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Abstract

We analyse Nash equilibrium in time of use of a congested facility. Users
are risk averse with general concave utility. Queues are subject to varying
degrees of random sorting, ranging from strict queue priority to a completely
random queue. We define the key "no residual queue" property, which holds
when there is no queue at the time the last user arrives at the queue, and
prove that this property holds in equilibrium under all queueing regimes con-
sidered. The no residual queue property leads to simple results concerning
the equilibrium utility of users and the timing of the queue.
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1 Introduction

We generalize theVickrey (1969) analysis of bottleneck congestion to allow for
random queue sorting as well as more general scheduling preferences. The pa-
per shows that the fundamental insights of Vickrey remain valid in these circum-
stances. In spite of users being risk averse, random queue sorting turns out to
play no role for the properties of equilibrium that are relevant for regulation of
congestion.

Enormous amounts of time are lost queueing. Just for private transportation,
the cost of congestion in Europe and the US is equivalent to more than1 percent of
GDP (International Transport Forum, 2007; Texas Transportation Institute, 2007)
and unpriced congestion leads to excess urban sprawl (Arnott, 1979). Dynamic
models of traffic congestion are reviewed inde Palma and Fosgerau(2011). Con-
gestion arises not only on roads. Queues occur regularly also in supermarkets,
banks, public offices, restaurants (Becker, 1991), movie theatres, concert ticket
sales, at ski lifts (Barro and Romer, 1987) and toll road booths, in airports (Daniel,
1995), computer systems, communications systems, web services, call centers,
and many other systems. Queueing is also relevant for understanding competi-
tive markets, where queueing plays a role in allocating goods among consumers
and trade from firms is congestible (Sattinger, 2002). So it is clearly important to
understand queueing phenomena.

Economic analyses of congestion mostly assume strict first-in-first-out (FIFO)
queue discipline, whereby the order of arrival at the queue is preserved. How-
ever, non-FIFO queuing is important in reduced-form models of all non-trivial
networks, since person B who entered the network later may affect the level of per-
formance received by person A who entered the network earlier. Downtown traffic
congestion is one example of this; a swimming pool is another; and a telecommu-
nication network is yet another. There are random opportunities for overtaking on
roads; in a supermarket, FIFO applies to individual checkout lines, but not to the
supermarket checkout system as a whole (Blanc, 2009); also queueing for public
transport is often not strictly FIFO (Yoshida, 2008). An extreme case is a pure
random queue1, and an example is a (virtual) queue to get through on a busy tele-
phone line (de Palma and Arnott, 1989), where every person present in the queue
at a given time has the same probability of being served as any other person in
the queue, regardless of how long each has been in the queue. In general, we
may think that strict FIFO rarely occurs. It is thus of interest to determine the
properties of queues that are not strictly FIFO.2

1It is also possible to conceive of queues with a queue manager. In this case, a last-in-first-out
queue may be considered an opposite of a FIFO queue (Hassin, 1985).

2Arnott, de Palma and Lindsey(1996) and (Arnott, de Palma and Lindsey, 1999) analyze a
situation in which capacity varies randomly from day to day, while the queue retains the FIFO
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The economic literature has previously paid attention to the properties of user
equilibrium in queues with strict queue priority using the seminalVickrey (1969)
bottleneck model. This model offers many insights that are central to the under-
standing of congested demand peaks.Arnott, de Palma and Lindsey(1993) sum-
marize a number of these. In the Vickrey model, users arrive at a bottleneck where
they wait in a FIFO queue until they are served by the bottleneck.3 The bottleneck
serves users at a fixed rate. A continuum of users choose their time of arrival at
bottleneck into the queue to minimize a scheduling cost, which is linear in time
spent in the queue, time early and time late at the destination. The time-varying
arrival rate at the bottleneck is then determined endogenously in response to the
evolution of the queue. The model is closed by assuming Nash equilibrium.4

We extend the Vickrey model in two ways: first by allowing for random queue
sorting, and second by allowing users to have general concave utility depending
on duration in the queue as well as on time of exit from the queue. Random queue
sorting causes randomness in outcomes and the concavity of utility implies that
users are risk averse.

We then introduce the no residual queue (NRQ) property for a queue with a
general random sorting mechanism. A residual queue is a queue that remains at
the time of arrival at the bottleneck of the last user. The NRQ property is said to
hold when the queue has vanished at the time of the last arrival. By definition, the
equilibrium utilities of the first and the last user are equal. The NRQ property is
then sufficient to establish the equilibrium time interval of arrivals. A number of
useful results follow. In particular, we determine the equilibrium utility and the
marginal utility of adding users under Nash equilibrium. This is the information
that is needed in order to determine the optimal capacity provision as well the
optimal constant toll.

The basic insight is then that it is the NRQ property that underlies the elegance
of the Vickrey analysis of congestion. When the NRQ property holds, it does
not matter that the queue is subject to random sorting. Remarkably, the optimal
capacity, the optimal constant toll as well as the optimal time varying toll are
unaffected by random queue sorting.

So it is of interest to establish when the NRQ property holds. We identify a
condition on scheduling preferences that is sufficient for the NRQ property under
any degree of random queue sorting. It turns out to be sufficient that users must

property.
3The operations research literature considers systems of bottlenecks but with exogenous arrival

rate (e.g.Osorio and Bierlaire, 2009).
4The operations research literature generally considers the arrival rate as exogenous, perhaps

allowing the user to balk when he meets a long queue (Naor, 1969; Knudsen, 1972). Glazer and
Hassin(1983) discusses endogenisation of the arrival rate in a ?/M/1 queue, finding with a compact
service interval that the arrival rate is not constant.
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be always willing to arrive one minute later in exchange for spending one minute
less in the queue. This condition cannot be relaxed in general.

We also show that the optimal time varying toll is also not affected by random
queue sorting, since there is no queue under the optimal time varying toll. This
result holds regardless of whether the NRQ property holds in no toll equilibrium.

The paper is organized as follows. Section2 presents the general framework,
introduces the NRQ property, and derives the results that follow from this prop-
erty.

The remainder of the paper is devoted to establishing the NRQ property under
various degrees of random queue sorting. First, Section3 reviews and generalizes
the standard case ofstrict queue priorityand establishes that the NRQ property
holds here. Next, Section4 considers the opposite case ofno queue prioritywhere
users to be served are chosen completely at random from the queue. We establish
also the NRQ property for this case given the above condition on preferences.

Section5 considers the intermediate case, which we refer to asloose queue
priority. Under this regime, the probability of being served at timet, conditional
on being in the queue at timet, increases with the time spent in the queue. We
show that the above condition on marginal utilities is again sufficient to guarantee
the NRQ property to hold in general when queue priority is loose. Some conclud-
ing remarks are provided in Section6.

2 Model specification

ConsiderN users treated as a continuum. They must all pass through a bottleneck
which has a capacity of users per time unit. Users arrive at the bottleneck at
the back of the queue at the locally bounded time dependent rate� (a) � 0 during
the interval[t0; t1]; wheret0 and t1 are the minimum and the maximum of the
support of�: The rate� will be determined endogenously within the model as
a consequence of individual decisions. The cumulative arrival rate up to timea
is denoted byR (a) =

R a
t0
� (s) ds; andR (�) is continuous since� (�) is locally

bounded. Furthermore,R (�) is differentiable at all points of continuity of� (�) :
Users enter a vertical queue of lengthQ (a) at timea;which represents the number
of users who have arrived at the entrance of the bottleneck but not yet exited. The
queue length evolves according to5

Q (a) = R (a)�

Z a

t0

�
 1fQ(s)>0g +min ( ; � (s)) 1fQ(s)=0g

�
ds; (1)

51f�g is the indicator function for the event in curly brackets.
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soQ (�) is continuous and also differentiable at points of continuity of� (�) : De-
note the minimum and the maximum of the support of the queue lengthQ (�) as
� 0 and� 1:

The last user exits the queue at time� 1. This implies that� 1 � t1: If Q (t1) =
0; then� 1 = t1: If Q (t1) > 0; we say that there is aresidual queueat timet1:
In this case,� 1 is given byQ (t1) =  (� 1 � t1) ; since the queue length at time
t 2 [t1; � 1[ is strictly positive ifQ (t1) > 0.

We shall consider various queueing regimes. At one extreme we have the
strict queue prioritycase, considered byVickrey (1969), where the queue obeys
the first-in-first-out principle (FIFO). At the other extreme we have theno queue
priority case, where the user to exit at each instant is chosen completely at random
from the queue. Therefore the probability of exit from the queue at some instant
is the same for all users present in the queue and does not depend on how much
time each has spent in the queue. In between these two cases, we have theloose
queue prioritycase. In this case, users who are in the queue in a given instant have
a higher probability of exit if they have spent more time in the queue.

We formalize these cases below through the conditional density of exit times
f (tja) ; which describes the probability of exit at timet conditional on arrival at
the bottleneck at timea � t: This conditional density depends on the arrival rate
� (�), but it is exogenous from the perspective of a single atomistic user. In all
cases, except the strict queue priority case that is treated separately, we assume
thatf (tja) is differentiable as a function ofa:

A user arrives at the bottleneck at timea and exits at timet with a � t; such
that his duration in the queue isd = t� a: The arrival time is chosen by the user
while the exit time is determined by the queue. He has a preferred exit timet�:
Utility is associated with the duration in the queue and the deviationt� t� of the
exit time from the preferred exit time. Assume homogenous users and note that
this means, in particular, that all users have the same preferred exit timet�. Write
utility as u (d; t� t�). Utility is concave, has a unique maximum atd = 0 for
anyt � t� and a unique maximum att = t� for any duration in the queue. Given
any exit time, users strictly prefer zero duration in the queue to anything else, and
given any duration in the queue, users strictly prefer exiting at the preferred time
to anything else. With these assumptions, utility is strictly decreasing ind; strictly
increasing int for t < t� and strictly decreasing int for t > t�: The common
preferred exit time is set to zero,t� = 0; without loss of generality.

Users choose their arrival timea to maximize their expected utility given by

E (uja) =

Z 1

a

u (t� a; t) f (tja) dt: (2)
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We specify the following assumptions concerning the utility function. De-
note the partial derivatives ofu with respect to duration and exit time asu1 and
u2; respectively. We require first and second derivatives to exist, exceptu2 (d; 0)
which is not required to exist. Clearly, users who exit late are always willing to
exit one minute earlier in exchange for spending one minute less in the queue. We
require that also users who exit early are always willing willing to exit one minute
earlier in exchange for spending one minute less in the queue. This first condition
is assumed throughout the paper.

Condition 1 u1 (d; t) + u2 (d; t) < 0 for all t < 0:

We shall also have use for a second condition stating that users who exit late
are always willing to exit one minute later in exchange for spending one minute
less in the queue. For easy reference we shall call this theacceptable lateness
condition. Clearly, users who exit early always satisfy the acceptable lateness
condition. It is assumed where indicated.

Condition 2 (Acceptable lateness)u1 (d; t) < u2 (d; t) for all t > 0:

Note that we do not impose a condition on derivatives att = 0: We have not
required that utility is differentiable at these points, which allows utility to have a
kink as is the case when utility is linear, which is the case investigated byVickrey
(1969) andArnott et al.(1993). The case of linear utility will be important for
results and also helps in facilitating interpretation of results. The linear utility
formulation is6

u (d; t) = �Bd� Ct� � Dt+;

where the parametersB; C andD are strictly positive. For the linear case, condition
1 states thatC < B; while the acceptable lateness condition2 states thatD < B:
Yoshida(2008) summarizes empirical evidence and concludes that both casesD <
B andD > B are empirically relevant.

We consider Nash equilibrium in pure strategies as the benchmark for rational
behavior.7 The Nash equilibrium is defined by the requirement that, conditional
on the actions of other users, no user has incentive to change his own action. With
a continuum of homogenous users, this requirement turns into the condition that
the expected utility is constant over the times at which users arrive, i.e. over the
support of�; and not strictly larger at any other time.

Below we shall briefly touch the issue of optimal tolling. For this we need to
specify how a toll payment enters utility and a social welfare function with respect

6x+ = max (x; 0), andx = x+ � x�:
7The equilibrium concept is discussed byArnott et al.(1993).
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to which optimality is defined. Denote by� (a) a time varying toll depending on
the arrival time at the bottleneck. We define utility to be money-metric utility
with any toll payment being simply subtracted, such that utility isu (d; t)� � (a).
When expected utility is constant over users, we define a social welfare function
asN times the equilibrium expected utility plus aggregate toll revenues.

In the strict queue priority case, the exit time is given deterministically as a
function of the arrival time. We then require that utility is constant over all arrival
timesa with � (a) > 0:

In all other cases considered, exit time is random. The Nash condition implies
that the expected utility is constant, i.e.@E(uja)

@a
= 0, for all a such that� (a) > 0:

This leads to the equation

�u (0; a) f (aja) +

Z 1

a

�
u (t� a; t)

@f (tja)

@a
� u1 (t� a; t) f (tja)

�
dt = 0:

Recall thatt0 andt1 are the times of the first and the last arrival. The following
Lemma shows that in equilibrium the queue begins when the first user arrives at
the bottleneck and that the queue ends at the earliest when the last user arrives.

Lemma 1 In Nash equilibrium, the support ofQ is a finite interval with�1 <
t0 = � 0 < 0 and0 < t1 � � 1 <1:

All proofs are given in the appendix. We now introduce the no residual queue
property.

Definition 1 The no residual queue (NRQ) property holds if� 1 � t1.

The NRQ property ensures that[t0; t1] = [� 0; � 1] in Nash equilibrium by
Lemma1. This means that the first and last users experience no queue, and hence
thatu (0; t0) = u (0; t1). Moreover, all users are able to pass the bottleneck during
[t0; t1] ; which implies thatt1 = t0 + N= : These two observations pin down the
equilibrium utility as shown in the following Proposition.

Proposition 1 Consider Nash equilibria where the NRQ property holds. Then for
anyN; the interval of arrival,[t0; t1] with t0 < 0 < t1, is uniquely determined

by t1 = t0 +
N
 

andu (0; t0) = u
�
0; t0 +

N
 

�
. The expected utility of any user is

u (0; t0) : The marginal change in expected utility from additional users, at Nash
equilibria, is

@E (uja)

@N
=
1

 

u2 (0; t0) u2 (0; t1)

u2 (0; t1)� u2 (0; t0)
< 0; (3)

which decreases in the number of users.
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The preceding Proposition exhibits the central properties of the bottleneck
model. In particular, the expected utility of any user is known as a function of
the number of users, which makes it easy to derive the optimal capacity. If the
number of users is allowed to be elastic, then Proposition1 can be used to deter-
mine the optimal constant toll. Below we establish that the NRQ property holds in
Nash equilibrium under strict, loose and no queue priority and hence that Propo-
sition1 applies in all these regimes.

The following Proposition summarizes some properties of Nash equilibrium
under a toll which eliminates queueing. The Proposition considers the optimal
time varying toll, which eliminates queueing, meaning that it leads a unique Nash
equilibrium withQ (t) = 0 for all t and� (t) =  at all timest in the arrival
interval[t0; t1] : Since there is never any queue under this toll, then the Nash equi-
librium is not affected by random queue sorting.

Proposition 2 Let t̂0 be the first arrival time in Nash equilibrium with the NRQ
property as given in Proposition1. Impose a time varying toll that depends on the
arrival timea at the bottleneck given by

� (a) =
�
u (0; a)� u

�
0; t̂0

��+
:

Then there exists a unique Nash equilibrium; it hast0 = t̂0, departure rate� =  
during [t0; t1] ; andQ (t) = 0 for all t.

3 Strict queue priority

This is the case considered byVickrey (1969) and Arnott et al. (1993) in the
context of transportation and telecommunication, except for our more general
formulation of user preferences. Users exit strictly in the order in which they
arrive, hence exit time is a deterministic function of arrival time. A user ar-
riving at timea is served at timea + q (a), whereq (a) = Q (a) = : We have
q (a) = R(a)

 
� (a� t0), since there is always queue during[t0; t1]: Therefore

q0 (a) =
� (a)

 
� 1: (4)

The unique existence of Nash equilibrium is easy to establish. Utility is con-
stant during[t0; t1] in Nash equilibrium, such that

q0 (a) = �
u2 (q (a) ; a+ q (a))

u1 (q (a) ; a+ q (a))
: (5)
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With [t0; t1] determined as in Proposition1, the first-order differential equation (5)
together with (4) determines� (�) : It is immediate that this arrival rate supports
a Nash equilibrium and hence we have existence. Is is also immediate that any
Nash equilibrium must satisfy the same equations and hence we have uniqueness.
The queue satisfies the NRQ property, since if the last user arrives at timet1
whenQ (t1) > 0, then his exit time will be� 1 > t1: This implies that he could
postpone arrival until� 1 to obtain zero duration in the queue while leaving the
exit time unchanged, in contradiction of Nash equilibrium. We highlight this in a
Proposition.

Proposition 3 Under strict queue priority, there exists a unique Nash equilibrium
and it exhibits the NRQ property.

Now t1 = � 1 so that Proposition1 applies andt1 = t0 + N= : We shall
briefly review the analysis of the bottleneck model for the case of general concave
scheduling preferences.

By concavity ofu; t0 is the unique solution to the equation

u (0; t0) = u (0; t0 +N= ) :

The utility function is given byu (q (a) ; a+ q (a)) :We omit below the arguments
of u (�) to economize on notation. The first-order condition for Nash equilibrium
is @u

@a
= u1 � q

0 (a) + u2 � [1 + q
0 (a)] = 0, a 2 [t0; t1]. Using (4) leads to the

equilibrium arrival rate

� (a) =  
u1

u1 + u2
> 0; (6)

which is strictly positive on[t0; t1] by Condition1. (Condition2 is not necessary
here.)

By (6), � (a) >  exactly whenu2 > 0;which occurs exactly whena+q (a) <
0: Thus the queue builds up until time~a < 0 defined by~a + q (~a) = 0; at which
time the queue begins to diminish.

The arrival rate is decreasing. To see this fora 6= ~a; differentiate the equilib-
rium condition twice to find

(q0 (a) ; 1 + q0 (a))

�
u11 u12
u12 u22

�
(q0 (a) ; 1 + q0 (a))

T
+ (u1 + u2) q

00 (a) = 0:

The first term here is negative sinceu (�) is concave, and hence the second term is
positive. Thenq00 (a) � 0 by Condition1. Find from (4) that�0 (a) = = q00 (a) ;
such that�0 (a) � 0: The utility function is not required to be differentiable at the
point (q (~a) ; ~a+ q (~a)) :

For any small" > 0; we haveu2 (q (~a+ ") ; ~a+ "+ q (~a+ ")) < 0 and0 <
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Time
t*

a+q(a)

ψ(t-t0)

q(a)

R(a)

Figure 1: The evolution of the queue under strict queue priority with linear utility

u2 (q (~a� ") ; ~a� "+ q (~a� ")) ;whileu1 (q (a) ; a+ q (a)) < 0:Hence� (�) can
only jump down at~a: Such a jump occurs in the linear case, where the arrival rate
is �(a) =  B

B�C
for a < ~a, and�(a) =  B

B+D
for a > ~a, which is piecewise

constant with a downward jump at~a = �C
B

D
C+D

N
 
:

Figure 1 shows the evolution of the queue under strict queue priority with
linear utility. The curveR (a) is the cumulative arrival rate, the kink occurs at
the time where users exit at timet� = 0: The curve (t� t0) represents the
cumulative number of exits from the queue. The curveq (a) shows the duration in
the queue for users entering the queue at timea. It is maximal for users who exit
at timet�: The curvea+ q (a) indicates the exit time for users entering the queue
at timea:

4 No queue priority

With no queue priority, users to exit at any time are chosen at random at the rate
 such that all users present in the queue have the same chance to exit. We first
formalize this notion and show that if there is a residual queue at the timet1 of
the last arrival at the bottleneck, then the distribution of exit times conditional of
being in the queue at timet1 is uniform. Using this result, we then show that
the acceptable lateness condition2 is sufficient to guarantee the NRQ property in
Nash equilibrium under no queue priority and that the equilibrium arrival rate is
indeed positive. The acceptable lateness condition cannot be relaxed in general.

We formulate the no queue priority assumption by means of the hazard rate
using concepts and results from duration analysis (Lancaster, 1990). The hazard
rate does not depend ona as all users present in the queue at timet have the same
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probability to exit. Define the hazard rate of a user who is present in the queue at
time t as

� (t) =
f (tja)

1� F (tja)
=

 

Q (t)
; (7)

wheref (tja) andF (tja) are respectively the density and cumulative distribution
of exit time t conditional on being in the queue at timea: The survivor function
1� F (tja) can be expressed in terms of the integrated hazard by

1� F (tja) = e�
R
t

a
�(s)ds: (8)

The following technical Lemma concerns the conditional density of exit times
when there is a residual queue after the last arrival. It states that when a pool of
users exit with equal probability at a constant rate during some interval, then the
exit time for each of them is uniformly distributed over this interval.

Lemma 2 Consider the no queue priority case. Lett1 be the time of the last
arrival and assume thatQ (t1) > 0: Then the exit time conditional on being in the
queue at timea (t1 � a � � 1) is uniformly distributed over the interval[a; � 1]
with f (tja) = � (a) ; t 2 [a; � 1]. Furthermore,�0 (a) = �2 (a).

We shall now show that concave utility as defined above together with the ac-
ceptable lateness condition2 is sufficient to establish the no residual queue prop-
erty for the no queue priority case. The acceptable lateness condition states that
the marginal disutility of lateness is smaller than the marginal disutility of dura-
tion in the queue. If the queue diminishes quickly enough as arrival time increases,
users will then postpone arrival until the queue is no longer decreasing so quickly.
The second half of the Proposition establishes that condition2 is also necessary
for the NRQ property under linear utility. Hence condition2 cannot be relaxed in
general.

Proposition 4 Under no queue priority, the acceptable lateness condition2 is
sufficient for the no residual queue property to hold. Under linear utility, condition
2 is also necessary.

Proposition5 establishes that the equilibrium arrival rate is always strictly
positive under the acceptable lateness condition2 and that the condition cannot be
relaxed in general.

Proposition 5 Under no queue priority, the acceptable lateness condition2 is
sufficient for the equilibrium arrival rate to be strictly positive over the interval
[t0; t1] defined byu (0; t0) = u (0; t1). Under linear utility, condition2 is also
necessary.
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Time

t*

R

ψ(t-t0)

No queue priority

Strict queue priority

Figure 2: The evolution of the queue under no queue priority with linear utility

The proof of Proposition5 does not guarantee existence of Nash equilibrium.
However, under linear utility, the proof establishes a first-order differential equa-
tion for the equilibrium arrival rate. As in the case of strict queue priority, this both
gives us existence, since this arrival rate supports Nash equilibrium, and unique-
ness, since any Nash equilibrium must satisfy the conditions that were used to
construct the arrival rate.

Figure 2 illustrates the evolution of the queue under no queue priority and
linear utility. For comparison, the figure also shows the evolution of the queue
under strict queue priority. The kinked curves are the cumulative arrival rates.
Note that in the NQP case, the kink in the cumulative arrival rate occurs at time
t� = 0: The straight curve represents the cumulative number of exits from the
queue.

5 Loose queue priority

This section concerns the case of loose queue priority, which we shall define as
an intermediate case between the cases examined so far of strict and no queue
priority. As in the case of no queue priority, we cannot guarantee existence of
Nash equilibrium. However, we shall show that the acceptable lateness condition
2 is sufficient to establish the no residual queue property for the case of loose
queue priority; hence Condition2 implies that Proposition1 holds.

Under strict queue priority, users exit strictly in the order in which they arrive.
Under no queue priority, users present in the queue at any instant all have the same
probability of exit. The intermediate case of loose queue priority is defined by
requiring that at any instant, users whose present duration in the queue is longer
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have a higher chance to exit than users whose present duration in the queue is
shorter. So arrival time matters, even if queue priority is not strict. There are very
many possibilities for explicitly defining processes that have this property. The
example below provides one simple way to model loose priority.

Example 1 Introduce a variableN (a; t) denoting the number of users in the
queue at timet who arrived at the queue after timea; a � t. We haveN (a; t) �
Q (t) : Furthermore,N (t; t) = 0 andN (t0; t) = Q (t) : At time t, there are
Q (t) � N (a; t) users in the queue who arrived earlier thana. Users exit the
queue at the rate ; but under loose queue priority the hazard is not the same for
everybody, it depends on the time of arrivala. We want the hazard rate, denoted
� (tja) ; to increase with the duration of the stay in the queue. One possible way
of achieving this is by specifying the hazard rate to be

� (tja) = H

�
N (a; t)

Q (t)

�
 

Q (t)
;

whereH (�) is an increasing density on the unit interval withH (0) < 1. This
hazard rate increases with the duration in the queue. The definition encom-
passes strict and no queue priority as limiting cases asH (�) approaches ei-
ther a point mass at 1 or a uniform density. The hazard for the last user has

� (tjt1) = H
�
N(t1;t)
Q(t)

�
 
Q(t)

= H (0)  
Q(t)

<  
Q(t)

(t1 � t) :

Recall thatt1 is the time of the last arrival at the queue, while� 1 = t1 +
Q (t1) = is the time of the last exit from the queue. When there is a residual
queueQ (t1) > 0 then� 1 > t1:

In the case of no queue priority we noted in Proposition4 that the acceptable
lateness condition2 implies thatQ (t1) > 0 ) E (uj� 1) > E (ujt1) ; contradict-
ing that we can haveQ (t1) > 0 in Nash equilibrium. In this case the distribution
of exit times conditional on entry at timet1 is the uniform distribution over the
interval[t1; � 1]: We denoted this byF (tjt1) :

In the case of strict queue priority we noted thatQ (t1) > 0 ) u (� 1) >
u (t1) ; which again contradicts that we can haveQ (t1) > 0 in Nash equilibrium.
This happens because the last user entering at timet1 will exit at time � 1 with
probability 1.

In order to establish the no residual queue property for the case of loose prior-
ity, it is sufficient to give a condition on the distribution of exit times conditional
on entry at timet1: Denote this distribution by~F (�jt1) : We require that loose
queue priority satisfies the following condition.

Condition 3 Under loose queue priority, the distribution of exit times conditional
on arriving last, ~F (�jt1), first-order stochastically dominatesF (�jt1) ;whereF (�jt1)
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is the uniform distribution over[t1; � 1] with � 1 = t1 +Q (t1) = :

The loose queue priority condition immediately implies that if there is a resid-
ual queue, then the last user to arrive is worse off under loose queue priority than
under no queue priority (the utility function is decreasing in exit time, for any
given arrival time). Hence Proposition4 leads naturally to the following Proposi-
tion.

Proposition 6 Under loose queue priority, the acceptable lateness condition2
implies the no residual queue property in Nash equilibrium.

Hence Condition2 is sufficient to ensure that Proposition1 applies, also in the
case of loose queue priority.

6 Concluding remarks

This paper has considered a generalized version of the Vickrey bottleneck model
of congestion users having general concave utility defined over the duration in the
queue as well as the time of exit from the queue. The queue may be subject to
varying degrees of random sorting, ranging from strict FIFO queue priority to no
queue priority. The no residual queue (NRQ) property holds when the queue has
vanished at the time of the last arrival. Proposition1 shows that the NRQ property
is sufficient to derive a number of results that are useful for designing policies to
regulate congestion. In particular, the interval of arrival as well as the expected
utility of users are independent of the queueing regime, provided the NRQ prop-
erty holds. The remainder of the paper then establishes that the acceptable lateness
condition2, restricting the relation between the marginal utilities of duration and
exit time, is sufficient for the NRQ property to hold in Nash equilibrium under all
queueing regimes considered and that this condition cannot be relaxed in general.
It should, however, be acknowledged that this condition is also quite restrictive.
Under linear utility it rules out that a minute of lateness could be more costly than
a minute of travel time. In particular it rules out that there could be a large penalty
that effectively ruled out lateness.

The NRQ property is not universal. It is easy to construct straightforward cases
where it does not hold. An example is strict queue priority with linear utility but
with infinite cost of lateness, such that late exit is ruled out. In this case, there
is a unique Nash equilibrium in which users arrive at a constant rate greater than
capacity; arrivals stop at some timet1 < t� and there is a strictly positive queue at
this time; the queue dissipates during[t1; t�] and has vanished exactly at timet�:

Proposition1 crystallizes the insight that the NRQ property allows the equilib-
rium utility to be determined just as a function of the number of users. This insight

14



is behind the analyses of optimal time varying tolls in the bottleneck model, step
tolls, as well as fast lane mechanisms. Common to these analyses is that they
consider ways of manipulating the queue, for example by extracting revenue, that
do not upset the NRQ property which ensures that the equilibrium utility is unaf-
fected. Users are neutral with respect to any policy that does not affect the NRQ
property. This paper has made explicit that the NRQ property underlies these in-
sights and shown that it is robust within some limits to random queue sorting.
It is then straightforward that, e.g., step tolling and fast laning will have similar
consequences for users under random queue sorting as under strict queue priority,
although they may entail different consequences for toll revenues.

For simplicity, we have only considered the case where total usageN is con-
stant. The extension to endogenous total demand is however straightforward. A
way to proceed is be to let aggregate demand depend on the average utility ob-
tained in equilibrium; let demand be strictly increasing as a function of average
equilibrium utility and assume that demand tends to0 as average equilibrium util-
ity tends to minus infinity. Then note that Proposition1 states that the average
equilibrium is strictly decreasing as function of the number of users. Conditional
on the unique existence of Nash equilibrium for each value ofN , this is suffi-
cient to guarantee that Nash equilibrium exists uniquely whenN is allowed to be
endogenous. All results in the paper then generalize to the case of endogenous
demand.

The paper leaves open the characterization of Nash equilibrium when the NRQ
property does not hold. In that case, the convenient results of Proposition1 are not
available. The paper also leaves open the question of what happens under random
queue sorting when the acceptable lateness condition is not satisfied. It is possible
that there are combinations of queueing regimes and strictly concave utility for
which the NRQ property does hold.

We must acknowledge some further limitations of our analysis. A main sim-
plification is that we assume homogenous users, whereas heterogeneity is likely
in actual queueing situations.Lindsey (2004) presents an analysis of user het-
erogeneity for the bottleneck model with strict FIFO queue and scheduling utility
which is separable in duration in the queue and time of exit from the queue. It
may be possible to extend Lindsey’s analysis to allow for random queue sorting,
but we have not been able to do it. The simplest way to go would be to repeat an
analysis of heterogeneity that can be carried out for the case of strict queue prior-
ity and linear utility. In this case, lett�, the preferred exit time, be heterogeneous.
Then there would be only two distinct departure rates, one for users exiting early
and one for users exiting late. Users would sort ont� such that users arriving
early would also arrive during the period where the early departure rate prevails
and users arriving late would also arrive during the period where the late arrival
rate prevails. There would be a definite time at which the switch from early to late
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occurred. This property is central to the analysis of heterogeneity int� under strict
queue priority and linear utility. However, this property breaks down under ran-
dom queue sorting; then there would be a range where randomness meant it would
not be possible to know whether a user would be early or late. We therefore leave
the issue of heterogeneity for future research.
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A Proofs

Proof of lemma1.

Proof. All N users can arrive and be served without queueing during an interval
of lengthN= ; so�1 < �N= � � 0; � 1 � N= < 1: There must be arrivals
before the queue can start, sot0 � � 0: If t0 < � 0, some users can benefit from
postponing arrival sot0 = � 0 in equilibrium. Similarly,t1 � � 1; since otherwise
some users could benefit from arriving earlier. In equilibrium, there is always
queue during]� 0; � 1[ since otherwise users could benefit from moving into the
gap in the queue. The arrival rate is locally bounded so not all users can arrive at
time0. The first arrival time occurs strictly before the preferred exit time0, since
otherwise it would be possible to arrive at time0 and be served immediately.
Similarly, the last arrival time occurs strictly after time0:

Proof of Proposition 1.

Proof. The NRQ property implies thatt1 = � 1; which means thatQ (t1) = 0:
Hence the durations in the queue are zero at timest0 and t1 so thatu (0; t0) =
u (0; t1) : By Lemma1, the queue lasts fromt0 to t1 such thatN =  (t1 � t0) :
Consequently,t0 andt1 are unique due to concavity ofu (�) andt0 < 0 < t1. By
the equilibrium condition,E (uja) = u (0; t0) for all a 2 [t0; t1]. Differentiating
N =  (t1 � t0) leads to1 =  

�
@t1
@N
� @t0

@N

�
. Differentiatingu (0; t0) = u (0; t1)

leads tou2 (0; t0) @t0@N
= u2 (0; t1)

@t1
@N

, so that

@t0
@N

=
1

 

u2 (0; t1)

u2 (0; t0)� u2 (0; t1)
< 0:

Then
@u (0; t0)

@N
=
1

 

u2 (0; t0) u2 (0; t1)

u2 (0; t0)� u2 (0; t1)
< 0:

Straightforward computation establishes that whenu (�) is concave, then the mar-
ginal utility decreases

@2u (0; t0)

@N2
=
1

 2
u2 (0; t0)

3 u22 (0; t1)� u2 (0; t1)
3 u22 (0; t0)

(u2 (0; t0)� u2 (0; t1))
3 � 0;

with strict inequality whenu (�) is strictly concave.

Proof of Proposition 2.

Proof. The departure rate stated in the proposition supports a Nash equilibrium,
since utility including the toll is constant and equal tou (0; t0) for users during
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[t0; t1] and strictly lower outside. Any other departure rate with first arrival att̂0
would either lead to queueing or to exit later thant1; which would lead to some
users achieving lower utility. Any other first arrival time thant0 would lead to
utility lower thanu (0; t0) ; either for the first or the last user.

The following Lemma collects some relationships between the hazard rate
and the corresponding conditional density and cumulative distribution function.
We will use the results in the Lemma many times in the proofs below and will
therefore omit references to the Lemma.

Lemma 3 Let the hazard rate� and the correspondingf (tja) andF (tja) be as
defined above. Then the following relations hold.

f (aja) = � (a) (9)
@F (tja)

@a
= �

� (a)

� (t)
f (tja) (10)

@f (tja)

@a
= � (a) f (tja) (11)

Proof. The first assertion follows from (7), sinceF (aja) = 0: Differentiate (8) to
find that

@F (tja)

@a
= �� (a) e�

R
t

a
�(s)ds = �� (a) (1� F (tja)) :

Then the second assertion follows by substitution from (7), while the third asser-
tion follows by differentiation with respect tot:

Proof of Lemma 2.

Proof. Evaluate first1� F (tja). Let t1 � a � t � � 1: Then by (8)

1� F (tja) = exp

�
�

Z t

a

 

Q (t1)�  (s� t1)
ds

�
;

where we use thatQ (s) = Q (t1) �  (s� t1) : Make the substitutionx =
Q (t1) = � (s� t1) to find that

1� F (tja) = exp

 Z Q(t1)= �(t�t1)

Q(t1)= �(a�t1)

1

x
dx

!

=
Q (t1) = � (t� t1)

Q (t1) = � (a� t1)
=
� (a)

� (t)
:
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Use (7) to see thatf (tja) = � (a) : As the density of exit times conditional ona
is constant, the exit time is uniformly distributed. To verify the last statement of
the Proposition, simply differentiate

@� (a)

@a
= �

 Q0 (a)

Q2 (a)
=

 2

Q2 (a)
= �2 (a) :

Proof of Proposition 4.

Proof. Assume a Nash equilibrium with a residual queue at timet1 and consider
a > t1: The expected utility at timea; given by (2), is

E (uja) = � (a)

Z �1

a

u (t� a; t) dt

by Lemma2. Using the last statement of Lemma2, the derivative with respect to
the arrival timea is seen to be

1

� (a)

@E (uja)

@a
= E (uja)� u (0; a)�

Z �1

a

u1 (t� a; t) dt: (12)

Considering the following identity

u (� 1 � a; � 1)� u (0; a) =

Z �1

a

[u1 (t� a; t) + u2 (t� a; t)] dt;

we may write

1

� (a)

@E (uja)

@a
= E (uja)� u (� 1 � a; � 1) +

Z �1

a

u2 (t� a; t) dt:

Add the two expressions for@E(uja)
@a

to obtain

1

� (a)

@E (uja)

@a
=

�
E (uja)�

1

2
(u (0; a) + u (� 1 � a; � 1))

�

+
1

2

Z �1

a

[u2 (t� a; t)� u1 (t� a; t)] dt

The first term on the RHS is positive by Jensen’s inequality sinceu (t� a; t) is
concave as a function oft and the second term is strictly positive by Condition2:
Thus,E (uja) is strictly increasing on]t1; � 1[ so that

E (ujt1) < E (uj� 1) = u (0; � 1) ; (13)
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which contradicts Nash equilibrium.
To verify the second assertion of the Proposition, note that in the linear case,

1

� (a)

@E (uja)

@a
=

1

2

Z �1

a

[u2 (t� a; t)� u1 (t� a; t)] dt

=
1

2
(� 1 � a) (B� D) :

Then@E(uja)
@a

> 0 is equivalent to Condition2 and so Condition2 is also necessary.

Proof of Proposition 5.

Proof. The expression for the expected utility conditional on arrival at timea is
(2). Using (11), we express the equilibrium condition for the no queue priority
case as follows.

@E (uja)

@a
= � (a)E (uja)� u (0; a)� (a)� E (u1ja) = 0;

which can be solved using� (a) =  =Q (a) to yield

Q (a)

 
=
E (uja)� u (0; a)

E (u1ja)
:

Differentiate again and use that (1) givesQ0 (a) = � (a)�  to find

� (a)

 
= 1�

u2 (0; a)

E (u1ja)
�

@E(u1ja)
@a

� (a)E (u1ja)
: (14)

Multiply all terms in (14) by�� (a)E (u1ja) > 0 to find that� (a) > 0 iff

�� (a)E (u1ja) + � (a) u2 (0; a) +
@E (u1ja)

@a
> 0: (15)

Carry out the differentiation using Lemma3 to find that

@E (u1ja)

@a
= �� (a) u1 (0; a)� E (u11ja) + � (a)E (u1ja) :

Insert this into the inequality (15) to find that it is equivalent to

� (a) [u2 (0; a)� u1 (0; a)]� E (u11ja) > 0: (16)
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The second term is positive sinceu is concave: Therefore Condition2 implies that
� (a) > 0.

When utility is linear, (14) shows that the equilibrium arrival rate is

�(a) =

�
 B+C

B
; a < 0

 B�D
B
; a > 0:

Then� (a) > 0 implies Condition2.

Proof of Proposition 6.

Proof. Assume thatQ (t1) > 0. ThenE ~F (ujt1) � EF (ujt1), due to first-order
stochastic dominance. ButEF (ujt1) < u (0; � 1) by (13) in the proof of Propo-
sition 4. ThenE ~F (ujt1) < u (0; � 1) and the last user would prefer to arrive at
� 1 rather than att1: This contradicts Nash equilibrium. Hence we must have
Q (t1) = 0 in Nash equilibrium.
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