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Summary. In [15] the large eddy simulation with stochastic modeling of the sub-
grid acceleration (LES-SSAM) for homogeneous turbulence was proposed. The main
motivation of this approach is to account for intermittency of the flow at sub-grid
scales, by emphasizing the role of sub-grid acceleration. In this paper, we develop
further this approach in order to simulate a high Reynolds number channel flow. We
proposed a new sub-grid acceleration model for channel flow. This model introduces
explicitly the cross-channel correlation of subgrid velocity gradients and includes
two parameters: the Reynolds number based on the friction velocity, and the channel
half-width. The objective is to assess the capability of this model in comparison to
the standard large-eddy simulation (LES) and to direct numerical simulation (DNS).

Key words: large-eddy simulation, sub-grid acceleration, stochastic model, inter-
mittency, turbulent channel flow

1 Introduction

The structure of well-developed turbulent wall layer in the channel flow is
highly intermittent. Close to the wall, the low-speed regions are interleaved
with tiny zones of high-speed motion. The main role in this intermittency is
attributed to quasi-streamwise vortices formed in the near-wall layer [1, 8, 19].

Their anisotropic dynamics are Reynolds-number dependent. Sweeps from
the outer layer toward the wall induce strong variations of the wall-normal ve-
locity. The cross-channel correlation in the turbulent velocity field is amplified
by merging of near-wall small-scale structures and their eruptions towards the
outer region [6, 7, 18].

For a high Reynolds flow, the LES at moderate resolution has to be com-
bined with a SGS model for the non-resolved turbulent motion. The majority
of SGS models are focused on simulation of turbulent stresses generated by
the non-resolved velocity field [3, 10, 14]. In these models the structure of
subgrid flow is supposed to be independent of the Reynolds number, i.e. to
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be not intermittent. Therefore the approach recently proposed by Sabelnikov
[15] is focused directly on the stochastic modeling of the subgrid acceleration
(LES-SSAM).

It was shown, by Kolmogorov’s scaling, that, for a given filter width ∆,
the non-resolved acceleration may be substantially greater than the resolved
acceleration: (akak)/(a′

ia
′

i) ≈ (η/∆)2/3, where ak and a′

i represent resolved

and non-resolved accelerations and η = L/Re
3/4

L is the Kolmogorov’s length
scale. This implies that in any SGS model, which is aimed to introduce the
intermittency effects, the non-resolved acceleration must be a key variable.
This motivated us to set up a new stochastic model for the subgrid acceleration
of wall bounded flow. The aim of this paper is to assess the capability of the
new model to reproduce the near-wall behavior compared to a standard LES
and DNS.

2 LES-SSAM approach and model formulation

In the LES-SSAM framework of Sabelnikov [15], it is consider that the total
instantaneous acceleration, governed by the Navier-Stokes equations, can be
represented by the sum of two parts: ai = ai + a′

i. The first part represents
the spatially filtered total acceleration: ai = ∂ui

∂t + ∂ukui

∂xk
, and is equivalent,

with spatial filtering of the Navier-Stokes equations, to:

ai ≡
dui

dt
= −1

ρ

∂p

∂xi
+ ν∆ui ;

∂uk

∂xk
= 0 (1)

with ν the kinematic viscosity. The second part is associated with the total
acceleration in the residual field and is considered as a stochastic variable. In
the LES-SSAM approach, eq. 1 is modeled in the framework of the classical
LES approach. The resulting model-equation, which reconstructs an approx-
imation for the non-filtered velocity field, writes then as:

∂ûi

∂t
+ ûk

∂ûi

∂xk
= −1

ρ

∂p̂

∂xi
+

∂

∂xk
(ν + νt)

(

∂ûi

∂xk
+

∂ûk

∂xi

)

+ â′

i ;
∂ûk

∂xk
= 0 (2)

where •̂ represents a synthetic field and νturb is given by an eddy viscosity
model (e.g. the Smagorinsky subgrid model).

In [15] a model have been introduced for subgrid scale acceleration in
isotropic and homogeneous turbulent flow. For further development of the
LES-SSAM approach, we propose a new model for turbulent channel flow. We
introduce the separation of variables for the non-resolved acceleration â′

i . On
the basis of our DNS for turbulent channel flow (see table 1) and experiences
[9, 11, 12], |a|, the modulus of the subgrid acceleration and ei its orientation,
are two independent random variables, characterized by long memory and
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rapid decorrelation, respectively. Then the non-resolved acceleration is written
as:

â′

i = |a|ei (3)

For |a|, our proposal is to emulate the modulus of the non-resolved accel-
eration in the following form:

|a| = fδyu2
∗
/ν (4)

where δy is the cell size in the normal to the wall direction and u∗ the friction
velocity, u2

∗
/ν ≡ ∂u

∂y |wall; so δyu2
∗
/ν will be considered as a typical normal

to wall velocity increment in the near to wall region. f is the subgrid fre-
quency, considered as a stochastic variable. The frequency f is supposed to
have a stochastic evolution from the wall to the outer flow driven by the
non-dimensional parameter τ defined as follows:

τ = −ln

(

h − y

h

)

(5)

where h is the channel half-width, and y is the wall distance (y = 0 : τ =
0 and y → h : τ → ∞). The near-wall region is characterized by strong
velocity gradients (high values of f), which decrease in mean toward the outer
flow through the highly intermittent boundary layer. Thereby we assumed
that with increasing of the normal distance from the wall, the frequency f
is changing by a random independent multiplier α (0 < α < 1), governed

by distribution q(α),
∫ 1

0
q(α)dα = 1, which is in principle unknown. In other

words, we apply the fragmentation stochastic process under scaling symmetry
for the frequency f . From [4], we derive the following stochastic equation
corresponding to this process:

df =
(

〈lnα〉 + 〈ln2α〉/2
)

fdτ +
√

〈ln2α〉/2fdW (τ) (6)

where 〈lnkα〉 =
∫ 1

0
q(α)lnkαdα ; k = 1, 2, and dW (τ) is the Wiener process

(〈dW (τ)〉 = 0 and 〈dW (τ)2〉 = dτ , with τ given by eq. 5). In the present
study, parameters are chosen in the following form:

−〈lnα〉 = 〈ln2α〉 = Re
1/3

+ (7)

where Re+ is the Reynolds number, based on the friction velocity and the
channel half-width. The starting condition, τ = 0, for this stochastic process
(the first grid cell on the wall) is given as follows. We introduce the character-
istic value of the frequency f at the wall f+ = λ/u∗, where λ is determined,
as a Taylor-like scale, which can be estimated by the Kolmogorov’s scaling in
the framework of definitions of wall parameters. The Reynolds number, based

on friction velocity, is Re+ = u∗h/ν = h/y0 ≈ Re
3/4

h where y0 is the thickness
of the viscous layer, and Reh is the Reynolds number based on the center-line
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velocity. One then yields: λ ≈ hRe
−1/2

h ≈ hRe
−2/3

+ . Similar to Kolmogorov-
Oboukhov 62, the starting condition for the random path given by eq. 6 is
sampled from the stationary log-normal distribution of f/f+:

P0 (f/f+) =
f+

f
√

2πσ2
e
−

(ln(f/f+) − µ)
2

2σ2 (8)

with parameters σ2 = ln 2 and µ = − 1

2
σ2, such that 〈f〉 = (〈f2〉 − 〈f〉2)1/2 =

f+. The stochastic process giving by eq. 6 with initial condition from eq. 8 will
relax f from a log-normal distribution at the wall (τ = 0) to the power distri-
bution as the distance to the wall increases (τ → ∞). The evolution through
the channel, for distributions of the frequency predicted by the stochastic
equation can be compared with the evolution of the frequency computed from
DNS, via eq. 4. According to fig. 1a SSAM ensures a good relaxation of the
frequency, as the distance to the wall increases.
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Fig. 1. (a) Distribution of f/f+ from SSAM (cross) and comparison with DNS
(line) at Re+ = 590, for several distances from the wall. (b) Variance of θ for small
scale acceleration from DNS (line) for Re+ = 180, 590 and 1000 and from SSAM
(cross). Straight line denote the variance of θ for an isotropic orientation.

In order to emulate the orientation vector of the subgrid scale accelera-
tion, ei, we consider a random walk evolving on the surface of a sphere of
unity radius. The orientation vector may be defined by two angles which are
longitude φ and latitude θ:







ex = cos(θ) cos(φ)
ey = sin(θ)
ez = cos(θ) sin(φ)

(9)

The φ angle characterizes the direction in the streamwise-spanwise (x, z)
plan, and the other one, θ, defines the orientation in relation to the normal to
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Fig. 2. Coordinate system.

wall direction (θ = 0 means acceleration is parallel to the wall, and θ = ±π/2
means acceleration is normal to the wall), as can be seen on fig 2. First the
computation of ei from DNS was performed. The result are shown in fig. 1b.
It is seen that ei relaxes toward isotropy with increasing distance from the
wall. Note that in the case of full isotropy, the distributions of θ and φ are
respectively given by Pisotropic(θ) = cos(θ)/2 and Pisotropic(φ) = π/2.

In order to represent this tendency towards isotropy, we implement a Brow-
nian motion on the sphere. This motion will defines the evolution of the unit
vector ei. Each increment de of the random walk is given by

de = ζe × dW(dy+) (10)

where dW(y+) is a 3-D Wiener process (〈dW(y+)〉 = 0 and 〈dW(y+)2〉 =
dy+, with y+ the distance to the wall in wall unit) and × denotes the vector
product. The constant ζ is given to be consitant with the evolution of orienta-
tion vector computed from DNS. We choose ζ = 25 which is the characterisic
thickness (in wall unit) of the layer near the wall where the orientation is
strongly anisotropic. As the distance to the wall increases the random walk
covers all the surface of the sphere, ensuring the relaxation towards isotropy
for the subgrid scale acceleration orientation. This process is initialized on the
wall with:

{

Pθ(θ, y
+ = 0) = δ(θ)

Pφ(φ, y+ = 0) = 1/2π if 0 ≤ φ < 2π
(11)

where Pθ and Pφ are the distribution of θ and φ respectively, and δ is the Dirac
distribution, i.e. the orientation vector at the wall is parallel to the wall. The
initial condition 11 is coherent with DNS. On fig. 1b we present the evolution
of the variance of θ given by eq. 9, eq. 10 and eq. 11 and the one computed
from the small-scale acceleration of DNS. Good agreement with the DNS is
achieved.

3 Numerical Results and discussion

In order to make a posteriori tests of this subgrid scale model for accelera-
tion we ran simulations of a pressure driven turbulent channel flow for three
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Table 1. Summery of parameters used for numerical simulations

Name Re+ Rec Nx × Ny × Nz ∆x+ × ∆y+ × ∆z+ Cs A/h

DNS 587 12490 384 × 257 × 384 7.2 × (0.04 ∼ 7.2) × 3.6 - -
DNS [13] 587 12547 384 × 257 × 384 9.7 × (0.04 ∼ 7.2) × 4.8 - -

LES 587 14160 64 × 65 × 64 87 × (0.71 ∼ 29) × 29 0.16 0.015
LES-SSAM 587 12760 64 × 65 × 64 87 × (0.71 ∼ 29) × 29 0.16 0.015

DNS 1000 22250 512 × 385 × 512 8.2 × (0.03 ∼ 8.3) × 4.1 - -
DNS [5] 934 20960 3072 × 385 × 2304 7.6 × (0.06 ∼ 7.6) × 3.8 - -

LES 1000 25430 96 × 97 × 96 99 × (0.53 ∼ 33) × 33 0.16 0.009
LES-SSAM 1000 23380 96 × 97 × 96 99 × (0.53 ∼ 33) × 33 0.16 0.009

LES 1000 25500 64 × 65 × 64 147 × (1.2 ∼ 49) × 49 0.2 0.015
LES-SSAM 1000 23700 64 × 65 × 64 147 × (1.2 ∼ 49) × 49 0.2 0.015

DNS [5] 2003 48680 6144 × 633 × 4608 8.2 × 8.9 × 4.1 - -
LES 2000 49350 128 × 129 × 128 147 × (0.60 ∼ 49) × 49 0.16 0.006

LES-SSAM 2000 48950 128 × 129 × 128 147 × (0.60 ∼ 49) × 49 0.16 0.006
LES 2000 52640 64 × 65 × 64 295 × (2.4 ∼ 98) × 98 0.2 0.015

LES-SSAM 2000 49050 64 × 65 × 64 295 × (2.4 ∼ 98) × 98 0.2 0.015

Reynolds numbers: Re+ = 590, 1000 et 2000. We used a pseudo-spectral
method with integration in time by the explicit Adam-Basforth algorithm for
convective terms, and by semi-implicit algorithm for diffusion terms. Further
details about the computational code can be found in [2].

The results of LES-SSAM tests have been compared with standard LES
and DNS. We used our own DNS data as well as the DNS data from Moser
et al. [13] and from Hoyas and Jiménez [5]. For LES and LES-SSAM simula-
tions the classical Smagorinsky model with a wall damping function for the
turbulent viscosity has been applied [16]:

νturb = (Cs∆fV D)2|S|
|S| = (2SijSij)

1/2

fV D = 1 − e−y/A

(12)

with Cs the Smagorinsky constant, ∆ = (∆x×∆y×∆z)1/3 the typical cell size,

Sij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

the resolved rate of strain tensor, fV D the Van Driest

function and A the constant controlling the damping of fV D. The constant A
is computed in order to fulfill the suggestion of Shur et al. [17] for the subgrid
length-scale ℓ definition: ℓ = min(y,∆), y is the distance to the nearest wall.
We choose A such that ∆fV D ∼ min(y,∆) by least square regression. The
parameters used for these simulations are summarized in table 1.

Note that in this code, Reynolds number are imposed via the setting of
ν and − 1

ρ
∂P
∂xi

(the mean pressure gradient). One may use Dean’s correla-

tion (Dean, 1978): ν = 0.110UchRe−1.1296
+ and − 1

ρ
∂P
∂xi

= Re2
+ν2/h3, with Uc

the center-line velocity, to choose suitable values. As shown in table 1, the
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Reynolds numbers computed from LES-SSAM are closer to the DNS than the
ones computed by LES. For a given set of parameters (ν and − 1

ρ
∂P
∂xi

), LES-
SSAM improves both center-line velocity and mass flow rate estimations.

For simplicity reasons, in the following, we only present results from LES-
SSAM and LES with a 64 × 65 × 64 grid for the three Reynolds numbers. It
should be noted that for finer resolutions the differences between LES-SSAM
and standard LES are less pronounced, but still present.

Fig. 3a shows evolution of the mean velocity across the channel. As pointed
out in table 1 it is clear that LES-SSAM improves mean flow rate estimation
as well as center-line velocity prediction. Moreover the mean velocity profile
follows the logarithmic law contrary to LES.

On fig. 3 profiles of the standard deviation for streamwise, spanwise and
normal to wall velocities are also presented. Standard deviations of streamwise
velocity are notably improved. The peak position obtained by LES-SSAM is
closer to the DNS than the one obtained with LES. For the spanwise velocity
standard deviation the improvement is less visible. However, note that the
shape of the profile obtained by LES-SSAM is closer to the DNS one, even if
it is overestimated. Finally, the normal to the wall velocity standard deviation
is slightly improved in comparison with LES.

Fig. 4a illustrates the computation of turbulent and viscous stresses,
τturb = −ρ〈u′v′〉 and τvisc = −ρν〈∂u

∂y 〉, respectively (〈.〉 denotes ensem-

ble average). The results are presented as ratios τturb/(τturb + τvisc) and
τvisc/(τturb + τvisc). Here again the advantage of the LES-SSAM approach
versus the classical LES is explicitly seen, and can be interpreted as a better
estimation of momentum fluxes in the normal to the wall direction. In addi-
tion to this, from fig. 4a it can be seen that close to the wall the viscous stress
is dominant, whereas as we move away from the wall the turbulent stress be-
comes preponderant. The LES-SSAM approach enables improvement of both
the viscous and the turbulent stress away and close to the wall.

Velocity spectra are shown on fig. 4b. From this figure we can see that the
anomalous small scale (high wave number) damping inherent to LES can be
reduced by LES-SSAM. Fig. 4c represents the evolution of the longitudinal
autocorrelation coefficient for the streamwise velocity component along the
channel. Improvement of the decorrelation length can be seen, indicating that
integral length scales, and so the size of strucutres in the near wall, computed
by LES-SSAM are closer to DNS than in the classical LES.

This result is mainly due to the fact that decorrelation is ensured by small
scale fluctuations modelled with LESS-SSAM as seen by the spectra on fig. 4b.

Fig. 4d illustrates the distribution of the spanwise acceleration. The dis-
tributions obtained by DNS present stretched tails, as a manifestation of in-
termittency. From fig. 4d it can be seen that in agreement with the DNS, the
distributions of the az, obtained by LES-SSAM, present the stretched tails,
while these distributions computed by LES stay close to the Gaussian dis-
tribution. By introducing the LES-SSAM model, small scale intermittency is
included in the modelling of the acceleration.
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Fig. 3. (a) Streamwise mean velocity for Re+ = 590, Re+ = 1000 and Re+ =
2000 from bottom to top, respectively, shifted by 10 wall units upward. Standard
deviation of streamwise (u), spanwise (w) and normal to the wall (v) velocity, for
(b) Re+ = 590, (c) Re+ = 1000 and (d) Re+ = 2000 Square: LES; cross: LES-
SSAM; dash: DNS (only for Re+ = 590 and Re+ = 1000); dots: DNS from [13] for
Re+ = 590 and from [5] for Re+ = 1000 and Re+ = 2000.

4 Conclusion

In the framework of the LES-SSAM approach, a new SGS model is proposed
for the subfilter scale acceleration in order to include the intermittency ef-
fects in the near-wall region of a high-Reynolds number channel flow. In this
model, the modulus and the orientation of the non resolved acceleration are
considered as two independent stochastic variables. The modulus is a func-
tion of a subgrid frequency given by a fragmentation stochastic process under
the scaling symmetry. The mean and standard deviation of the process are
functions of the Reynolds number. For the orientation of the acceleration a
random walk evolving on the surface of a sphere is proposed. The orientation
of the acceleration is such that away from the wall the process relaxes towarss
isotropy. This was chosen in agreement with the DNS.

The results for the model proposed here are compared with DNS data
(Re+ = 590, 1000 and 2000) and standard LES. The comparisons show that
mass flow rate estimations and mean velocity profiles are improved by intro-
ducing the LES-SSAM model. In addition to this a better prediction near the
wall of the streamwise standard deviation, the viscous and turbulent stresses
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are obtained with LES-SSAM. Small scale dumping inherent to LES is avoided
with LES-SSAM. Finally, improved longitudinal velocity decorelation is ob-
tained as well as the prediction of the stretched tails in the acceleration dis-
tribution.
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