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Abstract

We perform axisymmetric hydrodynamical simulations that describe the non-

linear outcome of the viscous overstability in dense planetary rings. These sim-

ulations are particularly relevant for Cassini observations of fine-scale structure

in Saturn’s A and B-ring, which take the form of periodic microstructure on the

0.1 km scale, and irregular larger-scale structure on 1-10 km. Nonlinear wave-

trains dominate all the simulations, and we associate them with the observed

periodic microstructure. The waves can undergo small chaotic fluctuations in

their phase and amplitude, and may be punctuated by more formidable ‘wave

defects’ distributed on longer scales. It is unclear, however, whether the defects

are connected to the irregular larger-scale variations observed by Cassini. The

long-term behaviour of the simulations is dominated by the imposed boundary

conditions, and more generally by the limitations of the local model we use:

the shearing box. When periodic boundary conditions are imposed, the sys-

tem eventually settles on a uniform travelling wave of a predictable wavelength,

while reflecting boundaries, and boundaries with buffer zones, maintain a dis-

ordered saturated state. The simulations omit self-gravity, though we examine

its influence in future work.
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1. Introduction

Ultraviolet and radio occultation experiments conducted by Cassini reveal

that Saturn’s rings exhibit axisymmetric structure on subkilometre scales (Col-

well et al. 2007, Thomson et al. 2007, see also Colwell et al. 2009). This ‘mi-

crostructure’ takes the form of quasi-periodic variations, with wavelengths rang-

ing between 150 and 220 m. The prevalence of these wavelike features depends

on the disk’s background optical thickness τ . In particular, the features disap-

pear in both very low τ areas (such as the C-ring and Cassini division) and very

high τ areas (in some of the B-ring). Microstructure, as a consequence, is lo-

calised to the inner A-ring and low τ regions in the B-ring (Sremcevic et al. 2009,

Colwell et al. 2009). In addition, the A and B-rings manifest interesting irregular

structure on slightly longer scales, of 1-10 km (Porco et al. 2005). It remains a

pressing theoretical task to explain the causes of this spontaneous pattern forma-

tion, and the relationship (if any) between the fine-scale and intermediate-scale

structures observed.

Most likely these patterns are generated by a linear instability of viscous

origin, the ‘viscous overstability’, which besets the homogeneous equilibrium of

Keplerian shear. Growing modes take the form of axisymmetric density waves;

by modulating the viscous stress, especially when the viscosity is an increasing

function of density, such waves can extract energy from the background shear

flow and become amplified rather than viscously damped. Viscous overstabil-

ity has been theoretically established in hydrodynamical and kinetic models of

Saturn’s rings, as well as in N -body simulations (Schmit and Tscharnuter 1995,

1999, hereafter ST99, Spahn et al. 2000, Salo et al. 2001, Schmidt and Salo

2003, Latter and Ogilvie 2006, 2008, 2009, hereafter LO09). Some of these

studies suggest that the nonlinear saturation of the instability is characterised

by nonlinear travelling wavetrains (Schmidt and Salo 2003, LO09), which may

in turn be punctuated by interesting ‘wave defects’ or modulated by larger-scale

variations (LO09). On the other hand, the only published hydrodynamic sim-

ulation describes a saturation not nearly so regular (ST99), and which shows
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power being injected into longer and longer scales. Self-gravity also appears to

be crucial, as it seems the only agent capable of halting this upward migration

of power.

In this paper we make progress in understanding and synthesising these

competing ideas and claims. We perform axisymmetric nonlinear hydrodynamic

simulations in large shearing boxes, using an isothermal Newtonian fluid model.

Different boundary conditions are utilised, so we may better interrogate the

boundaries’ influence on the final saturated state. Importantly, self-gravity is

omitted. Self-gravity is undeniably a key player in the real rings, however its

omission lets us clarify the essential dynamics of the problem and thus provide

a sound base for interpreting later self-gravitating runs. These will be presented

in a following paper.

In summary, we find that nonlinear wavetrains are the essential feature of

all our runs (in agreement with LO09). On intermediate times, the phases and

amplitudes of these waves may be subject to disordered fluctuations, and the

radial domain may break up into subdomains of inward or outward propagating

waves. The thin interfaces between these subdomains either generate wavetrains

or are the site of colliding wavetrains. We call these wave defects ‘sources’

and ‘shocks’ respectively. On long times, however, the system’s saturation is

sensitive to the boundary conditions we impose. Periodic boxes, on the one

hand, almost always relax into the first linearly stable uniform wavetrain, or

a stable wavetrain nearby (see LO09). Reflecting boxes, on the other hand,

witness either (a) the power of the fluid motions driven to the lengthscale of

the box and to large amplitude, or (b) a shorter-wavelength disordered state in

which waves are continuously generated at one boundary and swallowed by the

other. The non-self-gravitating, reflecting boundary simulations of ST99 might

eventually have achieved the first state, if run sufficiently long. We stress that

none of this long-time behaviour is a faithful representation of the real radially

structured rings. Instead, a better description is offered by the intermediate time

behaviour: before the artificial influence of the boundary conditions overwhelms

the dynamics. This idea is reinforced with runs employing ‘buffered’ periodic
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boundaries, which mimic the influence of the radial structure.

We conclude that the characteristic saturation of the overstability in the real

rings comprises nonlinear waves of moderately fluctuating amplitude and wave-

length separated by wave sources and shocks. It is natural to connect the non-

linear wavetrains to the quasiperiodic microstructure observed by Cassini, but it

is unclear whether the shock/source distribution is related to the intermediate-

scale features on 1-10 km. The origin of this structure may, in fact, lie in a

different mechanism altogether, or may be related to variations in the disk’s

material properties.

The paper is organised as follows. The model equations and assumptions

are presented in Section 2, and the numerical set-up in Section 3. Numerical

results are shown in the subsequent three sections, according to the boundary

conditions used: results from periodic, reflecting, and buffered boxes can be

found in Sections 4, 5 and 6, respectively. A discussion of these results, their

limitations, and their relationship to the real rings of Saturn is given in Section

7.

2. Model equations

In order to bring out the salient points of the overstability’s nonlinear dy-

namics we deploy a very basic model. The planetary ring is approximated by a

vertically averaged, non-self-gravitating, Newtonian fluid. In keeping with pre-

vious work, its shearing and bulk viscosities depend on surface density as power

laws (Schmit and Tscharnuter 1995, Schmidt et al. 2001, LO09).

These assumptions are only rough approximations to the real rings of Saturn

whose collective effects can deviate substantially from a Newtonian fluid (Latter

and Ogilvie 2006, 2008). However, it permits a less cluttered picture of the key

processes, before these become obscured by the complicated physics of self-

gravity and granular flow. For a fuller discussion of the modelling issues, see

Section 2 in LO09. On the other hand, hydrodynamical (and other continuum)

models wield an advantage over N -body simulations because of their relatively
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cheap computational requirements (especially when self-gravity is involved). For

one-dimensional axisymmetric simulations the computational cost is especially

low, which allows us to explore greater length and time scales than an N -body

code can achieve at present.

We employ the shearing box formalism, a local model that approximates

a ‘patch’ of disk anchored at a fixed radius r0 and orbiting the central planet

with frequency Ω. The patch is represented with Cartesian geometry so that x

and y denote the radial and azimuthal dimensions respectively (see Goldreich

and Lynden-Bell 1965). The model hence neglects curvature effects and any

radial stucture exhibited in the disk. However, it is finite (of radial size L) and

potentially unrealistic boundary conditions must be supplied. The shearing box

introduces problems of interpretation, especially in long integrations when the

influence of the boundaries may be unavoidable: no matter how big we take L, at

some very long time the boundaries could ultimately dominate the dynamics.

We discuss this in more depth later in the paper. It should be stressed that

though ST99 do not employ the shearing box, their 1D homogeneous cylindrical

annulus is nearly the same model: our neglect of their curvature terms will only

introduce relative errors of order L/r0 ∼ 10−4.

The governing equations are

∂tσ + ∂i(σ ui) = 0, (1)

σ(∂tui + uj∂jui + 2Ωεizj uj) = −σ∂iΦT − ∂iP + ∂jΠij , (2)

where σ, ui, P , Πij are surface density, velocity, pressure, and the viscous stress

respectively. The tidal potential is given by ΦT = −3Ω2 x2/2 and εijk represents

the alternating tensor. The pressure is calculated from the ideal gas equation

of state,

P = c2σ, (3)

where c is the constant (isothermal) sound speed. The disk scale height H is
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defined through H = c/Ω. The viscous stress is

Πij = ν σ (∂iuj + ∂jui) +
(

νb − 2
3
ν

)
σ (∂kuk) δij . (4)

Finally, the kinematic shearing and bulk viscosities ν and νb are

ν =
c2

Ω
α

(
σ

σ0

)β

, νb =
c2

Ω
αb

(
σ

σ0

)β

(5)

where α, αb, and β are dimensionless parameters, and σ0 is a reference density

(usually that of the homogeneous equilibrium state).

As in LO09, the values of the three viscous parameters are drawn from the

N -body simulations of Salo et al. (2001). Full self-gravity was not employed in

these runs, but its compression of the disk thickness was mimicked by increasing

the vertical oscillation frequency Ωz of the particles. In Table I we reproduce

some of the data of these runs for different optical depths. We primarily use the

parameter suites associated with τ = 1.5 and 2.

Table I

2.1. Perturbations to Keplerian equilibrium

By construction Eqs (1)-(2) admit the steady and homogeneous equilibrium

state of Keplerian shear:

σ = σ0, ux = 0, uy = −3
2
Ω x . (6)

We are interested in axisymmetric deviations from this state and therefore in-

troduce perturbations:

σ = σ0 + σ′(x, t), ux = u′
x(x, t), uy = −3

2
Ω x + u′

y(x, t),

where a prime denotes the perturbation.

After these expressions are substituted into Eqs (1)-(5), a linear stability
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analysis shows that the perturbations will grow exponentially when

β >
1
3

(
αb

α
− 2

3

)
. (7)

This is the viscous overstability, according to which the unstable modes take the

form of long density waves oscillating at a frequency near the epicyclic frequency

(Schmit and Tscharnuter 1995, Schmidt et al. 2001, LO09). According to Table

I, disks are overstable when their optical thickness is above some value between

0.5 and 1. This indeed chimes with both the results of N -body simulations

and instances of microstructure in Saturn’s rings. However, the upper limit

on microstructure recently discussed presents something of a mystery to both

continuum and N -body models (Sremcevic et al. 2009, Colwell et al. 2009).

The growth rates of the overstable modes are generally of order νk2, where k

is the mode wavenumber. We plot the growth rate as a function of general k

in Figure 1 for parameters associated with τ = 1.5. Here the fastest growing

mode has wavelength near 13H (or kH ≈ 0.47) and a growth rate of 0.0385Ω.

Wavelengths shorter than about 8.7H are stable.1

We now adopt dimensions of time, space, and density that set Ω = 1, H = 1,

and σ0 = 1. Consequently, the full nonlinear equations for finite-amplitude

perturbations read as

∂tσ + u′
x∂xσ + σ ∂xu′

x = 0, (8)

∂tu
′
x + u′

x∂xu′
x − 2u′

y = − 1
σ

∂xσ +
1
σ

∂xΠxx, (9)

∂tu
′
y + u′

x∂xu′
y +

1
2

u′
x =

1
σ

∂xΠxy, (10)

1For a more complete rendition of the stability analysis the reader is referred to Schmit
and Tscharnuter (1995) or LO09.
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with the viscous stress components given by

Πxx =
(

αb +
4
3
α

)
σ1+β∂xu′

x, (11)

Πxy = α σ1+β

(
−3

2
+ ∂xu′

y

)
, (12)

and σ = 1 + σ′. Our aim in this paper is to solve these equations numerically

for the three fields σ(x, t), u′
x(x, t), and u′

y(x, t) on a large but finite domain

0 ≤ x ≤ L, subject to various boundary conditions, initial conditions, and

viscosity parameters.

2.2. Boundary conditions

We analyse three different boundary conditions, (a) periodic boundaries, (b)

reflecting boundaries, and (c) ‘buffered’ periodic boundaries. Periodic bound-

aries force the time-dependent solution to satisfy:

σ(0, t) = σ(L, t), u′
x(0, t) = u′

x(L, t), u′
y(0, t) = u′

y(L, t). (13)

Reflecting boundaries, on the other hand, require

u′
x(0, t) = u′

x(L, t) = u′
y(0, t) = u′

y(L, t) = 0. (14)

Both conditions conserve the total mass in the domain. In long-term integrations

the influence of these boundary conditions can become crucial, especially when

the elapsed time exceeds the domain crossing time of a density wave.

We also employ buffered periodic boundaries, where waves can freely leave

the domain without reflecting back or reentering from the opposite boundary.

Periodic boundaries are retained, but we block the transmission of information

through them by incorporating ‘buffer zones’ that encase the domain edges. By

reducing β to a low value in these regions any incident overstability wave will

decay rapidly to zero before it reenters the domain from the opposite boundary.
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A conveniently simple model for β is the ‘boxcar’ profile

β =

⎧⎪⎨
⎪⎩

β0, LB < x < L − LB,

−0.5, 0 < x < LB and L − LB < x < L ,

(15)

where β0 is a constant value prevalent through almost all of the domain, and LB

is the radial size of each buffer. For the parameters we use, typically LB = 100

was sufficient to prevent waves penetrating the buffers. Note that we cannot

choose the lower limit of β to be equal or below −1, lest we instigate classical

viscous instability (Lin and Bodenheimer 1981, Ward 1981, Lukkari 1981).

2.3. Phase-space coordinates

It can be illuminating to depict the spatio-temporal evolution of the system

in terms of three phase variables that depend only on time. These define a

finite-dimensional state space, or more precisely a three-dimensional projection

of the infinite-dimensional function space of (σ, u′
x, u′

y). In this projection, the

evolution of the system is represented as a one-dimensional curve.

The three variables we use are (a) the mean kinetic energy density, (b)

the rate of injection of ‘epicyclic energy’ by overstability, and (c) the rate of

dissipation of epicyclic energy by viscosity. The kinetic energy density we define

by

K(t) =
1
L

∫ L

0

1
2

σ
[
(u′

x)2 +
(
u′

y

)2
]

dx . (16)

For the rates of injection and dissipation we turn to Eq. (29) in LO09, which

describes the (epicyclic) energy balance that steady nonlinear wavetrains must

satisfy. From this equation we define the rate of injection by viscous overstabil-

ity,

I(t) =
1
L

∫ L

0

6 α σ1+β ∂xu′
y dx , (17)

and the rate of viscous dissipation,

D(t) =
1
L

∫ L

0

σ1+β

[(
αb +

4
3
α

)
(∂xu′

x)2 + 4α(∂xu′
y)

2

]
dx . (18)
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The steady uniform wavetrains computed in LO09 satisfy D = I = cst, and as

their kinetic energy is also constant, each wavetrain solution corresponds to a

fixed point in the three-dimensional state space. In an unbounded domain, the

entire family of solutions may be represented by a one-dimensional curve

P(λ) = [ I(λ), D(λ), K(λ) ],

where λ is the wavelength of the train. In a finite periodic box, however, λ

can only take a finite number of discrete values: specifically, λ = L/n, where

n = 1, 2, . . . . In contrast, a reflecting box does not admit the wavetrains as

invariant solutions, and so they cannot exist as fixed points in simulations with

reflecting boundary conditions (though wavetrains can occur locally).

3. Numerical methods

The system of equations (8)-(12) is solved with two numerical codes: one

based on a pseudospectral method, the other on centred finite differences.

3.1. Pseudospectral method

A pseudospectral procedure is ideally suited for the runs utilising periodic

boundary conditions, and it offers excellent accuracy. The radial dimension is

partitioned into N nodes, each equally spaced by Δx. The x-derivatives of the

fields (σ, u′
x, u′

y) are calculated in Fourier space using an FFT routine, while

nonlinear terms are computed in real space. The Fourier transforms automati-

cally force the solution to satisfy periodicity in x.

The time-stepping algorithm uses a predictor-corrector method, whereby a

5th order Adams-Bashforth scheme accomplishes the prediction, and a 4th order

Adams-Moulton scheme makes the correction. The time-step Δt is limited by

the demands of viscous diffusion, and thus must satisfy a Courant condition.

For a low order method the condition is

Δt <
(Δx)2

2(αb + 4
3α)

min
x

[
σ−β

]
. (19)
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For our higher order scheme we use this condition as a rough guide, and set Δt

equal to the right-hand side multiplied by a small ‘safety factor’ F . This we set

to F = 0.1. Note that, because σ will depend on time, the time step will change

throughout the simulation. At the resolutions we use, the restriction from wave

propagation is not as strict as for diffusion, and so is not included.

Large peaks in the surface density greatly diminish the time-step via the

Courant condition (19). Conversely, regions of very low density decrease the

local viscosity and (potentially) force us to use a more refined spatial grid:

numerical instability ensues when the (physical) viscous length falls beneath

Δx somewhere. The second issue can be managed by taking a very fine grid,

of course, but this is at the expense of tightening the Courant condition. The

right hand side of (19) scales like (Δx)2, and so a fine grid can level a punishing

constraint on the time step. In practice we eliminate the component Fourier

modes of σ with small wavelengths, keeping all modes with wavelength above

(roughly) H/2. This smoothing procedure averts numerical instability when a

larger Δx is adopted and keeps the size of the time-step manageable.

3.2. Finite-difference method

Our second numerical method uses tenth-order centred finite differences in

space and a third-order explicit Runge–Kutta scheme in time. This method

has nearly the accuracy of a pseudospectral algorithm but can easily cope with

nonperiodic boundary conditions through the use of ghost zones. The timestep

is again limited by a Courant condition related to the viscous diffusion or wave

propagation across a grid zone. Our standard resolution is 0.2 H , which is

generally sufficient to capture shocks. In extremely long runs some mass loss

occurs, but no significant differences were found with runs in which the density

is renormalized after each timestep to maintain its average value. In a few

runs we added a small diffusivity (typically 0.01 cH) to the equation of mass

conservation to assist with numerical stability.

To implement reflecting boundary conditions with this method, we assign

values to the ghost zones according to the desired symmetry of each variable.
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The velocity components are set to be odd and the density to be even with

respect to the location of each boundary.

This method differs substantially from that of ST99, who used a first-order

upwind scheme, typically with a resolution comparable to H , and captured

shocks by applying an artificial viscosity to smooth variables over 3–4 H . Our

finite-difference method explicitly resolves the viscous scales on which the over-

stability is generated and dissipated, and does not require any artificial viscosity.

A much shorter timestep is needed, however.

3.3. Numerical tests

Before presenting the general simulation results, we briefly demonstrate the

accuracy of our numerical tools. While our two different codes, using inde-

pendent numerical methods, yield simulation results in good agreement, it is

also worthwhile to check their performance against established analytic or semi-

analytic results.

3.3.1. Linear growth rates

We check both codes against the linear theory of the viscous overstability

in a domain with periodic boundaries. The initial condition is set to a small

amplitude linear overstability mode characterised by its wavenumber k. The

early stages of the mode’s evolution, as approximated by the simulation, yield

exponential growth with numerical growth rate s. Typically we compute s after

the perturbation has grown by at least two orders of magnitude. However,

when k is very small, s must be calculated after only one order of magnitude

because numerical error seeds faster growing modes after this time. By running

the simulation at multiple k s we can compute the numerical linear dispersion

relation. Checking this against the analytic dispersion relation (Schmit and

Tscharnuter 1995) furnishes a measure of how faithfully the numerical codes

can reproduce the small-amplitude dynamics.

Figure 1
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The analytic and numerical growth rates as a function of k are compared in

Fig. 1 for parameters associated with τ = 1.5 (see Table I). Here Δx = 0.25,

L = 256, and F = 0.1. The agreement is excellent, with a relative error less than

0.3 %. Naturally, increasing Δx and/or F worsens the relative error, though

not substantially. On the other hand, decreasing these parameters does not win

significantly more accuracy.

3.3.2. Nonlinear wavetrains

To test the nonlinear performance of the codes, we directly seed a stable

steady nonlinear wavetrain, computed directly by the methods of LO09, and

evolve it forward in time for a whole number of periods. The resulting profile

can then be directly compared to the initial semi-analytical wave.

Figure 2

Once again, we take parameters associated with τ = 1.5, adopt periodic

boundary conditions (necessarily), and use the pseudospectral code. We take a

λ = 64 wavetrain as the initial condition and evolve it for exactly 1000 periods

(≈ 993 orbits) in a box of L = 128. The directly computed wavetrain and the

numerically evolved wavetrain are presented in Fig. 2. The solid line represents

the semi-analytic profile and the dots, the simulation profile. The agreement is

excellent, with the kinetic energy densities K of the two profiles differing only

at the seventh significant figure. Other choices for Δx and F yield only slightly

different results.

4. Simulation results I: Periodic boundaries

Our first set of nonlinear results uses periodic boxes of various sizes L and

various viscosity parameters α, αb, and β. The initial conditions are either

small amplitude white noise or a small amplitude linear overstability mode of

specified k. The main parameters we explore are associated with the τ = 1.5

and 2 cases (Table I), as well as the ST99 parameters, which are α = αb = 0.262

and β = 1.26. The size of the box ranges from the small, L = 248, to the rather

13
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large, L = 4096. The pseudospectral code was used primarily, but its results

were checked against those of the finite difference method.

4.1. Long-time saturation: Nonlinear wavetrains

For all parameters and box sizes the system always exhibited the same long-

time saturation: a stable uniform nonlinear wavetrain. There is some variety in

the wavelength of this solution, and the train can propagate either left or right.

However, the final wavelengths are always close to the shortest linearly stable

wavelength possible λst, as determined by the stability analysis of LO09. The

surface density difference between the wave peaks and troughs is roughly 4 for

the parameters we examine.

The variations in the final state are linked to the influence of the initial

conditions. Because small deviations are exacerbated by the chaotic dynamics,

small biases in the initial conditions, favouring leftward or rightward propaga-

tion or certain lengthscales, can significantly alter the state-space trajectories,

leading to different final outcomes. This is more likely in larger boxes, because

more stable fixed points can be supported, and as these are distributed more

densely in the phase space, the basin of attraction of each is smaller.

Figure 3

Figure 4

Figures 3 and 4 show results of a simulation using ST99 parameters in a

periodic box of size L = 1024 with Δx = 0.25. The kinetic energy density

(K) versus time is plotted in the former graph, and a snapshot of the state

variables is plotted after 15,000 orbits in the latter. The initial conditions were

low amplitude white noise. After initial transient behaviour, the disk relaxes

into a constant energy configuration which is associated with the first stable

wavetrain possible in the box: λ = 1024/23 ≈ 44.5.1

The final saturation achieved in the periodic boxes should be contrasted

with the ST99 results with reflecting boundaries (and no self-gravity). These

1In LO09 the critical length λst is mistakenly given as near 60. It is in fact 44.3.
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simulations did not yield a quasi-steady saturated state, but rather a disordered

flow whereby power was continously transferred to longer and longer scales. We

conclude that the boundary conditions are controlling the long-term behaviour

in both simulations. In the periodic box case, the system ‘senses’ the transla-

tional symmetry of the domain after a sufficiently long time (the time for an

overstable wave to cross the domain) and thus feels the attraction of the steady

wavetrain solutions admitted by this symmetry. In contrast, the disk system in

the reflecting box cannot feel these attractors because they do not exist. In-

stead, the disk can be drawn to large-scale standing waves fixed by the closed

boundaries (see next section).

Though the final saturated state is always similar in the periodic box (non-

linear travelling waves), the intermediate time evolution, i.e. the transient be-

haviour, is interesting and varied, and, in fact, may be of more relevance to

the evolution of the instability in the real rings of Saturn. The intermediate

stages exhibit phenomena presaged by LO09: the climbing of the system up the

branch of nonlinear wavetrain solutions from short to longer wavelength, and

the existence of shock and source structures interleaving ‘patches’ of nonlinear

waves. We investigate each phenomenon in turn.

4.2. Staircases

In LO09 it is argued that the evolution of an overstable disk (in a shearing

sheet) is controlled by the family of nonlinear wavetrain solutions. This branch

of solutions conducts the phase space trajectories of the system away from the

homogeneous state of Keplerian shear, along the unstable shorter wavelength

members of the family, and towards the stable longer wavelength members. The

unstable wavetrain solutions are saddle points, possessing a fast stable manifold,

which attracts nearby phase trajectories, and a slow unstable manifold, which

eventually repels them, thus bringing trajectories under the influence of another,

longer wavelength, solution. In the infinite shearing sheet, this process will be

continuous, but in the finite shearing box only a finite number of fixed points

are permitted, and a discrete picture is more accurate. The evolution in this
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case appears something like a ‘staircase’, with the system jumping from one

fixed point to the next until it finally comes to rest on the first stable wavetrain

solution available to it.

In this subsection this behaviour is demonstrated in a small box of L =

248, because the fixed points are fewer and better spaced, allowing a cleaner

illustration. Parameters are those associated with τ = 1.5 and the resolution is

Δx = 0.5. The initial condition is set to the linear overstable mode of fastest

growth with a very small amplitude. More general initial conditions, such as

white noise, generate more complicated intermediate time behaviour which we

present in the next subsection. We represent the staircase evolution with the

time-dependent kinetic energy density K(t), and the three-dimensional state-

space trajectories [I(t), D(t), K(t)], which one can observe bunch about the

‘spine’ of fixed points.

Figure 5 presents a plot of K as a function of time, and Figure 6 shows

the phase portrait of the system’s evolution as depicted in the [I, D, K] phase

projection. In Fig. 5 we have labelled each ‘plateau’ with the wavelength of

the wavetrain solution that is controlling the dynamics at that time. When

resting on a plateau the system resembles the nearby wavetrain, but with some

additional disorder in the train’s phase and amplitude, which are the work of

slow modulational instabilities. Eventually these ‘secondary’ instabilities drive

the disk away from the solution, at which point the disk is rapidly brought

within the orbit of a more energetic and longer wavelength solution.

Figure 5

Figure 6

This process is illustrated clearly in Fig. 6. Here the phase trajectory is

represented by the blue curve, and the fixed points are denoted by red dots.

The latter are calculated directly using the methods of LO09. Some of these

are labelled by their wavelength. The first stable fixed point is denoted by a

star, and the homogeneous state of Keplerian shear is denoted by an open circle.

The system migrates from this state, which is overstable, to the first available

stable state, the red star, which corresponds to a wavetrain with λ = 64. The
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evolution follows the unstable fixed points, hopping from one to another, in

dense gyres. Note that trajectories are, on average, repulsed from an unsta-

ble fixed point vertically, and attracted horizontally. The unstable manifolds

are hence predominantly along the kinetic energy density coordinate K. This

makes sense because the unstable manifold is controlled by the secondary, mod-

ulational overstability which transfers energy from the background shear into

the system (they are thus not ‘parasitic modes’, as such). This also means that

the trajectories always approach the spine some distance ‘above’ the fixed points

because they possess some residual energy in excess of the uniform wavetrains.

The final approach to the stable solution is a very slow and purely vertical drop

— and is dominated by the decaying modulational modes. These modes slowly

remove the excess energy of the system through standard viscous dissipation.

They can be observed in the faint modulation of the profiles in Fig. 4.

As the box size L is increased, the number of fixed points multiplies and their

relative spacing decreases. Therefore, the staircase effect becomes less and less

pronounced, with the phase trajectories’ ascent more continuous. On the other

hand, because of the increase in the number of stable fixed points, the basin of

attraction of each must shrink. Depending on the initial conditions, the system

may select one of a number of final stable states. This also means the nonlinear

stability of these solutions becomes more and more precarious. Conceivably, in

an enormous shearing box (or infinite shearing sheet) the system may not be

localised to any one solution at all. This is actually less a shortcoming of the

finite shearing box model than it might appear, because a real disk is neither

infinite nor radially unstructured. However, the relevance of uniform wavetrains

taking up the entire domain to a real disk is also unclear. This issue we discuss

in the following sections.

4.3. Wave defects: shocks and sources

For general small amplitude initial conditions and for larger boxes, another

generic behaviour emerges in the early and intermediate stages of the evolution.

Instead of a single (albeit heavily modulated) wavetrain, the domain is broken
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up into multiple regions of counter-propagating trains divided by one of two

dynamical objects: a source or a shock. The former corresponds to a small

localised region which generates waves in both directions, the latter to a region

where two counter-propagating wavetrains collide without penetration. (Note

that our usage of ‘shock’ differs from its conventional meaning in gas dynamics.)

Between generation and collision, each ‘patch’ of wavetrain is subject to addi-

tional chaotic inhomogeneities in wavelength and amplitude. This dynamical

phenomenon is a natural outcome of the translational invariance of the box, and

the existence of nonlinear wavetrains as argued in LO09.

Figure 7

We illustrate this behaviour with a snapshot presented in Fig. 7. Here the

sources are denoted by ‘sc’ and the shocks by ‘sh’. Arrows indicate the direction

of the wave propagation. The sources correspond to relatively unperturbed

regions, with σ near 1, and the perturbation velocities near zero. They are

hence similar to the overstable homogeneous state, and thus generate linear

overstability waves at a λ near that of the fastest growing mode. This also

means that there is little asymmetry in λ about a source. As a consequence, they

resemble the ‘homoclons’ of the complex Ginzburg-Landau equation (Aranson

and Kramer 2002). This ‘symmetry’ contrasts with the picture described in

LO09, where the defects separate waves of well-defined and quite different λ.

Waves generally grow longer as they propagate away from sources, and are also

subject to significant fluctuations and inhomogeneities.

The physical basis of these features is relatively easy to understand. In a

slightly perturbed homogeneous disk, overstable modes emerge locally and form

wavetrain packets. But in large domains at short times these wave packets are

ignorant of what is happening in most of the box. Because different localised

regions may produce waves propagating in either direction, interfaces quickly

develop in order to mediate between regions that generate counterpropagating

waves. These are the sources and shocks. This behaviour can be circumvented

by seeding a single linear mode throughout the entire domain (as done in the

previous subsection).
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Notice that a source region, being relatively unperturbed, will transfer less

angular momentum than its neighbouring wave-dominated regions (LO09). Con-

sequently, a source is an impediment to the inward flow of mass: matter will

tend to pile up at a source and form an overdensity. Because these regions are

relatively narrow, some 50H , the viscous timescale required to set up such a

density variation is fairly short, and our simulations show an average 10% over-

density at sources once the density field is smoothed over scales of 100H . This

variation in σ may be observable.

Figure 8

In Fig. 8 we plot the kinetic energy density of the run discussed above

as a function of time, with the shock/source stage marked. Note that the

shock/source phase ends after a characteristic time, a few thousand orbits in

this case. Shocks and sources possess their own slow dynamics and migrate

through the box (cf. Section 6.2.2 in LO09). Pair by pair, the shocks and sources

annihiliate each other until none are left. By orbit 2000 the last shock/source

pair has disappeared and the system moves to a single disordered (and unsta-

ble) wavetrain which then undergoes the staircase process described in the last

subsection.

Some of the slow shock/source dynamics are described in Fig. 9 which present

a ‘stroboscopic’ phase-space diagram of the contours of σ rendered in greyscale.

The evolving sources correspond to the paler regions, radiating disturbances for-

ward in time (the white diagonal lines), while the shocks correspond to regions

where these disturbances meet. The plot is stroboscopic because σ is sampled

every orbit. In this way, the rapid phase propagation of the density waves

of long wavelengths 2π/k is reduced (by an amount Ω/k) to about (1/2)cHk,

which is approximately half their group velocity. The white lines hence indicate

both the phase of the waves and the direction of the group velocity. At 100

orbits there exist two sources at roughly x = 150 and x = 750, with a shock

just next to the first source near x = 50 and another at x = 450. The config-

uration at this point is plotted in Fig. 7. A little later at about 250 orbits the

first shock/source pair collide near x = 0 and then disappear. The remaining
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pair slowly migrate toward each other over the next thousand orbits eventually

meeting and subsequently dying at around orbit 2000.

Figure 9

In contrast with most regimes in the complex Ginzburg-Landau equation,

the overstable disk system does not regenerate its sources and shocks (Aran-

son and Kramer 2002). It is unclear what drives the extinction of the defect

structures. It may be because the attraction of the first stable uniform wave-

train is stronger than the attraction of the chaotic defect dynamics. This is the

simplest interpretation, but it only holds in periodic domains. On the other

hand, the extinction may result naturally from defects’ long-distance interac-

tions: sources and shocks might always annihilate each other because they are

always attractive. This raises other questions. Do very distant wave defects

interact at all? And even more crucially, are these weak dynamical interactions

sensitive to self-gravity, and other physics we have omitted? The last question

might be informed by the structural stability of the complex Ginzburg-Landau

equation. For instance, the quintic complex Ginzburg-Landau equation, which

incorporates a higher order nonlinear term, yields sources and shocks whose

behaviour (and very existence, in fact) are extremely sensitive to the value of

the coefficient of the new quintic term (Popp et al. 1993, Aranson and Kramer

2002). Perhaps self-gravity, or the non-Newtonian stresses in a more realistic

rheological model, introduces nonlinearities which support permanent or recur-

ring sources and shocks, by analogy with the quintic complex Ginzburg-Landau

equation.

4.4. Discussion

Periodic box simulations show that at long times the disk system eventually

settles on a uniform and stable travelling wavetrain: no dynamical process in-

tervenes to prevent the system from migrating to this stable state. However, we

consider this an unrealistic outcome, and an artifact of the periodic boundary

conditions. Because of the long times necessary to achieve the uniform state in

the simulations, the influence of the boundary conditions are inescapable. In the
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real rings, we expect the large-scale radial structure of the disk to exert a very

different influence. In particular, in the real rings, steady uniform wavetrains

are not exact nonlinear solutions globally; they are approximate solutions lo-

cally. They hence cannot function as global attractors. Instead, we expect

the real system to exhibit behaviour closer to the simulational results on inter-

mediate times, before information has fully traversed the computational box,

and before the (unrealistic) global stable states completely capture the system.

More specifically, we expect to observe a structure akin to the source/shock

partitioning of the domain.

This idea will be explored in more detail in Section 6. Next we briefly

establish the important role of the boundaries when they are assumed to be

reflecting, a situation which yields similar intermediate-time behaviour to the

periodic box, but an equally unrealistic long-time saturation in certain cases.

5. Simulation results II: Reflecting boundaries

In this section we discuss the results of numerical simulations that are sim-

ilar to those described previously except that they use the reflecting boundary

conditions mentioned in Section 3.2 and are carried out only with the finite-

difference method. An important feature of the reflecting boundary conditions

is that they do not admit solutions in the form of travelling waves, which means

that the long-term evolution must be different from that described so far.

Figure 10

We first consider cases with the parameters corresponding to τ = 1.5. Our

longest run is in a box of size 1024 H and extends for 4×105 orbits. The history

of the mean kinetic energy density is shown in Fig. 10. After the phases of linear

instability and shock/source evolution, the system quickly reaches a statistically

steady state with a well defined mean energy and with large-amplitude fluctu-

ations. In this state there is a single source near the left-hand boundary, which

emits trains of waves in a cyclical fashion. Most of the domain is filled with

nonlinear waves travelling to the right, which experience modulation and phase
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fluctuation as they are perturbed by the behaviour of the source. The waves

are annihilated in a sink region close to the right-hand boundary.

Figure 11 is a stroboscopic space-time diagram representing the very early

stages of this evolution. Until orbit 2000 there exist multiple shocks and sources,

with sources localised at each boundary. After this initial stage, however, some

of these defects destroy each other and the system relaxes into the long lived

configuration described above.

When this experiment is repeated in a smaller box of size 512 H , however,

we observe the eventual development of global standing waves. While a statis-

tically quasi-stationary state is achieved for some time, after about 105 orbits

the system appears to develop a large-scale instability and the kinetic energy

increases markedly, by more than an order of magnitude. The motion takes

the form of an irregular standing wave that is clearly influenced by the specific

boundary conditions adopted in this simulation. A similar run in a box of size

256 H also appears to be strongly influenced by the boundaries, although it does

not seem to develop a similarly coherent standing-wave pattern.

When the parameters are set to those adopted by ST99, we observe large-

scale instability and the eventual development of standing waves of large am-

plitude on the scale of the box, even in a domain of size 1024 H . We have not

reproduced this behaviour in larger boxes, as the computational requirements of

our simulations are greater than those of ST99 because we explicitly resolve the

viscous length-scales. It is possible that all reflecting boxes eventually develop

the global standing waves if given sufficient time, but that larger boxes have a

longer phase of statistically quasi-stationary evolution. Though physically un-

reasonable in Saturn’s A and B-ring, this phenomenon is potentially relevant to

the development of global modes in narrow rings such as those of Uranus (e.g.

Porco 1990), where the ring edges may reflect density waves.

Figure 11
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6. Simulation results III: Buffered periodic boundaries

Finally, we present simulation results with buffered periodic boundaries, in

which β abruptly drops to small negative values within buffer zones located

at the edges of the computational domain. The boundary conditions remain

periodic. This configuration mimics open boundaries as far as nonlinear waves

are concerned, because incident waves quickly decay to zero in the buffer zones.

Mass, however, is conserved, and all the other numerical benefits of periodicity

are retained (recall Section 2.2.).

Figure 12

A buffered box is a simple model that helps us understand how a real strat-

ified patch of disk behaves. Nonlinear waves generated in the overstable region

of the domain are allowed to march out of the region and be lost. They cannot

‘back-react’ on the region from which they emerged — an unphysical outcome

of standard periodic boxes — nor are they artificially influenced by fixed re-

flecting boundaries. However, this also means that the domain is unphysically

insulated from neighbouring patches of disk. Another important, and related,

consequence of buffered boundaries is that the box can no longer support the

family of exact wavetrain solutions computed in LO09 and in Section 4. The

system must then select a different saturated state, and, on account of the

domain’s isolation, this must involve at least one source structure.

Figure 13

In Figs 12 and 13 we represent a simulation with parameters corresponding to

τ = 2 in a buffered box of L = 1024 with buffer zones of size 150. The first graph

shows kinetic energy density against time, and the second a stroboscopic figure

of surface density. The evolution described by these figures is fairly generic, and

is shared by other parameter choices (such as those associated with ST99 and

τ = 1.5). The system settles into a highly fluctuating state (after about 1500

orbits) characterised by a single source solution, which sends nonlinear waves

through the domain into each buffer area, where they decay away. At earlier

times, multiple wave defects exist. For instance, before 500 orbits the domain
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supports two sources and one shock dividing them. Once a shock and source

pair disappear, the kinetic energy of the box increases. This is because waves

can freely propagate for longer and consequently increase their wavelength and

amplitude (LO09). Here the average wavelength increases from roughly λ ≈ 20

to λ ≈ 60 as the number of defects falls from 3 to 1. However, far from the

source (just before it collides with the far buffer) longer wavelengths can be

achieved. These may be attempting to approach the first stable wavelength

allowed, which for these parameters is near 120H .

The remaining source may also migrate slowly, and we find in many simu-

lations that lone sources will move preferentially to the edge of a buffer region.

This behaviour echoes the localisation of the shocks and source in some of the

reflecting box runs in Section 5. It also suggests that inhomogeneities in the

disk’s material properties could fix these structures in place.

7. Discussion

We now summarise the key phenomena revealed by the nonlinear simula-

tions, specifically the nonlinear waves, the wave defects, and the influence of

the boundary conditions, and we discuss their relationship with the Cassini

data and the relevant modeling issues.

All the simulations support nonlinear wavetrains at intermediate times, and

almost all support wavetrains at very long times. The wavetrains may undergo

low-level chaotic fluctuations in their phases and amplitudes, though at long

times in periodic boxes the inhomogeneities disappear once the system settles

on a globally stable uniform wavetrain. The waves yield a surface density con-

trast between their peaks and troughs of roughly 4 or more, and usually take

wavelengths near λst, the value of the first linearly stable wavetrain. In the

buffered and fixed boundary cases, waves at shorter λ grow longer and longer

as they cross the domain so as to approach this value.

We associate these dominant features with the observations of periodic mi-

crostructure discovered by Cassini. Their wavelengths compare favourably to
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those observed: λst ≈ 234 m for τ = 1.5, while UVIS and RSS tells us λ lies

between 150 and 220 m (LO09, Colwell et al. 2007, Thomson et al. 2007). On

the other hand, the waves’ surface density contrast between peak and trough

should be sufficient to diffract the radio and UV signals in the manner observed,

though this needs to be checked in detail.

The simulations also show structures on longer scales, which we term ‘wave-

defects’. These features divide strips of counterpropagating nonlinear waves,

and take the form of either ‘sources’, places which generate waves, or ‘shocks’,

places where colliding wavetrains meet. Both the shocks and sources possess

their own slow dynamics and tend to wander about the computational domain.

They annihilate themselves when they meet, and get stuck upon radii where

the properties of the disk change abruptly — specifically, at the fixed walls or

at buffer regions. In periodic domains, after a sufficiently long time, the wave

defects disappear and the system moves to a steady uniform wavetrain solution.

In buffered boxes, at least one source survives for the length of the run. This is

also the case in reflecting boxes when global standing modes fail to develop.

Are the defect features detectable in the real rings? In particular, are they

responsible for the irregular structure observed on 1-10 km scales by the Cassini

cameras (Porco et al. 2005)? This is difficult to say. Originally, we argued

that the observations corresponded to amplitude differences in the waves on

one side of a source or shock as compared with waves on their other side (see

Fig. 8 in LO09). However, the simulations show that both sets of waves around a

source possess a similar wavelength initially, and thus have presumably the same

photometric properties. This is also generally true for shocks. We conclude that

defects probably cannot be detected by asymmetries in the waves that surround

them. On the other hand, a source region typically extends for some 50H in

radius and might be directly imaged: sources create overdensities that might

be observable, and their photometric properties may differ from the adjacent

wave-dominated areas. Sources are somewhat smaller than much of the observed

structure, but more realistic models could yield wider sources, an issue that we

intend to check. Lastly, we speculate that, given sufficient time, a source region
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localised to a preexisting density inhomogeneity may, in fact, exacerbate that

inhomogeneity. Matter will tend to pile up at a source, fed by the waves at

larger radii. In this way, a source might be indirectly responsible for sharp

optical depth variations.

As we have stressed, the long-term behaviour of the simulations depends

on the boundary conditions. Periodic boundaries force the system to settle on

a uniform wavetrain of a predictable wavelength, after an intermediate period

characterised by sources and shocks and staircases. Reflecting boundaries yield

a persistent disordered state: either the disk is drawn to large amplitude and

long wavelength standing waves, or to a state whereby waves are generated near

one boundary and absorbed by the other. Which of these two cases occurs

depends on the choice of parameters and on the domain size. Buffered periodic

boundaries eventually yield a state with only one source, often localised to a

buffer edge.

Which set of simulation results best depict the real (radially structured)

rings of Saturn on these scales? A perfectly uniform wavetrain solution is not

a realistic outcome in the real rings, and is surely an artifact of the periodic

boundaries and the neglect of radial structure. Equally, large amplitude stand-

ing waves on the box scale are unrealistic in reflecting boxes. When radial

structure is mocked up by buffer zones, wave defects, which characterise inter-

mediate term dynamics in the other cases, persist indefinitely. This suggests to

us that a realistic nonlinear outcome of overstability in planetary rings involves

a situation whereby shocks and source punctuate wavetrains on long scales with

their radial distribution and/or slow dynamics governed by the radial structure

of the disk itself.

We emphasise that additional physics may change the picture we have de-

scribed. For instance, self-gravity may alter the linear stability of the global

wavetrain solutions in periodic boxes, rendering all wavetrains unstable and

therefore no longer attractors in periodic boxes. Alternatively, self-gravity could

transform the nonlinear dynamics of the sources and shocks: instead of annihi-

lating each other completely, they might persist indefinitely (by analogy with

26



ACCEPTED MANUSCRIPT 

the structural stability of the complex Ginzburg-Landau equation). The same

effects may issue not only from self gravity, but also from neglected thermody-

namic and kinetic effects. If present, these effects will be in competition with the

influence of the disk’s radial structure, as presented in the previous paragraph.

These questions naturally lead to future work. One needs to check how

self-gravity affects the axisymmetric nonlinear dynamics. Using the techniques

of LO09, we intend to ascertain if self-gravity modifies the stability properties

of uniform wavetrains. And then, with numerical simulations, show how the

general nonlinear behaviour of the overstable disk changes. In addition, the

more accurate kinetic theoretical formalism of Latter and Ogilvie (2008) will be

employed in overstability simulations, as these will shed light on the dynami-

cal importance of the rings’ unusual rheological and kinetic properties. Such

simulations may also directly connect with N -body simulations, enriching the

understanding of both approaches.

Lastly, we need to investigate the non-axisymmetric element of the prob-

lem. Are the nonlinear wavetrains also unstable to disturbances with azimuthal

structure (shearing waves)? Do stable nonlinear wavetrains support azimuthal

wave defects in addition to radial defects? Of particular interest are the interac-

tions between the overstability and non-axisymmetric self-gravity wakes. Under

what circumstances do self-gravity wakes inhibit or extinguish the overstability?

How do they interfere with its nonlinear saturation? Two-dimensional simula-

tions with self-gravity may be necessary to fully assess these issues. Finally, it

would also be beneficial to understand the interaction between viscous oversta-

bility and large-scale spiral waves forced by moonlets. These very long waves

may themselves be overstable (Borderies et al. 1985) — what does this mean

for their propagation and damping? Conversely, what is the fate of long spiral

waves when they plough into a region dominated by small-scale overstability

waves? Will the two processes interact destructively? In fact, recent RSS data

show that the periodic microstructure peters out in the vicinity of the Pan-

dora 5:4 density wave, an observation that might bear on this issue (Colwell et

al. 2009).
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[4] Chaté, H., 1994. Spatio-temporal intermittency regimes of the one-

dimensional complex Ginzburg-Landau equation. Nonlinearity, 7, 185-204.

[5] Colwell, J. E., Esposito, L. W., Sremcevic, M., Stewart, G. R., McClintock,

W. E., 2007. Self-gravity wakes and radial structure of Saturn’s B ring.

Icarus, 190, 127-144.

[6] Colwell, J. E., Nicholson, P. D., Tiscareno M. S., Murray, C. D., French,

R. G., Marouf, E. A., 2009. The Structure of Saturn’s Rings. In Dougherty,

M. K., Esposito, L. W., Krimigis, S. M. (eds.), Saturn from Cassini-

Huygens, Springer, Dordrecht Netherlands.

[7] Goldreich, P., Lynden-Bell, D., 1965. II. Spiral arms as sheared gravita-

tional instabilities. Monthly Notices of the Royal Astronomical Society, 130,

125-158.

28



ACCEPTED MANUSCRIPT 

[8] Hämeen-Anttila, K. A., Salo, H., 1993. Generalised Theory of Impacts in

Particulate Systems. Earth, Moon, and Planets, 62, 47-84.

[9] Ipsen, M., van Hecke, M., 2001. Composite “zigzag” structures in the 1D

complex Ginzburg-Landau equation. Physica D, 160, 103-115.

[10] Latter, H. N., Ogilvie, G. I., 2006. The linear stability of dilute particulate

rings. Icarus, 184, 498-516.

[11] Latter, H. N., Ogilvie, G. I., 2008. Dense planetary rings and the viscous

overstability. Icarus, 195, 725-751.

[12] Latter, H. N., Ogilvie, G. I., 2009. The viscous overstability, nonlinear

wavetrains, and finescale structure in dense planetary rings. Icarus, 202,

565-583.

[13] Popp, S., Stiller, O., Aranson, I., Weber, A, Kramer, L., 1993. Localized

Hole Solutions and Spatiotemporal Chaos in the 1D Complex Ginzburg-

Landau Equation. Physical Review Letters, 70, 3880-3883.

[14] Porco, C. C., 1990. Narrow rings - Observations and theory. Advances in

Space Research, 10, 221-229.

[15] Porco, C. C. and 34 colleagues, 2005. Cassini Imaging Science: Initial Re-

sults on Saturn’s Rings and Small Satellites. Science, 307, 1226-1236.

[16] Salo, H., Schmidt, J., Spahn, F., 2001. Viscous Overstability in Saturn’s

B Ring: I. Direct Simulations and Measurement of Transport Coefficients.

Icarus, 153, 295-315.

[17] Schmidt, J., Salo, H., 2003. Weakly Nonlinear Model for Oscillatory Insta-

bility in Saturn’s Dense Rings. Physical Review Letters, 90, 061102, 1-4.

[18] Schmidt, J., Salo, H., Spahn, F., Petzschmann, O., 2001. Viscous Oversta-

bility in Saturn’s B-Ring: II. Hydrodynamic Theory and Comparison to

Simulations. Icarus, 153, 316-331.

29



ACCEPTED MANUSCRIPT 

[19] Schmit, U., Tscharnuter, W. M., 1995. A Fluid Dynamical Treatment of the

Common Action of Self Gravitation, Collisions and Rotation in Saturn’s

B-Ring. Icarus, 115, 304-319.

[20] Schmit, U., Tscharnuter, W. M., 1999. On the Formation of the Fine-Scale

Structure in Saturn’s B Ring. Icarus 138, 173-187.

[21] Spahn, F., Schmidt, J., Petzschmann, O., 2000. Stability Analysis of a

Keplerian Disk of Granular Grains: Influence of Thermal Diffusion. Icarus,

145, 657-660.

[22] Shraiman, B. I., Pumir, A., van Saarloos, W., Hohenberg, P. C., Chaté,
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Tables

τ α αb β c/Ω (m)

0.5 0.348 1.08 0.67 2.47
1.0 0.357 0.764 1.15 3.29
1.5 0.342 0.681 1.19 4.42
2.0 0.322 0.683 1.55 5.45

Table 1: Hydrodynamical parameters at different optical depths τ derived from N-body sim-
ulations for a disk of 1 m radius particles, located at a distance of 100, 000 km from the centre
of Saturn, undergoing collisions according to the Bridges et al. (1984) elasticity law, with
vertical frequency enhancement of Ωz/Ω = 3.6 (Schmidt et al. 2001, Salo et al. 2001).
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Figure captions
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Figure 1: Linear growth rates s of the overstable modes as a function of wavenumber k as
computed directly from the linear dispersion relation (the solid line) and numerically from
the initial stages of simulations (the points). Parameters correspond to those associated with
τ = 1.5 (see Table I), with L = 256, and Δx = 0.25 and F = 0.1. The pseudospectral code
was employed.
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Figure 2: Two wavelengths of a steady nonlinear wavetrain as computed directly by the
methods of LO09 (the solid line), and numerically by the pseudospectral code (dots). The
numerical profile was computed by seeding the directly calculated wavetrain and then evolving
forward for 1000 periods in a periodic box of L = 128. Parameters chosen are associated with
τ = 1.5, with Δx = 0.5, F = 0.1.
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Figure 3: Kinetic energy density K versus time in a simulation of an overstable disk in a
periodic box of L = 1024 with Δx = 0.25. The parameters correspond to those of ST99. Note
that the system finally relaxes to a constant energy associated with the first stable wavetrain
λ = 44.5 , after transient behaviour lasting roughly 2000 orbits.
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Figure 4: A snapshot of the state variables σ, u′
x, and u′

y, after 15,000 orbits. Parameters
correspond to those of ST99, the box is periodic and L = 1024. Arrows indicate the direction of
propagation. Note the faint modulation in amplitude and wavenumber, which will eventually
decay away.
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Figure 5: Kinetic energy density versus time for a simulation in a small box L = 256 with
parameters corresponding to τ = 1.5. The initial condition is the fastest growing linear
overstability mode with small amplitude. Salient plateaus, or staircases, are labelled with the
wavelength of the nearby wavetrain solution controlling the dynamics.
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Figure 6: Phase portrait of the disk evolution described in Fig. 5. The phase space is projected
onto the 3D grid of (I, D, K). The blue curve represents the phase trajectory of the system,
the red dots indicate the unstable fixed points of the system, the red star the first stable fixed
point, and the open circle the homogeneous state of Keplerian shear. As is clear, the disk’s
evolution is guided by the family of fixed points.
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Figure 7: Snapshot of the field variables after 100 orbits in a simulation with τ = 1.5 para-
meters in a periodic box with L = 1024 seeded with small amplitude white noise. The label
‘sc’ indicates a wave source and the label ‘sh’ a wave shock. Arrows indicate the direction of
propagation of the waves.
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Figure 8: The kinetic energy density K of the system as a function of time for the simulation
described in the caption of Fig. 7. Marked are the two intermediate phases, ‘shock/source’
and ‘staircase’, which the system must progress through in order to relax into a stable uniform
wavetrain solution.
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Figure 9: A ‘stroboscopic’ space-time diagram of the contours of σ rendered in greyscale.
White indicates density maxima (the peaks of density waves) while black represents density
minima (the troughs). The grey indicates a σ near 1, and hence characterise wave source
regions. Such regions radiate disturbances which then collide at wave shocks. Parameters are
associated with τ = 1.5.
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Figure 10: Kinetic energy density K versus time in a simulation with reflecting boundaries
and viscous parameters in accordance with τ = 1.5. The box size is L = 1024 H. After the
initial linear and shock/source phases the system settles into a statistically steady state for
the length of the run, which is 4 × 105 orbits.
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Figure 11: A space-time diagram similar to Fig. 9 of the first 5,000 orbits of an overstable
disk with reflecting boundaries. The parameters are those associated with τ = 1.5 and the
finite-difference code is used. After a period of multiple source and shocks, the system relaxes
into a long-lived configuration in which one source is localised to the left-hand boundary, and
it continuously sends waves to the right boundary where they disappear.
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Figure 12: The kinetic energy density K of the system as a function of time for a simulation
with buffered boundaries and parameters associated with τ = 2 (see Table I), and L = 1024
and Δx = 0.5. The system saturates at a fluctuating state after some 1500 orbits, once only
one source remains. The buffer regions have LB = 150H.
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Figure 13: Stroboscopic space-time diagram of the surface density in the buffered box run
described in Fig. 12. Before 500 orbits we can observe two sources and one shock between
them. Near orbit 500, the source near x = 300H meets the nearby shock and the two
disappear. Notice that the buffer regions efficiently absorb incoming waves. Like the source
regions, which are relatively unperturbed, the buffer zones are represented as pale grey.
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