameter of the characteristics. Because we neglect collisions, df/dt̃ becomes

zero and the solution can be derived from the initial condition f = f0. The solution of

the second equation (66) corresponds to equation (18) which means t̃ = t′. The last two

characteristic equations are the Hill equations, as constructed, and the solutions for the

spatial directions are given by equations (47)-(48).
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4.2. Phase-space distribution of the particles

The initial unperturbed phase space distribution is assumed to be a vertically integrated

Rayleigh distribution

f0(eth, τth, X, Y ) =
2 eth

〈e2〉
exp

{

−
e2
th

〈e2〉

}

, (69)

where eth denotes the eccentricity induced by the thermal motion of particles and the

initial phase τth is uniformly distributed. The distribution f0 is normalized to unity and

the standard deviation 〈e2〉 of eth can be identified with the radial thermal velocity by

〈e2〉 = 2 c2
x where the parameters are written in dimensionless units.

Equations (47)-(48) describe the particle positions inside the streamwire and can be

written in the form

x = xs(X,Y, e0, τ0) − eth cos(t − τth) + O(eth/X
−3) (70)

y = ys(X,Y, e0, τ0) + 2 eth sin(t − τth) + O(eth/X
−3) (71)

The first parts xs and ys are the solution of a streamline (mean position of the streamwire)

which only depend on the guiding center position and the mean initial eccentricity e0 and

longitude τ0. The second term represents a particle’s deviation from the mean position due

to the thermal motion. If the thermal velocity is much smaller than the moonlet induced

velocities (eth ≪ e0) equations (70)-(71) give a fair approximation. For propeller generating

moonlets this does not hold in general. However, here we focus on larger ring-moons able

to clear a gap.

The thermally excited eccentricity eth can now be gained from equations (70)-(71) and

the solution can be substituted in the initial phase space distribution (69) leading to the

final distribution

f(x, y,X, Y ) =
1

4πc2
x

exp

{

−
1

2c2
x

(

[x − xs(X,Y )]2 +
[y − ys(X,Y )]2

4

)}

. (72)
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4.3. Density at the gap edge

The surface number density can be determined by integrating the distribution function

(72) over the guiding center positions X and Y , which has been done for the circular case

by Stewart (1991). Here we are interested in the density at the gap edge, including the

effect of a moon and a gap edge with a systematic initial eccentricity. In this case the

equations become more complex. The integration can be done numerically by summing

over all contributing X and Y .

Figure 8 shows the resulting densities for the wakes. The mean radial position of the

gap edge is set to X = 4 with the same parameters as in figure 5, which presents the

corresponding streamlines for the calculated density. The brightness and position variations

of the wake crests are already discussed in the context of figure 6, but now addionally

the density variations at the gap edges can be plotted. It should be noted that particle

interactions are still neglected in this model which could alter the resulting density structure

significantly downstream the moon.

Please, insert figure 8 here.

5. Comparison to Observations

The streamline solutions (47)-(48) themselves can be used as a model of a gap edge or

of a ringlet perturbed by a moonlet. Fitting the model to a gap edge, it would be possible

to constrain the mean distance x0 between moon and edge, the effective eccentricity e, the

effective longitude of pericenter τ and the Hill radius h. Moreover, conclusions on other

parameters, such as moon and edge eccentricity or mass of the moon, can also be made.

Thus, modeling the gap edges provides an alternative method to determine the orbital

elements and mass of the gap moon as well as the eccentricity and mean radial locations of
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the gap edges.

Studies of the Keeler gap edge have been performed by the Cassini imaging team

(Tiscareno et al. (2005); Weiss et al. (2005, 2009)) and results for the Hill radius of Daphnis

(or corresponding moonlet mass) have been published (Porco et al. (2007)). Here, we

analyze images of the Keeler gap applying a streamline model to the gap edges. In this

way we determine the parameters (h, x0, e, τ) which can be used (a) for a comparison

with literature and (b) for future modeling. The analytical streamline solution provides a

fair approximation, as long as the particles remain distant enough from the moon during

the encounter, and their dispersion is small compared to the induced systematic deflection.

We decided to use numerical solutions of the streamlines by integrating the Hill equations

(1)-(2) in order to fit the data. Moreover, the exact numerical solution provides a check for

the quality of the analytic approximation later.

The perturbed ringlets in the Encke gap, radially offset from the orbit of Pan (Burns

et al. (2005)), can also be fitted by a streamline. Thus, they offer an additional constraint

on the mass of Pan. The ringlets are well suited for this approach, because they consist

mainly of dust with low optical depth. Thus, perturbations of the particle trajectories due

to collisions can be safely neglected in contrast to the Encke gap edges. The eccentricities

and longitudes of pericenter of the ringlets near the Pan orbit can also be determined for

different times offering a method to test for a possible heleotropicity of these ringlets, as it

has been observed for the Pan ringlet for example (Hedman et al. (2007)). However, such

measurements from the ringlets are not published so far. Here, five images are investigated

in order to demonstrate the applicability of the model.
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5.1. Keeler gap edge

We model the observed Keeler gap edge, using a streamline to represent a density

isoline at the edge. We choose high resolution images of the moon Daphnis and the

surrounding Keeler gap using the Planetary Data System (PDS, http://pds.jpl.nasa.gov).

The images are calibrated with CISSCAL software package (version number 3.3) provided

by the Imaging Science Subsystem (ISS) team (Porco et al. (2004)). Further the geometry

of each image is solved, i.e. we determine the radial and azimuthal position of each image

pixel in the ring using the NAIF SPICE toolkit. The list of images we investigate is given in

Appendix D, Table 5, together with image time, resolution and parameters of observation

geometry. The images are taken from a time span of less than two years with exposure

times between 120 and 820 µs. The radial and azimuthal resolution varies between 2 to 7

and 4 to 14 km per pixel, respectively. All images are from the sunlit side of the ring, taken

mostly at low phase angles (< 4◦). Only one ring image, we use, has a larger phase angle of

114◦. Incidence and emission angles are comparable for all images.

The moon position is determined from the image by fitting a 2-dimensional Gaussian

brightness model as well as by calculating the center of the brightness distribution.

Both methods give similar results. Since, most images are taken at low phase angle a

correction between calculated brightness center and real moon position is not necessary.

Image N1536484175 has a phase angle of 114◦, and thus less than one half of the sun

illuminated part of the moon is visible. We use an effective radius of Daphnis, because of

the nonspherical shape of the moon, in order to correct for the real position of the moon

with respect to the measured brightness center. Since the ring is a good reflector of sun

light, the night side of the moon is weakly illuminated and thus visible. This allows to

addionally estimate the center of the moon by eye. Both correction methods give similar

results for the position of Daphnis and delivered the same values for the fit of the model
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parameters. The moon positions are used as the origin of the coordinate system, so that

the model fit is calculated in the center of mass system.

The brightness profile across the gap edge has been fitted with an error function model

fedge(i) = f0 + f1 erf

(

i − iedge

δi

)

(73)

(e.g. to account for a possible smear of the gap edges in the images) where the mean pixel

position of the edge iedge along an image column and/or image row are fitted (depending

on the orientation of the gap along the image) in order to determine the radial edge

mean position. The parameter δi labels the finite width of the edge as it appears in

the image. The positions of the inner and outer edge are determined separately using a

Levenberg-Marquardt fit. The radial and azimuthal edge positions are calculated from the

fitted pixel positions and the geometry solution. Two example fits are shown in figure 9.

The fitting routine finds the gap edge without any difficulties.

Typically, the edges change their periodic appearance rapidly downstream from the

moon, possibly indicating the strong influence of particle interactions on the shape of

the edges. For this reason only the first wake period is used to determine the kinematic

model parameters. The second period is addionally taken into account, only if the effective

eccentricity is small and the impact parameter is large enough, as it is the case for example

in the upper panel of figure 9.

Please, insert figure 9 here.

Besides the moonlet other perturbations may induce structure in the gap edges with

wavelengths much larger than the wake wavelength λwake. In this case, the initial particle

longitude of pericenter τp at the edge can be assumed constant along the fitted part of

the edge. For example the wavelength for the observed Prometheus 32:31 inner Lindblad

resonance at the inner edge (Tiscareno et al. (2005)) is much larger than the scale of the
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wakes λres/λwake ≈ 130.

Usually, one uses a gradient method to minimize the χ2 function in order to find

the best set of model parameters (e.g. Levenberg-Marquardt fit). However our model

produces many minima of the χ2 function making it impossible to use this approach. Thus

a systematic scan has been performed over all parameters and the variance between model

and data

Var(h, x0, e, τ) =
1

N

N
∑

n=0

(xn − xmodel,n)2 (74)

has been minimized (similar to the χ2 function).

The inner and outer edges are fitted separately and the resulting parameters and their

errors are listed in the tables 1 and 2, respectively. A number of different effects can cause

deviations of the model from the measured data despite the uncertainty of determing the

gap edge position, as for example:

1. The streamline does not correspond exactly to a density or brightness isoline as

assumed in our image fit.

2. The geometry solution for the images is not exact, which can produce systematic

trends.

3. The point spread function of the camera might change the appearance of the gap

edge.

The actual error is a combination of these effects. Therefore, the minimal variance, Varbestfit,

corresponding to the best fit is used as a reference. Then, we calculate the variance,

Varmodel, between the model, using different parameters, and the best fit streamline (similar

to eq. (74)). We compare this variance, Varmodel, with the variance of the best fit, Varbestfit,

and consider all models (with a given set of parameters), which verifying the relation
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Varmodel <Varbestfit, as a suitable realization. This defines possible sets of parameters inside

a interval of uncertainty (one σ error), and thus, the uncertainties of the model parameters

as listed in table 1 and 2.

Please, insert table 1 here.

Please, insert table 2 here.

An average Hill radius of 5.2 and 5.0 km is obtained from the fits to the inner and

outer edge, respectively, and we conclude a Hill radius of 5.1±0.2 km for the moon Daphnis.

This Hill radius corresponds to a Daphnis mass of (9.9 ± 0.6) · 1013 kg and is consistent

with the value of 4.9 km determined by the imaging team with a similar method (Porco

et al. (2007)). The average pre-encounter impact parameters, determined from the inner

and outer edge are x0,i = −4.1 ± 0.2 and x0,o = 3.2 ± 0.1, corresponding to 21 and 16 km,

respectively. The gravity of the moon tends effectively to push away the ring particles

radially while the particle interactions counteract this process leading to a balance after

one synodic period (Henon (1981); Lissauer et al. (1981); Petit and Henon (1988); Spahn

and Wiebicke (1989); Tiscareno et al. (2005); Lewis and Stewart (2006)). The related mean

post-encounter impact parameters are x0,i = −4.1 ± 0.2 and x0,o = 3.2 ± 0.1, corresponding

to 21 and 17 km, respectively. While the mean position of the inner edge changes only

slightly (≈ 250 meter) the outer edge is pushed away by about 1 km. Thus, we conclude

a mean gap width of 37±2 km close to the moon compared to directly measured 39.5 km

(Tiscareno et al. (2005)). Our results imply that the moon is shifted radially outward from

the center of the gap, using the edge mean positions as reference. It is highly unlikely

(probability of 1/25 = 0.03) that Daphnis’ inclination or eccentricity are responsible for the

observed shift because the result is found in all fits to images taken at 5 different moments

in times.

One explanation of this asymmetry may be the angular momentum transfer between
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moonlet and ring (Goldreich and Tremaine (1980); Spahn et al. (1992a)). The induced

eccentricity due to the Prometheus 32:31 resonance at the inner edge could be responsible

for pushing the moon outwards. The majority of the ring material orbits inside Daphnis, in

principle also pushing the moon closer to the outer edge. But this effect should be negligible

because of the still large distance to the outer A ring edge (200 km) and the drastic decrease

of the efficiency of angular momentum transfer with distance from the moon.

We also determined the effective eccentricties. Based on formula (41) the moonlet and

edge eccentricity can be estimated from the minimal and maximal effective eccentricity as

ep =
emax ± emin

2
(75)

em =
emax ∓ emin

2
(76)

where the upper sign is used for ep > em and the lower sign otherwise. Assuming our

data set is sufficiently large, and that we indeed measured the maximal and minimal

eccentricities we can assign to the inner edge a (scaled) eccentricity of at least ep = 0.8± 0.1

and to the moon an eccentricity of em = 0.5 ± 0.1. This leads to a variation of the inner

edge of 2eph = 8 ± 1 km compared to 15 km determined by Tiscareno et al. (2005). The

fits of the outer edge give independently ep = em = 0.3± 0.2. This suggests that a variation

of the outer edge might also be present, but with a large uncertainty, meaning that further

measurements are needed to verify this interpretation. Such a variation has not been

reported so far, but the proposed variation of the outer edge is a factor of 5 smaller than

the one of the inner edge (3 km outer edge and 15 km inner edge), and thus, much harder

to detect.

From both edges we conclude a moon eccentricity of 0.4±0.2, resulting in an unscaled

eccentricity of ẽ = (1.5 ± 0.8) · 10−5. Jacobson et al. (2008) have reported an eccentricity

of 3.3 · 10−5 by direct orbit observation of Daphnis. Both values agree within a factor of 2.

Better values for the eccentricities of moonlet and edges could be derived from a larger set
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of images improving the statistics.

The analyzed images have been taken over a large time span. It is difficult to

predict the exact rotation periods of the particles because of the oblateness of Saturn

and inter-particle interactions. Thus, we have not performed a self-consistent analysis of

effective eccentricities and longitude of pericenter, and their changes in time. Finally, we

conclude that the resulting small |x0| and large e0 made it necessary to use a numerical

solution for the fits because our analytical model is not accurate enough and can only be

used to reproduce the qualitative behavior of the Keeler gap edge.

Figure 10 shows a comparison between data (crosses) and fit (solid line) for two

different moments in time. Addionally, the numerical streamline solution for initially

circular orbits (dotted lines) and the analytical 4th order solution (dashed line, eqns.

(47)-(48) and (C1)-(C2)) are plotted. The results for the outer and inner edge are presented

in the right and left column, respectively. While the numerical streamline solution does not

match the data perfectly, it fits significantly better than the numerical solution for initially

circular orbits (dotted lines). The analytical solution fails in case of the outer edge, because

of the small impact parameter. However, it describes the behavior of the inner gap edge at

least qualitatively, while it is impossible to fit a solution for initially circular orbits, because

of the too large eccentricity of the inner edge.

Please, insert figure 10 here.

Summarzing, we determined parameters for Daphnis and the Keeler gap fitting a

numerical streamline model to the gap edges. Our analytical model would fail, especially

in case of the outer edge, because the edges are too close to the moon mean position and

the eccentricities are too large. Nevertheless, the density model derived in section 3 can be

applied to the Daphnis-Keeler-gap system to analyze the wakes at larger distances from the

moon. This might be partly useful to interpret occultation scans of this region.
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Measured values of moonlet mass, eccentricities and mean gap width differ moderately

from those in literature. Possible reasons for that are listed below:

1. There is no one-to-one correspondence of a streamline and the gap edge.

2. The available images are taken at only five moments in times. Therefore, it is likely

that the instances of maximal and minimal eccentricities have not been captured and

the concluded moon and edge eccentricities represent in fact lower limits of the two

values. Nevertheless, our eccentricities differ only by a factor of two in comparison to

other measurements.

3. Particle self-gravity and collisions have been neglected. However, restricting the fitting

method to the region before streamline crossing starts (as done here), the influence of

particle interactions on the resulting pattern is small, as shown for example by Lewis

and Stewart (2000).

4. The inclination of the moonlet orbit has not been considered. The vertical motion

of the moon can have significant influence on the resulting structures. The vertical

displacement of the ring particles can even produce visible shadows on the ring

(Weiss et al. (2009)). Thus, it will be important to extend the wake model for

moonlets to inclined orbits. Nevertheless, if the viewing direction of the camera is

nearly perpendicular to the ring plane the influence of the moonlet inclination to the

observed wake structure is less important.

5.2. Inner Pan ringlet

Five images are chosen to apply our model to the dusty ringlet in the Encke gap inside

Pan’s orbit. Important image parameters are listed again in Appendix D, Table 6. The
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images are processed with the same methods as described in section 5.1. All images have

a good radial resolution (< 3 km) and the geometry solution leads to a rectification with

a small residual curvature. The first image has a large phase angle and we determine the

center of Pan by cursor and eye, which is the best method because of the nonspherical

shape of the moon. The other images were taken in a sequence with different exposure

times. They have a very small phase angle of less than 4 degrees, and thus, the moon center

can be obtained from the brightness center.

The ringlet’s mean position is fitted by a Gaussian model with a linear trend

fr(i) = f0 + f1 · i + f2 exp

[

−
1

2

(

i − ir
δi

)2
]

. (77)

Two examples of the fits are shown in figure 11. In contrast to the first image, where the

ringlet postion could be determined with small deviations, the other four figures contain

large fluctuations and the resulting ringlet positions are very noisy limiting the accuracy of

the fit parameters.

Please, insert figure 11 here.

The measured ringlet position is fitted to the model and the resulting parameters are

summarized in Table 3. The averraged Hill radius of 17.5 ± 0.6 km, we find, is slightly

smaller than the value of 19.1 ± 1.0 km obtained from analysis of the inner Encke gap

edge (Porco et al. (2005)). Differences may in part be attributed to the effect of particle

interactions affecting the gap edges. On the other hand particle interactions are negligible

for the dust ringlet, that we analyze. Yet undetected moons in the Encke gap might further

perturb the gap edges. The Hill radius of 17.5± 0.6 km, we find, is in good agreement with

Pan’s semi-axis in radial direction of 17.4 km (Porco et al. (2007)), determined from the

moonlet shape by an ellipsoid model. This supports the idea that Pan filled its Hill sphere

(Roche lobe) with accreted material (Porco et al. (2007)).
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The mean ringlet position, we find, is −5.7± 0.2 (in Hill radii), which corresponds to a

distance of 100 ± 4 km from Pan’s orbit, consistent with the 98 km given by Porco et al.

(2005). The analyzed images effectively represent only two different phases of the ringlet

pericenter. However, the interpretion of the maximal measured eccentricity e = 0.49± 0.05,

in comparison to the Pan eccentricity of 0.11 measured by Jacobson et al. (2008) (unscaled

1.4 · 10−5), suggest a minimal ring eccentricity of 0.38 ± 0.05 (unscaled 5 · 10−5). This value

corresponds to an amplitude of almost 7 km, which is sufficiently large to use the method

here applied to clarify from future images if the inner Encke gap ringlet is heliotropic or

not (Hedman et al. (2007)). Addionally, the impact parameter is large and the eccentricity

small enough, making an application of our analytical model possible.

Please, insert table 3 here.

6. Summary and Discussion

In this paper the perturbation of a particle orbit due an encounter with a moon has

been calculated, numerically and analytically, for large impact parameters. The focus lies

on the effect of eccentric orbits of moon and particle prior to the encounter. The analytical

solution is expressed as an expansion in terms of the inverse impact parameter C to order

C−4. Our analytical results have been checked against numerical integrations of particle

trajectories and their corresponding streamlines. An estimate of the applicability of the

analytical model is derived in terms of the effective eccentricity and the impact parameter.

The analytical solution can be used to model perturbations of gap edges and narrow ringlets

by the gravity of nearby eccentric moonlets, in particular if the edge is already perturbed

by other bodies.

Based on the steamline solutions the density of the perturbed ring is calculated. The



ACCEPTED MANUSCRIPT 

– 36 –

inclusion of moonlet and particle orbits which are eccentric prior the encounter leads to

variations of the density pattern. Especially, wake positions and maximal densities oscillate

in time, which can be modeled by a generalized definition of the non-linearity parameter q

and the phase shift γ. The inclusion of eccentric orbits does not lead to a change of the

wavelength between the crests. A streamwire model is used to plot the density at gap edges,

allowing the inclusion of a finite velocity dispersion in the model (Stewart (1991)).

Initially eccentric orbits of moons, ringlets and gap edges are obtained by fitting a

numerical streamline model. First, we applied the model to the Keeler gap edges. The

numerical solution is suitable to derive the Hill radius of Daphnis, the mean radial edge

positions and the eccentricities of moon and edges. Results are consistent with values

reported in the literature. Our analysis implies a possible non-zero value also for the

eccentricity of the outer Keeler gap edge, but because of the large uncertainties this has

to be proven by further observations. Further images could improve the whole analysis in

future. Due to large eccentricities and small distance of moon and gap edge the analytical

model developed in this paper can only account for the qualitative behavior, but not to

draw quantitative conclusions. Nevertheless, the analytical density model derived in section

3 can be applied to the Keeler gap edges, as long as the radial distance to the moon is large

enough (> 4 h for outer edge and > 6.5 h for inner edge, see eq. (50)). Thus, the analytical

density model is suitable for fitting optical depth profiles gained from Cassini stellar and

radio occultation experiments (UVIS, RSS, VIMS).

Application of our model to a dusty ringlet in the Encke gap, perturbed by the moon

Pan, yields a smaller mass for Pan than the reported in previous studies (Porco et al.

(2007)). The difference may be attributed in part to the neglect of particle interactions in

the model of the edge waves of the Encke gap, as it was used to infer Pan’s mass (Porco

et al. (2005)). An unscaled eccentricity of at least 5 ± 1 · 10−5 is proposed for the inner
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Encke gap ringlet.

The analytical model, proposed here, is partially applicable for the F-ring. This

depends on the orientation of the F-ring ellipse relative to the elliptic orbit of Prometheus,

which precess at different angular velocities. This leads to strong long-term variations of

the effective eccentricity. Prometheus can even penetrate the ring, making an approach

that uses a series expansion for large impact parameter impossible. The parameters of the

F-ring core (aF−ring = 140224 km, ẽF−ring = 0.0025, Bosh et al. (2002)) and the Prometheus

(aPro = 139380 km, ẽPro = 0.0022, mPro = 1.6 · 1017 kg, Jacobson et al. (2008)) suggest a

periodic variation of the scaled effective eccentricity between 0.7 and 10. Our analytical

model can be used as long as the scaled effective eccentricity is below 5, which can be

estimated by equation (50) using the mean distance between ring core and moon. This

means for differential precession of the F ring and Prometheus half of the period our

analytical model is applicable.

The analytical wake model including the effect of moonlet and particle eccentricities,

prior to the encounter, bears several advantages. First, one can model perturbations

induced by several moons independently from each other, for example in regions where

moonlet wakes and resonant density waves appear together or where two moons (in a gap)

induce interfering wakes. In principle this accounts also for wakes repeatedly perturbed by

the same moon, as it is observed for Pan (Horn et al. (1996)). However, the approach of

Spahn et al. (1994) to model multiple encounters by superposing different wake generations

is sufficient since terms of the smallest non-trivial order C−2 dominate the lower order terms

we calculated here. The analytical model has a few benefits in comparison to a numerical

integration, because it is faster to calculate and one can study the influences of different

parameters separately in detail, as for example the changes of semimajor axis, eccentricity

or longitude of pericenter.



ACCEPTED MANUSCRIPT 

– 38 –

The analytical approach could be extended in several ways. For example, the

inclusion of inclined orbits or accounting for the differences of orbital, epicyclic and vertical

frequencies in the model could lead to new structures. Most interesting would probably be

the inclusion of a moonlet inclination. Recent observations of the Keeler gap edge revealed

that the inclination of Daphnis (Jacobson et al. (2008)) has significant influence on the

shape of the perturbed edges (Weiss et al. (2009)). Also the inclusion of particle interactions

(collisions or self gravity) would be of interest. This would consistently avoid the streamline

crossing, and thus restrict the nonlinearity parameter q to values smaller than unity. This

restriction implies for the order C−2 solution a limit of the eccentricity e < |3X2/(2Y )|.

The consideration of particle interactions due to inelastic collisions and self-gravity is also

of importance for propeller structures induced by hundred meter sized moonlets (Spahn

and Sremčević (2000); Sremčević et al. (2002); Seiß et al. (2005)).
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A. Expansion of the moonlet gravity forces for large impact parameter

The components of the moonlet gravity force are Fx = −3x/ρ3 for the radial and

Fy = −3y/ρ3 for the azimuthal direction, where ρ =
√

x2 + y2. Equations (23)-(26)

are applied to rewrite the forces in terms of the parameters A′

0, B′

0, C ′

0 and D′

0 of the

unperturbed solution, which is needed to calculate their time evolution. For the case of a

large impact parameter, the forces can be expanded in powers of C ′−1
0 as

Fx = −
1

C ′2
0

· 3 ξ(t′)3

+
A′

0

C ′3
0

(

−27 t′ cos(t′) ξ(t′)5 + 9 sin(t′) ξ(t′)5 − 3 sin(t′) ξ(t′)3
)

+
B′

0

C ′3
0

(

9 cos(t′) ξ(t′)5 − 3 cos(t′) ξ(t′)3 + 27 t′ sin(t′) ξ(t′)5
)

+
A′2

0

C ′4
0

(

−
405

2
t′2 cos(t′)

2
ξ(t′)7 + 18 cos(t′)

2
ξ(t′)5 + 135 t′ cos(t′) sin(t′) ξ(t′)7

− 27 t′ cos(t′) sin(t′) ξ(t′)5 −
45

2
sin(t′)

2
ξ(t′)7 +

27

2
sin(t′)

2
ξ(t′)5

)

+
A′

0B
′

0

C ′4
0

(

135 t′ cos(t′)
2
ξ(t′)7 − 27 t′ cos(t′)

2
ξ(t′)5 − 45 cos(t′) sin(t′) ξ(t′)7

+ 405 t′2 cos(t′) sin(t′) ξ(t′)7 − 9 cos(t′) sin(t′) ξ(t′)5 − 135 t′ sin(t′)
2
ξ(t′)7

+ 27 t′ sin(t′)
2
ξ(t′)5

)

+
B′2

0

C ′4
0

(

−
45

2
cos(t′)

2
ξ(t′)7 +

27

2
cos(t′)

2
ξ(t′)5 − 135 t′ cos(t′) sin(t′) ξ(t′)7

+ 27 t′ cos(t′) sin(t′) ξ(t′)5 −
405

2
t′2 sin(t′)

2
ξ(t′)7 + 18 sin(t′)

2
ξ(t′)5

)

+ O(C ′−5
0 ) (A1)
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Fy = +
1

C ′2
0

·
9

2
t′ ξ(t′)3

+
A′

0

C ′3
0

(

81

2
t′2 cos(t′) ξ(t′)5 − 6 cos(t′) ξ(t′)3 −

27

2
t′ sin(t′) ξ(t′)5

)

+
B′

0

C ′3
0

(

−27

2
t′ cos(t′) ξ(t′)5 −

81

2
t′2 sin(t′) ξ(t′)5 + 6 sin(t′) ξ(t′)3

)

+
A′2

0

C ′4
0

(

1215

4
t′3 cos(t′)

2
ξ(t′)7 − 81 t′ cos(t′)

2
ξ(t′)5 −

405

2
t′2 cos(t′) sin(t′) ξ(t′)7

+ 18 cos(t′) sin(t′) ξ(t′)5 +
135

4
t′ sin(t′)

2
ξ(t′)7 −

27

4
t′ sin(t′)

2
ξ(t′)5

)

+
A′

0B
′

0

C ′4
0

(

−
405

2
t′2 cos(t′)

2
ξ(t′)7 + 18 cos(t′)

2
ξ(t′)5 +

135

2
t′ cos(t′) sin(t′) ξ(t′)7

−
1215

2
t′3 cos(t′) sin(t′) ξ(t′)7 +

297

2
t′ cos(t′) sin(t′) ξ(t′)5 +

405

2
t′2 sin(t′)

2
ξ(t′)7

− 18 sin(t′)
2
ξ(t′)5

)

+
B′2

0

C ′4
0

(

135

4
t′ cos(t′)

2
ξ(t′)7 −

27

4
t′ cos(t′)

2
ξ(t′)5 +

405

2
t′2 cos(t′) sin(t′) ξ(t′)7

− 18 cos(t′) sin(t′) ξ(t′)5 −
1215

4
t′3 sin(t′)

2
ξ(t′)7 − 81 t′ sin(t′)

2
ξ(t′)5

)

+ O(C ′−5
0 ). (A2)

Here ξ(t′) is defined by

ξ(t′) =

(

1 +
9

4
t′2

)

−1/2

. (A3)

Equations (27)-(30) can be derived by combining (A1)-(A2) with the equations of

motion in the form (14)-(17) and expressing the powers sink(t′) and cosk(t′) in terms of

sin(nt′) and cos(nt′), where the coefficients ai(t
′), bi(t

′), ci(t
′) and di(t

′) with i = 1...6 are

defined

a1(t
′) = −3 cos(t′) ξ(t′)3 − 9 t′ sin(t′) ξ(t′)3 (A4)

a2(t
′) = −27 t′ cos(2 t′) ξ(t′)5 +

9

2
sin(2 t′) ξ(t′)5 −

81

2
t′2 sin(2 t′) ξ(t′)5

+
9

2
sin(2 t′) ξ(t′)3 (A5)

a3(t
′) =

9

2
ξ(t′)5 +

81

2
t′2 ξ(t′)5 −

15

2
ξ(t′)3 +

9

2
cos(2 t′) ξ(t′)5
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−
81

2
t′2 cos(2 t′) ξ(t′)5 +

9

2
cos(2 t′) ξ(t′)3 + 27 t′ sin(2 t′) ξ(t′)5 (A6)

a4(t
′) = −

45

8
cos(t′) ξ(t′)7 −

405

8
t′2 cos(t′) ξ(t′)7 +

63

8
cos(t′) ξ(t′)5

+
45

8
cos(3 t′) ξ(t′)7 1215

8
t′2 cos(3 t′) ξ(t′)7 +

81

8
cos(3 t′) ξ(t′)5

−
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8
t′ sin(t′) ξ(t′)7 −

1215

8
t′3 sin(t′) ξ(t′)7 351

8
t′ sin(t′) ξ(t′)5

+
405

8
t′ sin(3 t′) ξ(t′)7 −

1215

8
t′3 sin(3 t′) ξ(t′)7 +

243

8
t′ sin(3 t′) ξ(t′)5 (A7)

a5(t
′) =

135

4
t′ cos(t′) ξ(t′)7 +

1215

4
t′3 cos(t′) ξ(t′)7 −
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4
t′ cos(t′) ξ(t′)5

+
405

4
t′ cos(3 t′) ξ(t′)7 −

1215

4
t′3 cos(3 t′) ξ(t′)7 +

243

4
t′ cos(3 t′) ξ(t′)5

−
45

4
sin(t′) ξ(t′)7 −

405
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t′2 sin(t′) ξ(t′)7 +

63

4
sin(t′) ξ(t′)5

−
45

4
sin(3 t′) ξ(t′)7 +

1215

4
t′2 sin(3 t′) ξ(t′)7 −

81

4
sin(3 t′) ξ(t′)5 (A8)

a6(t
′) = −

135

8
cos(t′) ξ(t′)7 −

1215

8
t′2 cos(t′) ξ(t′)7 +
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8
cos(t′) ξ(t′)5

−
45
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cos(3 t′) ξ(t′)7 +

1215

8
t′2 cos(3 t′) ξ(t′)7 −
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cos(3 t′) ξ(t′)5

−
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−
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t′ sin(3 t′) ξ(t′)7 +
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243
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t′ sin(3 t) ξ(t′)5 (A9)

b1(t
′) = −9 t′ cos(t′) ξ(t′)3 + 3 sin(t′) ξ(t′)3 (A10)
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′) = −

9

2
ξ(t′)5 −

81

2
ξ(t′)5 +
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2
ξ(t′)3 +

9

2
cos(2 t′) ξ(t′)5

−
81

2
t′2 cos(2 t′) ξ(t′)5 +

9

2
cos(2 t′) ξ(t′)3 + 27 t′ sin(2 t′) ξ(t′)5 (A11)

b3(t
′) = 27 t′ cos(2 t′) ξ(t′)5 −

9
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sin(2 t′) ξ(t′)5 +

81
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t′2 sin(2 t′) ξ(t′)5
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−
45

8
sin(3 t′) ξ(t′)7 +
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t′2 sin(3 t′) ξ(t′)7 −

81

8
sin(3 t′) ξ(t′)5 (A13)

b5(t
′) =

45

4
cos(t′) ξ(t′)7 +

405

4
t′2 cos(t′) ξ(t′)7 −

63

4
cos(t′) ξ(t′)5

−
45

4
cos(3 t′) ξ(t′)7 +

1215

4
t′2 cos(3 t′) ξ(t′)7 −

81

4
cos(3 t′) ξ(t′)5

+
135

4
t′ sin(t′) ξ(t′)7 +

1215

4
t′3 sin(t′) ξ(t′)7 −

351

4
t′ sin(t′) ξ(t′)5

−
405

4
t′ sin(3 t′) ξ(t′)7 +

1215

4
t′3 sin(3 t′) ξ(t′)7 −

243

4
t′ sin(3 t′) ξ(t′)5 (A14)

b6(t
′) = −

135

8
t′ cos(t′) ξ(t′)7 −

1215

8
t′3 cos(t′) ξ(t′)7 +

351

8
t′ cos(t′) ξ(t′)5

−
405

8
t′ cos(3 t′) ξ(t′)7 +

1215

8
t′3 cos(3 t′) ξ(t′)7 −

243

8
t′ cos(3 t′) ξ(t′)5

+
45

8
sin(t′) ξ(t′)7 +

405

8
t′2 sin(t′) ξ(t′)7 −

63

8
sin(t′) ξ(t′)5

+
45

8
sin(3 t′) ξ(t′)7 −

1215

8
t′2 sin(3 t′) ξ(t′)7 +

81

8
sin(3 t′) ξ(t′)5 (A15)

c1(t
′) = 9 t′ ξ(t′)3 (A16)

c2(t
′) = 81 t′2 cos(t′) ξ(t′)5 − 12 cos(t′) ξ(t′)3 − 27 t′ sin(t′) ξ(t′)5 (A17)

c3(t
′) = −27 t′ cos(t′) ξ(t′)5 − 81 t′2 sin(t′) ξ(t′)5 + 12 sin(t′) ξ(t′)3 (A18)

c4(t
′) =

135

4
t′ ξ(t′)7 +

1215

4
t′3 ξ(t′)7 −

351

4
t′ ξ(t′)5 −

135

4
t′ cos(2 t′) ξ(t′)7

+
1215

4
t′3 cos(2 t′) ξ(t′)7 −

297

4
t′ cos(2 t′) ξ(t′)5 −

405

2
t′2 sin(2 t′) ξ(t′)7

+18 sin(2 t′) ξ(t′)5 (A19)

c5(t
′) = −405 t′2 cos(2 t′) ξ(t′)7 + 36 cos(2 t′) ξ(t′)5 +

135

2
t′ sin(2 t′) ξ(t′)7

−
1215

2
t′3 sin(2 t′) ξ(t′)7 +

297

2
t′ sin(2 t′) ξ(t′)5 (A20)

c6(t
′) =

135

4
t′ ξ(t′)7 +

1215

4
t′3 ξ(t′)7 −

351

4
t′ ξ(t′)5 +

135

4
t′ cos(2 t′) ξ(t′)7

−
1215

4
t′3 cos(2 t′) ξ(t′)7 +

297

4
t′ cos(2 t′) ξ(t′)5 +

405

2
t′2 sin(2 t′) ξ(t′)7

−18 sin(2 t′) ξ(t′)5 (A21)
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d1(t
′) = 6 ξ(t′) (A22)

d2(t
′) = 54 t′ cos(t) ξ(t′)5 +

243

2
t′3 cos(t) ξ(t′)5 − 18 t′ cos(t) ξ(t′)3

−18 sin(t) ξ(t′)5 −
81

2
t′2 sin(t) ξ(t′)5 + 6 sin(t) ξ(t′)3 (A23)

d3(t
′) = −18 cos(t) ξ(t′)5 −

81

2
t′2 cos(t) ξ(t′)5 + 6 cos(t) ξ(t′)3

−54 t′ sin(t) ξ(t′)5 −
243

2
t′3 sin(t) ξ(t′)5 + 18 t′ sin(t) ξ(t′)3 (A24)

d4(t
′) =

45

2
ξ(t′)7 +

2025

8
t′2 ξ(t′)7 +

3645

8
t′4 ξ(t′)7 −

63

2
ξ(t′)5 −

1053

8
t′2 ξ(t′)5

−
45

2
cos(2 t′) ξ(t′)7 +

1215

8
t′2 cos(2 t′) ξ(t′)7 +

3645

8
t′4 cos(2 t′) ξ(t′)7

−
9

2
cos(2 t′) ξ(t′)5 −

891

8
t′2 cos(2 t′) ξ(t′)5 − 135 t′ sin(2 t′) ξ(t′)7

−
1215

4
t′3 sin(2 t′) ξ(t′)7 + 54 t′ sin(2 t′) ξ(t′)5 (A25)

d5(t
′) = −270 t′ cos(2 t′) ξ(t′)7 −

1215

2
t′3 cos(2 t′) ξ(t′)7 + 108 t′ cos(2 t′) ξ(t′)5

+45 sin(2 t′) ξ(t′)7 −
1215

4
t′2 sin(2 t′) ξ(t′)7 −

3645

4
t′4 sin(2 t′) ξ(t′)7

+9 sin(2 t′) ξ(t′)5 +
891

4
t′2 sin(2 t′) ξ(t′)5 (A26)

d6(t
′) =

45

2
ξ(t′)7 +

2025

8
t′2 ξ(t′)7 +

3645

8
t′4 ξ(t′)7 −

63

2
ξ(t′)5 −

1053

8
t′2 ξ(t′)5

+
45

2
cos(2 t′) ξ(t′)7 −

1215

8
t′2 cos(2 t′) ξ(t′)7 −

3645

8
t′4 cos(2 t′) ξ(t′)7

+
9

2
cos(2 t′) ξ(t′)5 +

891

8
t′2 cos(2 t′) ξ(t′)5 + 135 t′ sin(2 t′) ξ(t′)7

+
1215

4
t′3 sin(2 t′) ξ(t′)7 − 54 t′ sin(2 t′) ξ(t′)5. (A27)

The integration of the coefficients ai(t
′), bi(t

′), ci(t
′) and di(t

′) over the time domain

from −∞ to +∞ can be done analytically, where the more complex terms can be expressed

in terms of Bessel K or Meijer G functions. The resulting numerical values are given in

Table 4, where we used the definitions

Ai =

∫ +∞

−∞

ai(t
′)dt′, Bi =

∫ +∞

−∞

bi(t
′)dt′,

Ci =

∫ +∞

−∞

ci(t
′)dt′, Di =

∫ +∞

−∞

di(t
′)dt′. (A28)
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Only the term (1 + 9t2/4)−1/2 is divergent. The divergence is an effect of the neglect of

curvature and the term has to be handled separately (see section 2.3 and appendix B).

Please, insert table 4 here.

B. The divergent term D1

The D1 term describes a shift in the azimuthal direction and can be written in the form

D1(y) = 4
[

arcsinh
(ycrit

x

)

− arcsinh
(y

x

)]

, (B1)

where x ≈ x0 and y ≈ y0 − 3/2xt are assumed for simplicity. Figure 12 compares the

azimuthal shift term D1(y)x−2 with the azimuthal wavelength λy = 3πx. The value ycrit is

set to zero, as an approximation, because the shift affects strongest in the regions of strong

perturbations close to the moon position. After 100 wavelengths the shift is still smaller

than 5 % of a wavelength and is a slowly growing function of y. This justifies the neglect of

D1 as a small value, as it is done in earlier papers (e.g. Showalter et al. (1986)).

Please, insert figure 12 here.

C. Order x−4
0 streamline equations and related streamline density parameters

Including order x−4
0 terms the streamline equations can be extended to the form

xp(x0, y0, t) = (47) + sign(x0)

{

C5

x0
4
e2
0 cos

(

τ −
2 y0

3 x0

)

sin

(

τ −
2 y0

3 x0

)

+

[

A4

x0
4
e2
0 sin

(

τ −
2 y0

3 x0

)2

+
A6

x0
4
e2
0 cos

(

τ −
2 y0

3 x0

)2
]

sin

(

t −
2 y0

3 x0

)

+
B5

x0
4
e2
0 cos

(

τ −
2 y0

3 x0

)

sin

(

τ −
2 y0

3 x0

)

cos

(

t −
2 y0

3 x0

)}

(C1)

yp(x0, y0, t) = (48) + sign(x0)

{

D4

x0
4
e2
0 sin

(

τ −
2 y0

3 x0

)2

+
D6

x0
4
e2
0 cos

(

τ −
2 y0

3 x0

)2
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+

[

y0 −
3

2
x0t

]

C5

x0
5
e2
0 cos

(

τ −
2 y0

3 x0

)

sin

(

τ −
2 y0

3 x0

)

+

[

2A4

x0
4

e2
0 sin

(

τ −
2 y0

3 x0

)2

+
2A6

x0
4

e2
0 cos

(

τ −
2 y0

3 x0

)2
]

cos

(

t −
2 y0

3 x0

)

−
2B5

x0
4

e2
0 cos

(

τ −
2 y0

3 x0

)

sin

(

τ −
2 y0

3 x0

)

sin

(

t −
2 y0

3 x0

)}

(C2)

The parameters of the streamline density become

p =
p1 e s

X4
sin

(

2Y

3X
− τ

)

+
p2 e2 s

X5
cos

(

2Y

3X
− τ

)

sin

(

2Y

3X
− τ

)

+ O(X−6)

=
p1 e s

X4
sin

(

2Y

3X
− τ

)

+ O(X−6) (C3)

q = q0

[

1 +
q1 e

X
cos

(

2Y

3X
+ t − τ

)

+
q2 e2

X2
cos

(

2Y

3X
+ t − τ

)2

+
q3 e2

X2
sin

(

2Y

3X
+ t − τ

)2
]

+ q0 · O(X−3) (C4)

γ =
γ1 e

X
sin

(

2Y

3X
+ t − τ

)

+
γ2 e2

X2
cos

(

2Y

3X
+ t − τ

)

sin

(

2Y

3X
+ t − τ

)

+O(X−3) (C5)

using the following definitions:

p1 = −2 C2 +
2D3

3
≈ 14.6845 (C6)

p2 = 3 C5 +
4D4

3
−

4D6

3
= 0 (C7)

q1 = −
A3 + B2

A1

≈ −11.4176 (C8)

q2 =
A6 + B5

A1

≈ −11.0663 (C9)

q3 =
(A3 + B2)

2

2A1
2 +

A4 − B5

A1

≈ −1.8572 (C10)

γ1 = −q1 ≈ 11.4176 (C11)

γ2 = 2(q3 − q2) ≈ 18.4182 (C12)
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D. Tables of image parameters

Please, insert table 5 here.

Please, insert table 6 here.
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Fig. 1.— Comparison between analytical and numerical results for a streamline. The nu-

merical solution is denoted by dots and the analytical solution to order C−4 by a line. The

initial values x0 = 4.5 (left panels) and x0 = 6.0 (right panels) as well as t = 0 and τm = π

are kept constant, while em is varied. The initial particle eccentricity is zero ep,0 = 0, so that

e0 = em.
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Fig. 2.— Same as figure 1, except that em = 1 is chosen constant and τm is varied.
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Fig. 3.— Deviation of the analytical model (4th order solution) from the exact solution for

impact parameters x0 = 4, 6 and 8 as defined by equation (49). The deviation is measured

over the second and third period.

Table 1: Parameters fitted from the inner Keeler gap edge

Image name Var, km2 h, km x0 e τ − t + tepoch

N1493722512 0.02 5.16−0.03
+0.03 −3.87−0.02

+0.02 0.31−0.05
+0.05 4.27−0.06

+0.06

N1493722609 0.05 5.15−0.04
+0.04 −3.87−0.02

+0.02 0.40−0.06
+0.06 3.98−0.06

+0.13

N1536484175 0.20 5.48−0.10
+0.12 −4.12−0.07

+0.07 1.29−0.07
+0.09 3.14−0.25

+0.19

N1540685777 0.08 5.28−0.06
+0.06 −3.94−0.05

+0.05 1.18−0.05
+0.05 3.55−0.00

+0.06

N1547691181 0.34 5.27−0.08
+0.10 −4.11−0.10

+0.08 0.89−0.08
+0.10 0.20−0.32

+0.19

N1547691776 0.36 5.19−0.10
+0.10 −4.20−0.09

+0.09 0.93−0.10
+0.10 0.19−0.32

+0.25

N1553466638 0.64 5.00−0.12
+0.13 −4.34−0.13

+0.11 1.25−0.14
+0.13 6.16−0.38

+0.32

N1553469038 1.09 5.11−0.18
+0.16 −4.32−0.18

+0.17 1.00−0.21
+0.20 5.78−0.32

+0.76

Note. — The parameters x0, e and τ denote the scaled (dimensionless) impact parameter, initial effective

eccentricity and initial effective longitude of pericenter, respectively. Var measures the variance between the

data and the best fit and h labels the fitted Hill radius of perturbing moon.



ACCEPTED MANUSCRIPT 

– 55 –

Fig. 4.— Maximal error of the analytical model O(x−3
0 ) (left panel) and O(x−4

0 ) (right panel),

depending on the moonlet eccentricity and impact parameter. The solid line represents

the estimate for the applicability of the model (For O(x−3
0 ): x0 > x0,crit = 0.43 · e2 +

1.4 · e + 3.5, and for O(x−4
0 ): x0 > x0,crit = 0.25 · e2 + 0.8 · e + 3.5). The stars in the right

panel correspond to the model applicability estimate based on the figures 1 and 2.
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Fig. 5.— Family of streamlines for different times t for the parameters em = 0.75, τm = 0,

ep = 0 and τp = 0.
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Fig. 6.— Wake density plot at different times t for the parameters em = 0.5 and τ = 0. Terms

of the order X−5 and larger have been chosen from the analytical solution for calculating

the density.
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Fig. 7.— Radial wake density profiles at different times t for the parameters y = −4000,

em = 1.5 and τ = 0. The density has been calculated from the analytical model equation

(53) including terms of the order X−5 and larger. The dashed line represents an estimate for

the region where streamline crossing can appear, and the nonlinearity parameter becomes

unity. The streamlines do not cross outside from this position.
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Fig. 8.— Wake density plot at different times t for the same parameters as figure 5. The

mean position of the gap edge is set to X = 4, and the radial thermal velocity has been

chosen to cx = 0.2.
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Fig. 9.— Plot of the moon Daphnis and of the Keeler gap in the vicinity of the moon. The

center of the moon is marked by a cross. The dotted lines represent the fits of the gap edges.
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Fig. 10.— Comparison between measured edge positions (crosses) and fitted numerical

streamline solution (solid line, see section 5). The results for outer and inner edge are shown

in the left and the right column, respectively. The deviations are much smaller than the

alternative numerical solution for initially circular orbits (dotted lines), but not negligible.

The dashed line represents the 4th order analytical solution (eqns. (47)-(48) and (C1)-

(C2)), which deviates significantly, especially in the case of the outer edge because of the

small impact parameter. Nevertheless, in case of the inner edge the analytical model provides

a much better representation of the edge, because the eccentricity of the edge is taken into

account.
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Fig. 11.— Pan and the inner Encke gap ringlet. The center of the moon is marked by a

cross. The lines represent fits to the mean radial position of the ringlet in the Encke gap.
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Fig. 12.— The azimuthal shift term D1(y)x−2 plotted versus the azimuthal coordinate y.

The term D1(y)x−2 grows slowly and remains smaller than 5 % of one wake cycle even after

100 wake cycles.
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Table 2: Parameters fitted from the outer Keeler gap edge

Image name Var, km2 h, km x0 e τ − t + tepoch

N1493722512 0.35 5.06−0.13
+0.13 3.14−0.10

+0.09 0.23−0.15
+0.16 4.86−0.44

+0.51

N1493722609 0.28 5.09−0.12
+0.11 3.17−0.07

+0.07 0.23−0.15
+0.13 4.38−0.38

+0.32

N1536484175 0.94 4.87−0.21
+0.24 3.25−0.17

+0.20 0.63−0.26
+0.26 5.29−0.32

+0.38

N1540685777 0.24 5.01−0.08
+0.08 3.16−0.07

+0.07 0.24−0.10
+0.08 0.74−0.38

+0.32

N1547691181 0.68 5.06−0.17
+0.17 3.12−0.12

+0.13 0.01−0.01
+0.13 3.33−3.11

+3.11

N1547691776 0.27 4.94−0.09
+0.11 3.13−0.08

+0.08 0.02−0.02
+0.12 1.52−3.11

+3.11

N1553466638 0.75 5.03−0.16
+0.16 3.15−0.11

+0.11 0.15−0.15
+0.23 4.10−1.33

+1.14

N1553469038 1.05 4.68−0.21
+0.21 3.34−0.14

+0.17 0.34−0.19
+0.17 2.41−0.63

+1.33

Note. — see Table 1

Table 3: Parameters fitted from the inner Encke gap ringlet

Image name Var, km h, km x0 e τ − t + tepoch

N1540661656 0.94 17.52−0.14
+0.16 −5.66−0.04

+0.05 0.49−0.04
+0.04 3.14−0.44

+0.44

N1495308031 0.72 16.54−0.13
+0.13 −6.00−0.03

+0.03 0.28−0.06
+0.06 0.65−1.52

+0.19

N1495308064 0.81 17.93−0.15
+0.15 −5.58−0.02

+0.04 0.31−0.09
+0.09 1.08−2.22

+0.19

N1495308098 0.60 17.58−0.11
+0.09 −5.69−0.04

+0.03 0.21−0.05
+0.05 0.82−1.84

+0.25

N1495308131 1.22 18.04−0.16
+0.19 −5.59−0.05

+0.04 0.27−0.19
+0.18 1.23−2.67

+0.19

Note. — see Table 1
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Table 4: Numerical values of Ai, Bi, Ci and Di

i Ai Bi Ci Di

1 -6.7187 0 0 ∞

2 0 8.7147 -8.9583 0

3 12.7147 0 0 -4.8482

4 15.5509 0 0 -26.1440

5 0 -31.1017 28.5724 0

6 -16.6954 0 0 38.1440
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Table 5: Parameters of Keeler gap images

Image Image time Exposure Radial Azimuthal Phase Incidence Emission

(UTC) resolution resolution angle angle angle

[ms] [km/pixel] [km/pixel] [degree] [degree] [degree]

N1493722512 2005-122T10:28:06.108 180.00 4.48 6.90 13.54 111.83 114.50

N1493722609 2005-122T10:29:43.108 180.00 4.44 6.96 13.67 111.83 114.45

N1536484175 2006-252T08:37:55.129 820.00 2.36 7.78 114.29 105.94 107.99

N1540685777 2006-300T23:44:10.346 260.00 3.02 3.94 35.89 105.28 115.19

N1547691181 2007-017T01:40:09.835 260.00 4.46 8.59 17.59 104.15 121.52

N1547691776 2007-017T01:50:04.831 260.00 4.45 8.88 16.91 104.15 120.87

N1553466638 2007-083T21:57:10.289 120.00 6.90 12.93 19.79 103.20 113.90

N1553469038 2007-083T22:37:10.274 120.00 5.36 13.14 20.78 103.20 114.08
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Table 6: Parameters of Encke gap images

Image Image time Exposure Radial Azimuthal Phase Incidence Emission

(UTC) resolution resolution angle angle angle

[ms] [km/pixel] [km/pixel] [degree] [degree] [degree]

N1540661656 2006-300T17:02:09.500 1000.00 2.43 2.79 86.18 105.28 141.77

N1495308031 2005-140T18:53:14.947 18000.00 2.86 8.15 3.70 111.64 110.36

N1495308064 2005-140T18:53:47.954 380.00 2.87 8.16 3.68 111.64 110.33

N1495308098 2005-140T18:54:21.958 2000.00 2.88 8.17 3.66 111.64 110.31

N1495308131 2005-140T18:54:54.962 260.00 2.89 8.18 3.64 111.64 110.28




