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MULTI-PLAYER, MULTI-PRIZE, IMPERFECTLY
DISCRIMINATING CONTESTS

ANDRÉ DE PALMA AND SOUMYANETRA MUNSHI

Abstract. This paper models success probability in imperfectly discrim-

inating contests involving multiple players and multiple prizes. This turns

out to be a generalization of Tullock’s contest success function to a multi-

player, multi-prize situation. The model can be used to analyse efforts

exerted by individuals in various real-life situations, like obtaining seats in

congested public transportation vehicles or obtaining admission into elite

educational institutes. We propose a “holistic” probability model, derive

the equilibrium efforts exerted, and analyse those efforts, the associated to-

tal costs and total dissipation, and also pricing and the optimal number of

‘seats’. We also discuss extensions of the model.

JEL Codes: C72, D04, R41
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Paris. Dynamique de l’acceptabilité: Predit and Ademe. Surprice project, Scheduling, trip timing and

scheduling preferences, Predit. He would also like to thank his former student Sue Wang (MIT) and and

Charles Maurin (Columbia). The second author would like to acknowledge the hospitality of the faculty and

students of Ecole Normale Supérieure de Cachan - this project was initiated during her visit there. She would

also like to thank Prof. Barry Sopher of Rutgers, the state University of New Jersey, for his academic as

well as non-academic help, and Professors Kalyan Chatterjee of Pennsylvania State University, Joan Walker

of University of California Berkeley, and Krishnendu Ghosh Dastidar of Jawaharlal Nehru University, for

fruitful discussions about the paper. Last, but not the least, she would like to thank Prof. Tomas Sjöström
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I. Introduction

A contest is a competitive situation in which players expend resources to win

a prize. The players could be individuals, groups, firms, lobbies, and even

countries, while the resources spent could be effort, and various kinds of ex-

penditures like expenditure on political campaigns, R & D development, or

those on arms and ammunitions build-up. Contests can be of two types - per-

fectly discriminating or imperfectly discriminating (Hillman and Riley [12]). In

a perfectly discriminating contest, the players devoting the highest resources

for the prize, are the winners. An example of such a contest would be an

all-pay auction (see Clark and Riis [6], Moldovanu and Sela [19], for example).

This paper is about imperfectly discriminating contests. In such a contest, the

players devoting the highest resources have the highest probability of winning

but do not necessarily win the contest with certainty. Examples in this category

would include political rent-seeking (Nitzan [21]), Dixit [9]), wars and battles

between countries (Hwang [14]), research development and patent races (Nti

[22]), promotion of workers (Rosen [25]), and competition in sports (Szymanski

[28]).

In such imperfectly discriminating contests, the technology (function) that

translates a player’s expended resources, into his probability of winning is

called the contest success function (CSF). Most of the studies of such con-

tests use the logit or ratio-form CSF introduced by Tullock (Tullock [29])1.

Hirshleifer (Hirshleifer [13]) had used the difference-form CSF2. Skaperdas [26]

and Clark and Riis [7] have axiomatized Tullock’s CSF. Many extensions of

this CSF have also been studied. These include, for example, axiomatization

1According to this, if players i and j simultaneously expend efforts xi ≥ 0 and xj ≥ 0 respec-
tively, then the probability of player i winning the contest is described by (see Chowdhury
and Sheremeta [8], Hwang [14], for example):

pi(xi, xj) =

{
xi

xi+xj
, if xi + xj 6= 0

1
2 , if xi = xj = 0.

2According to this, if players i and j simultaneously expend efforts xi ≥ 0 and xj ≥ 0
respectively, then the probability of player i winning the contest is described by (see Hwang
[14], for example):

pi(xi, xj) =
exp(xi)

exp(xi) + exp(xj)
.
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of the CSF with the possibility of a draw (Blavatskyy [4]), integration of the

difference and the ratio-forms axiomatically and stochastically (Hwang [14]),

extension of axiomatization of the ratio-form CSF to include groups of players

(Münster [20]), among others.

In all these studies, the focus has been on a single prize. For example, the

rent-seeking literature dwells mostly on winning a single prespecified rent. The

few extensions in multi-rent situations (like Clark and Riis [6] and Gradstein

and Nitzan [11]) the contest outcome functions are assumed to be perfectly

discriminating - so that the setting is essentially one of a generalized first-price

all-pay auction (Nitzan [21] and Clark and Riis [6]). However, many real-life

imperfectly discriminating contests can involve multiple prizes. (Consider the

examples below.)

Essentially, the attempt here is to model a situation where a limited num-

ber of identical prizes are unpriced, and so only individual effort can increase

the chance of a player gaining access to it. In doing so, however, the stan-

dard approach starts with individual preferences, and then goes on to consider

aggregation (sometimes even taking into account capacity constraints, as is

necessary in our case, where the number of prizes is smaller than the number

of players competing for them)3.

Here, on the contrary, we propose some plausible assumptions on outcomes

at the aggregate level, and then derive individual behavior from it4. This

approach is thus radically different, and to differentiate we call it a “holistic”

approach (as opposed to the usual individualistic approach), which refer to the

approach of beginning with the group behavior and then deriving individual

behavior from it.

3For example, de Palma, Picard and Waddell [3], consider an axiomatic approach to deal
with the excess demand (and the queue discipline).
4The approach is similar in spirit to the generic principal-agent framework: In this case,
the agent exerts some effort which is non-observable to the principal, though the resultant
output of such effort (say, production) is observed. The output, moreover, is typically
probabilistically related to effort exerted. Hence the principal, who wishes to maximize
effort, designs optimal contracts to that end (see Laffont and Martimort [15]). In our
model, similarly, individual efforts are not directly observed. However the outcome (the fact
that a passenger has access to a seat) is observable. As such, we can derive the individual
effort level from the resulting aggregate outcome (where some of the passengers get to sit).
Moreover, as expected, individual effort depends on efforts of all the competing individuals
(hence our set-up is one of an ‘aggregate game’ where a player’s payoff depends on his own
effort and on the aggregate efforts of all the players, see Martimort and Stole [19]).
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In Section II, the basic model that relates individual efforts to aggregate out-

comes, is described (we call the fundamental premise of this model, the “Holis-

tic” Approach with Single Effort). In an extension of the basic model (see Sec-

tion IV), we consider a situation where the individual can exert more than one

level of effort and employ a similar approach to study individual level variables

of interest. (We call this approach the “Holistic” Approach with Dual Efforts.)

In the “Holistic” Approach with Single Effort model, efforts of all the individ-

uals translate into the aggregate probability of a possible outcome, like some

passengers sitting in a limited number of seats in a public transport vehicle

(while others remain standing), or some students getting admitted in institutes

of higher education (while others not being accepted), or some households get-

ting allotted houses in a regulated housing market (while not others). From

the model, we derive the probability of an individual being successful (getting

to sit, getting admission to a coveted Institute, etc.). This probability reduces

to Tullock’s CSF in case of a single prize. Hence the scope of this model is

to better understand such imperfectly discriminating contests with multiple

prizes and multiple players. The formulation turns out to be a generalization

of Tullock’s CSF.

We then use this probability framework to study optimal effort exertion in

specific contexts. For example, in our setting, the high quality good (prize) is

subject to scarcity, while the low quality good (which a player will consume

by default if he fails to get the prize) is subject to congestion (meaning an

increase in the number of individuals consuming the low quality good, will

further lower its quality, or in other terms, increase the cost of consuming it).

However, it is always preferable to get the higher quality good, even if the

lower quality good is not subject to congestion. Moreover, a player may or

may not obtain a unit of the prize, while no player can be excluded from the

low quality good.

Our analysis yields that when costs of effort are symmetric among players,

then a symmetric Nash equilibrium exists in which all players exert the same

level of effort, and this effort first increases and then falls with congestion. We

also compute comparative statics of other variables of interest like total cost

and total dissipation. In this model we also analyse the optimal number of

prizes as a matter of policy instrument for the public authorities.
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We have also envisaged an extension of the basic model in this paper (Section

IV). Here we study effort exertion with two different types of goods, a better

quality and a lower quality good. If an agent does not get the high or the

low quality good, he has access to a third alternative (worse than getting

any of the two goods). Beginning with the “holistic” approach, and then

deriving individual probabilities of success, we show that in (the symmetric)

equilibrium, all effort will be devoted to having access to the better quality

alternative.

As an analysis of scarce resource facing excessive demand, the proposed ap-

proach is amenable to different contexts as mentioned before. Below we list the

essential characteristics of some such markets that make our model particularly

applicable.

Contest for seats in public transportation: Overwhelming demand for public

transport is a reality in many urban centres, especially in emerging economies

like India. Trains and buses, plying in and out of the cities in India, are

dangerously overcrowded5. Situation on buses in Indian cities is similar. Buses

are severely overcrowded, with some passengers forced to ride on the outsides

of vehicles and even on the roofs.

First note that once inside the bus/train, there are many (similar) seats, hence

this is a multi-prize contest with similar prizes. Moreover passengers will exert

effort to get seated, but there is no guarantee that the people exerting highest

efforts will secure seats for themselves - they will merely increase the probabil-

ity of getting seated. Hence the contest for seats is imperfectly discriminating.

It is likely that in this case, the effort exerted by an individual to get a seat

increases the more there are people competing for it.

In fact, here is an additional complexity here - the more are the people that

remain standing, the greater will be the discomfort in standing, due to limited

available space. As a consequence, it is possible that the effort exerted to get

a seat increases as the total number of users increases (since standing becomes

5For example, on suburban rail lines in Mumbai (that carry passengers from the suburbs of
Mumbai into Mumbai), peak-hour trains carry more than twice their maximum capacity,
leading to inhuman travelling conditions, with so-called ‘super dense crush loads’ of 14 to 16
standing passengers per square meter of floor space. On peak-hour trains, many passengers
are forced to hang out doors and windows or to ride between train cars or even hang on the
outsides of cars (see Pucher, Korattyswaroopam, and Ittyerah [24]).
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even more worse). This means that there is a spillover effect since the person

who is ultimately getting to sit is also having a higher level of cost of travel

(which includes cost of exerting effort) when congestion is higher since he is

having to exert much greater effort to get a seat6.

Different aspects of the transportation problem have extensively been studied

in the transportation literature and to some extent in the economics literature7.

Vickrey [31] discusses a model to study congestion of a road at a single bottle-

neck during peak time. Arnott, de Palma and Lindsey [2] study a structural

model, as an extension of Vickrey’s model ([31]) with a bottleneck congestion

for private transportation. Users compete to have access to a limited capacity

(a bottleneck, access to a bridge or a tunnel). The solution is to bet for the

better time slice. Hence, like in our present model, when queues are stochastic,

the situation resembles an imperfectly discriminating contest.

However our approach is different from these studies in that we exclusively

concentrate within a specific transportation vehicle and explicitly model efforts

of individuals and relate them probabilistically to success (defined as obtaining

a place to sit). In one of the extensions (see Section IV), we model two kinds of

efforts which, in the context of transportation, can be thought of as boarding

and sitting efforts.

Contest for admission into elite educational institutions: Admission into rela-

tively very few seats in elite educational institutions is again, an imperfectly

discriminating contest with multiple symmetric prizes - For instance, in sev-

eral countries, there is a numerous clausus. Consider an education system,

as in France, with the Grandes Écoles (which in French literally mean “great

schools” or “elite schools”) being higher education establishments outside the

main framework of the French university system. Universities mainly allow

students to organize their work the way they wish, while the work activities

are much more organized in Grandes Écoles (with a feeling of lost of freedom

for some students).

6This situation may not be representative of situations in many developed countries like
Sweden, for example, where, if a bus is crowded, in case of a vacant seat, people politely
stand and wait for someone else to sit down.
7Mohring [18] discusses the problems of urban public transport - more generally the effect
of a decline in demand for a product that involves increasing returns to scale. Vickrey
[30] discusses pricing issues with urban and suburban transport while Parry and Small [23]
studies the same for urban transport.
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Unlike French public universities which have an obligation to accept all candi-

dates of the same region who hold a bachelor’s degree (baccalauréat), the selec-

tion criteria of Grandes Écoles rest mainly on competitive written and oral ex-

ams, usually undertaken by students from dedicated preparatory classes. Some

students prefer the university, where basically everyone with a baccalauréat is

accepted since there are no capacity constraint in the university, but, the level

and/or the prestige of the Grandes Écoles is higher. Many students therefore,

aspire to go to Grandes Écoles, but all are not able to do so due to limited

intake of students8. And chances are probably higher when a candidate has

prepared and studied hard. (In such a case, however, effort should be encour-

aged, since it is not a dissipation and the effort devoted by a student is not

necessarily a social loss, unlike the case of public transportation, for example.)

Contest for getting housing in regulated housing market: A possible third ex-

ample is provided by the housing market in France. Usually two systems exist

- one is an unregulated market where a market clearing price prevails given a

free market and the other, a regulated market. In the latter case, there are long

queues to have access to the housing units, but with good enough arguments,

appropriate letters, some phone calls to the right person and at the right time,

in order words, with a sufficient level of effort, one can get a housing unit in

the regulated market. Hence competition for housing in the regulated market

is a situation of imperfectly discriminating multi-prize contest.

Contest for entering ‘pandals’: In India, during festivities, large make-shift

temporary structures of cloth and bamboo are created and decorated (often

called pandals, in local language). These pandals house Indian gods and god-

desses, and devotees and revellers make a beeline to catch a glimpse of mag-

nificent art and decoration. Entry is free but such pandals are so crowded that

people have to make sufficient efforts (stand in queues for long hours, walk long

distances etc.) to be able to make it inside - those making more effort are more

likely to succeed in catching a glimpse of all the artwork inside. However to

avoid queues, lot of other avenues are often explored - bribes are handsomely

paid to organizing committees to get entry from other sides, they try and get

VIP passes so that they can bypass the queue. All such actions can be referred

to as “effort”.

8They do not have a large student body - about 3,000 students at the largest establishment
most have a few hundred students each year.
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Contest for getting goods in church ‘give-aways’: Often churches in the US

organize give-away’s, where furniture and other household objects (like lamps,

mattresses, tables, chairs, utensils etc.) that have been donated by households

to a church, are put up in public for graduate students (and other interested

persons) to take away. All graduate students assemble ahead of time, and

when the right time is signalled, all students make a dash to get objects they

desire. Often many students may want the same thing, in which case, whoever

goes and touches the object first, gets it. Hence, like before, it is a situation

where higher effort is likely to increase the probability of success (of getting

the desired object).

Similarly, we could think of other examples where our model could be applied

like competition among cars for parking space adjacent to theatres, shopping

malls, competition for a higher rank/position in a large organization, or com-

petition to have access to medical care in highly congested medical systems.

The rest of the paper is organized as follows: Section II (“Holistic” Approach

with Single Effort) lays down the model relating efforts to outcomes. The next

Section lays down the equilibrium analysis and comparative statics. Section

IV (“Holistic” Approach with Dual Efforts) extends the model by including

two kinds of efforts while Section V analyses the model with heterogeneous

populations. Section VI concludes.

II. The Model

II(i). Probability Model: Say there are n players/travellers and n̄ < n,

many prizes/seats (which correspond to seats in a bus/train in the transporta-

tion example, or seats in a coveted educational Institute, for example). (We

cast our model with the transportation example in mind for easy exposition,

but of course, it can be applied to several other situations, as explained in the

introduction.)

The set of all possible outcomes can be represented by the collection of vectors

(1) Ω :=

{
v = (ε1(v), . . . , εn(v)) ∈ {0, 1}n :

n∑

i=1

εi(v) = n̄

}
.

The restriction
∑n

i=1 εi(v) = n̄ reflects the fact that in any outcome all the

seats are occupied (in the bus or in the educational Institute), that is, all
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prizes are taken. Note that here εi(v) = 1 means that in the outcome v

the i-th person is successful (in sitting or getting admitted), and otherwise

εi(v) = 0. Also note that the number of different outcomes in the space is

given by

|Ω| =

(
n

n̄

)
=

n!

n̄!(n − n̄)!
.

A probability on the space Ω is given by a collection P of non-negative real

numbers p
v

allotted to each outcomes v ∈ Ω, satisfying the two conditions

p
v
≥ 0, and

∑

v∈Ω

p
v

= 1.

The pair (Ω, P ) is said to form a probability space.

The question we are asking is the following: Can we have a model (a probability

space, of course the sample space Ω should be the one given above) such that

the probability of any outcome reflects the collective effort of the mode of

the outcome (the way the outcome comes about)? That is we introduce a

new assumption that describes the likely outcome (realization) of the system.

It is reminiscent of the approach used in statistical mechanics, however our

approach is different and new to the best of our knowledge. Here, from the

aggregate assumption we are able to recover individual probabilities.

Assumption 1. “Holistic” Approach with Single Effort: Let probabil-

ity p
v

be proportional to the sum of the efforts of the agents who are successful

in the outcome v as well as the efforts of the agents who are exerting efforts

to be successful but are unable to do so. That is,

(2) p
v
∝
[

n∑

i=1

εi(v)ei + λ

n∑

i=1

(1 − εi(v)) ei

]

where ei be the effort exerted by the ith agent to obtain a unit of the better

quality good out of n̄ available units, with n̄ ≤ n, i = 1, ..., n, and 0 ≤ λ ≤ 1.

This assumption means that there exists a positive constant (not depending

on the outcome) K such that

p
v

= K

[
n∑

i=1

εi(v)ei + λ
n∑

i=1

(1 − εi(v)) ei

]
.
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The following proposition lays down the value of K, the probability of an

outcome, p
v
, and the probability of ‘success’ for player i, Pr{εi = 1}:

Proposition 1. Consider the probability space given by (1). Then, under

Assumption (1), the probability of outcome v is given by

(3) p
v

= K

[
n∑

i=1

εi(v)ei + λ
n∑

i=1

(1 − εi(v)) ei

]
,

where the constant of proportionality K is given by

(4) K =
1

(n−1)!
(n̄−1)!(n−n̄)!

(
n̄+λ(n−n̄)

n̄

)∑n

i=1 ei

.

Moreover, the probability of success for player i is:

(5) Pr{εi = 1} =
n̄(n̄ − 1 + λ(n − n̄))

(n − 1)(n̄ + λ(n − n̄))
+

ei∑
j ej

(n − n̄)

(n − 1)

n̄(1 − λ)

(n̄ + λ(n − n̄))
.

Proof. Derivation of K: The derivation of the constant of proportionality

K is as follows: The non-negativity of p
v

just means that K has to be non-

negative (as the efforts ei ≥ 0). The second criterion is satisfied if and only

if

1 =
∑

v∈Ω

p
v

=
∑

v∈Ω

[
K

[
n∑

i=1

εi(v)ei + λ
n∑

i=1

(1 − εi(v)) ei

]]
.

Since K is an absolute constant and not depending i or v we can take it out

of the summations to get

1 = K
∑

v∈Ω

[
n∑

i=1

εi(v)ei + λ

n∑

i=1

(1 − εi(v)) ei

]
.

Next we interchange the order of summations

1 = K

{[
n∑

i=1

∑

v∈Ω

εi(v)ei

]
+

[
λ

n∑

i=1

∑

v∈Ω

(1 − εi(v)) ei

]}
.

In the inner sum since the effort ei does not depend on v (this is by assumption,

since we do not allow different efforts for different outcomes) we can take it

out to get

1 = K

{
n∑

i=1

ei

[
∑

v∈Ω

εi(v)

]
+ λ

n∑

i=1

ei

[
∑

v∈Ω

(1 − εi(v))

]}
.
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Now consider the inner sums over v. Here
∑

v∈Ω εi(v) is just the count for the

number of outcomes v ∈ Ω for which εi(v) = 1. That is,
∑

v∈Ω

εi(v) =
∑

v∈Ω
εi(v)=1

1.

From simple combinatorics we get that this count is same as the number of

vectors of length n − 1, with 0, 1 entries such that n̄ − 1 entries have value 1

and others have value 0. This is given by
(

n−1
n̄−1

)
. Similarly,

∑
v∈Ω(1 − εi(v)) is

just the count for the number of outcomes v ∈ Ω for which εi(v) = 0 (since

otherwise the contribution is 0). That is,
∑

v∈Ω

(1 − εi(v)) =
∑

v∈Ω
εi(v)=0

1.

From simple combinatorics we get that this count is same as the number of

vectors of length n − 1, with 0, 1 entries such that n̄ entries have value 1 and

others have value 0. This is given by
(

n−1
n̄

)
. Substituting we get the following

calculations

1 = K

{
n∑

i=1

ei

(
n − 1

n̄ − 1

)
+ λ

n∑

i=1

ei

(
n − 1

n̄

)}

= K

(
n∑

i=1

ei

)
(n − 1)!

(n̄ − 1)!(n − n̄)!

[
1

n − n̄
+

λ

n̄

]
.

Hence

K =
1

(n−1)!
(n̄−1)!(n−n̄)!

(
n̄+λ(n−n̄)

n̄

)∑n

i=1 ei

.

Substituting we can get p
v
. This completes the derivation of the probabil-

ity space in the case of our model. Now we come to the next part of the

proposition.

Derivation of individual’s probability of success: Consider person 1.

Let us compute the probability that person 1 is successful using the above

probability model:

Pr{ε1 = 1} =
∑

v∈Ω
ε1(v)=1

p
v

=
∑

v∈Ω
ε1(v)=1

K

[
n∑

i=1

εi(v)ei + λ
n∑

i=1

(1 − εi(v)) ei

]
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where K is as given by (4)

= K




n∑

i=1

ei

∑

v∈Ω
ε1(v)=1

εi(v) + λ
n∑

i=1

ei

∑

v∈Ω
ε1(v)=1

(1 − εi(v))





= K





n∑

i=1

ei

∑

v∈Ω
ε1(v)=1
εi(v)=1

1 + λ

n∑

i=1

ei

∑

v∈Ω
ε1(v)=1
εi(v)=0

1




.

Now
∑

v∈Ω
ε1(v)=1
εi(v)=1

1 =






(
n−1
n̄−1

)
if i = 1

(
n−2
n̄−2

)
if i 6= 1

,

and
∑

v∈Ω
ε1(v)=1
εi(v)=0

1 =





0 if i = 1
(

n−2
n̄−1

)
if i 6= 1

.

Substituting and simplifying, we get

Pr{ε1 = 1} =
n̄(n̄ − 1 + λ(n − n̄))

(n − 1)(n̄ + λ(n − n̄))
+

e1∑
i ei

(n − n̄)

(n − 1)

n̄(1 − λ)

(n̄ + λ(n − n̄))
.

Substituting subscript 1 with i, we can get (5). This completes the proof. �

Notice that in this model if λ = 0, we see that the probability of any outcome

depends on the efforts of the people who are successful only, while λ = 1 means

the probability of any outcome depends equally on the efforts of those who are

successful as well as those who are not so. For any 0 < λ < 1, it means the

efforts of those who are successful contribute more towards bringing about the

outcome than the efforts of those who remain unsuccessful.

II(ii). Heuristic interpretation of probability. Consider the transporta-

tion example for an interpretation of the probability as follows: Let n people

be divided into φ number of clusters, with n
φ

number of people in each cluster,

and let each cluster fight for n̄
φ

seats. For example, let n = 100, n̄ = 50, and

φ = 25. This means that there are 100 people divided into 25 groups of 4

people each, and each group is fighting for 2 seats.
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More generally, consider individual i belonging to cluster J . In this case,

Pr{εi = 1} =
n̄

(n − φ)(n̄ + λ(n − n̄))

[
n̄ − φ + λ(n − n̄) + (n − n̄)(1 − λ)

ei∑
j∈J ej

]

which we get by replacing n by n
φ
, and n̄ by n̄

φ
, and by summing efforts of

people in the cluster in which i belongs. Now as φ → n̄, we get

Pr{εi = 1} =
n̄

n̄ + λ(n − n̄)

[
λ + (1 − λ)

ei∑
j∈J ej

]
.

Moreover, if now λ → 0, we get the Logit functional form as9:

Pr{εi = 1} =
ei∑

j∈J ej

.

That is, when n people are divided into n̄ groups of n
n̄

people each, so that

each group is fighting for 1 seat, moreover the weight attached to the efforts

of people who cannot sit is 0, then the probability of getting to sit is just the

relative effort.

Now suppose the sum of efforts in each cluster was equal, then
∑

j∈J ej =∑
i ei/n̄. Hence, in this case, we get

Pr{εi = 1} = n̄
ei∑
j ej

.

We can verify that we get
∑

i Pr{εi = 1} = n̄ (see Observation 3 below for

details).

II(iii). Properties of the probability model: Other observations that fol-

low from the general formulation are enumerated as follows:

9Also notice that the probability to get the better quality good can be interpreted as in a
dogit model. The dogit model is written as:

pi =
eVi + θi

∑
j eVj

(1 +
∑

j θj)
∑

j eVj
; i, j = 1, ..., N,

where pi is the probability of choosing ith of the N alternatives, Vi is a function describing
attributes of the ith alternative, and θi is a non-negative parameter associated with the ith
alternative. Notice that this probability can be re-written as

pi =
θi

1 +
∑

j θj

+
1

(1 +
∑

j θj)

eVi

∑
j eVj

; i, j = 1, ..., N

which is of the same form (with Vi’s set to 1) as the probability of getting the better quality
good in (5). See Anderson, de Palma, and Thisse [1], and Gaudry and Dagenais [10], for
example.
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Observation 1. If λ = 1, we get

Pr{εi = 1} =
n̄

n
,

which is the equal probability model. This means that if people’s efforts are

equally weighted in the probability of an outcome, irrespective of whether they

are ultimately successful or not, then each individual has the same probability

of being successful, irrespective of effort levels.

Observation 2. If effort is symmetric, that is ei = e, we get

Pr{εi = 1} =
n̄

n
,∀i

again yielding the equal probability model. This means that if every individual

exerts the same effort, then each person’s probability of being successful is the

same, irrespective of the weight of the efforts of the people who are ultimately

not successful (λ).

As expected, we can check that for an individual exerting maximum effort, that

is for ei = maxj{ej}, we have ei∑
j ej

> 1
n
, so that Pr{εi = 1} > n̄

n
. Similarly,

for an individual exerting minimum effort, that is for ei = minj{ej}, we have
ei∑
j ej

< 1
n
, in which case Pr{εi = 1} < n̄

n
.

Observation 3. The expectation of random variable εi (which is 1 if the ith

person gets the better quality good and 0 otherwise), is given by10

E(εi) = 1 × Pr(εi = 1) + 0 × Pr(εi = 0) = Pi.

Now
∑

i E(εi) = E (
∑

i εi) = E(n̄) = n̄. But
∑

i E(εi) =
∑

i Pi. In this case

too, we can verify that
∑n

i=1 Pr{εi = 1} = n̄.

Observation 4. The probability of being successful is increasing in one’s efforts

(and decreasing on other’s efforts). Hence

∂ Pr{εi = 1}
∂ei

=
n̄(n − n̄)(1 − λ)

(n − 1)(n̄ + λ(n − n̄))

[∑
j ej − ei

(
∑

j ej)2

]
> 0.

Hence if ei > ej, then Pr{εi = 1} > Pr{εj = 1}, i.e., if i spends more effort

than j, i has more chance to find a seat than j.

10It is easy to derive the variance of εi. It is as follows: Variance{εi} = E(εi − E{εi})2 =
E(εi − Pi)

2 = E(ε2
i + P 2

i − 2Piεi) = Pi + P 2
i − 2P 2

i = Pi − P 2
i = Pi(1 − Pi) = Pr{εi =

0}Pr{εi = 1}.
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However, the rate of increase in probability is falling. That is,

∂2 Pr{εi = 1}
∂e2

i

= − n̄(n − n̄)(1 − λ)

(n − 1)(n̄ + λ(n − n̄))

[
2(
∑

j ej − ei)

(
∑

j ej)3

]
< 0.

Hence there is ‘decreasing returns to effort’ in the sense that increasing efforts

increases the chances of procuring the better quality good but at a diminishing

rate.

Observation 5. Suppose we are interested in the finding out how the probability

of being successful changes as the weight given to efforts of people who are

unsuccessful, λ, changes11. That is, we calculate ∂ Pr {εi=1}
∂λ

. Calculation yields

the expression for this is given as follows:

∂ Pr {εi = 1}
∂λ

=
n̄(n − n̄)

(n − 1)(n̄ + λ(n − n̄))2

(
1 − ei∑n

i=1 ei

n

)

Hence the probability increases or decreases with λ, depending on individual

effort ei, relative to the the average
∑n

i=1
ei

n
. In particular, if 1 > ei∑n

i=1
ei

n, that

is ei <
∑n

i=1
ei

n
, then ∂ Pr {εi=1}

∂λ
> 0. (Similarly, if 1 < ei∑n

i=1
ei

n, the opposite

holds.)

This means that if individual i is exerting less than average effort, then as de-

sired, his probability of success falls, as λ falls. Similarly, for someone exerting

more than the average effort, the above derivative is negative, which means

that his probability of success increases as λ falls.

The last observation means that in our probability model, the smaller λ gets,

the more the probability of success of someone who is exerting above average

effort, and lesser is the probability of success of someone who is exerting less

than average effort. In the extreme case we have λ = 0 which means the

probability of an outcome is sensitive only to the efforts of those who have

succeeded. So λ = 0 should be a good simplification to work with, without

sacrificing the essence of the model.

11Notice that in our probability model, the space Ω is essentially given by a collection Pλ

of non-negative real numbers pv,λ allotted to each outcomes v ∈ Ω, satisfying the two
conditions

pv,λ ≥ 0, and
∑

v∈Ω

pv,λ = 1.

Hence for every λ, the pair (Ω, Pλ) is said to form a probability space. Now here we want to
see if we can choose a particular λ (and hence the corresponding probability space) to work
with.
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Hereafter therefore, we work with the model assuming λ = 0 (all results hold

for the general case with positive λ, but only λ = 0 is presented here to avoid

cumbrous presentations). The following corollary lays down the probability in

this case.

Corollary 1. If λ = 0, we get

(6) Pr{εi = 1} =
n̄ − 1

n − 1
+

ei∑
i ei

n − n̄

n − 1
.

Find an example of the above probability model in Appendix A. We can also

deduce the following from above:

Observation 6. In case of a single prize, the probability of success of the ith

individual reduces to the classic Tullock CSF (obtained by substituting n̄ = 1

in (6)), given by

(7) Pr{εi = 1} =
ei∑
i ei

.

II(iv). Modelling cost of competing through effort exertion. Let there

be n̄ available prizes (which we synonymously use as the better quality good,

like seats in a bus) and n people competing for it, for example, consider a public

transportation vehicle (for example, a bus) with n people on board and which

has a seating capacity of n̄ seats, with n̄ < n. Let c̄ be the fixed cost associated

with consuming the better quality good/prize (like the cost of travelling while

being seated which could be the fatigue experienced), and g(n− n̄) be the cost

of availing the low quality option, that is cost incurred if no prize is won (like

the cost of travelling while standing) which could potentially depend on the

total number of people who are availing this option. Both c̄ and g(.) are same

for all individuals and hence have no i subscript. Assume g(.) has the property

that ∂g(.)/∂n ≥ 0 which means that the cost of availing the low quality option

cannot go down with greater number of people availing it. Also c̄ < g(0), that

is the cost of availing the better quality option is less than the cost of availing

the low quality option, even when nobody is availing it (like it is better to sit,

even when there is nobody standing inside a public transport vehicle), so that

going for the better quality product is always preferable.

Now let the probability of a person getting the better quality good or not, be

derived from the previous probability model. Hence let Pi denote the prob-

ability that a person gets the better quality good (that is Pr{εi = 1}), like
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a person getting to sit inside a public transport vehicle, while 1 − Pi is the

remaining probability of a person having to settle for the lesser quality option

(that is Pr{εi = 0}), like a person having to travel while standing inside a

public transport vehicle.

In the random probability model, Pi = n̄/n, while in the model with sequential

availability Pi = 1 for the first n̄ people boarding and Pi = 0 for the rest (n−n̄)

people. However the probability that a person finally gets the better quality

good (like getting to sit in a congested bus), depends on the effort he or she

puts in to get the good. Hence we make the probabilities a function of the

efforts of all the people in the race, according to the preceding model, so that

Pi, in our model will be given by (6).

Since exertion of effort is costly, let the cost of effort be given by χi
eα+1

i

α+1
, χi >

0, α > −1, so that the marginal cost of effort is positive and increasing, (which

means the cost of effort increases at an increasing rate with increase in effort).

Hence total expected cost of travelling (participating on the contest) in this

model becomes

(8) Ci(ei, e−i; n) = Pic̄ + (1 − Pi)g(n − n̄) + χi

eα+1
i

α + 1

where e−i = (e1, ...ei−1, ei+1, ...en). Next we turn to analysis of our model.

III. Equilibrium Analysis

Every individual i minimizes the expected cost of obtaining the good. Hence

the FOC for minimization is given by (see the following details):

∂Ci(n)

∂ei

=
∂Pi

∂ei

(c̄ − g(n − n̄)) + χie
α
i = 0,

where ∂Pi

∂ei
is given by

∂ Pr{εi = 1}
∂ei

=
(n − n̄)

(n − 1)

[∑
j ej − ei

(
∑

j ej)2

]
> 0.

Consider the symmetric case, that is χi = χ, ∀i, in which every individual

chooses the same equilibrium level of effort, call it e∗ (see Appendix C for the
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asymmetric case12). Then e∗ must satisfy

(n − n̄)

(n − 1)

[
1

ne∗
− e∗

n2e∗2

]
(c̄ − g(n − n̄)) + χe∗α = 0,

which yields

e∗ =

[
1

χ

(
n − n̄

n2

)
(g(n − n̄) − c̄)

] 1

α+1

.

The following proposition establishes that (9) is a unique Nash equilibrium of

the congestion game in effort as given by (8).

Proposition 2. Consider the congestion game in effort as given in (8). If cost

of effort is convex, (that is, α > 0), then there exists a unique Nash equilibrium

in efforts. Moreover if χi = χ, ∀i, then the equilibrium effort is symmetric and

it is given by:

(9) e∗ =

[
1

χ

(
n − n̄

n2

)
[g (n − n̄) − c̄]

] 1

α+1

.

Proof: See Appendix B.

Note that equilibrium effort depends on cost differences g(n− n̄)− c̄, and the

number of people availing the lower quality option (standing, for example),

n − n̄. Greater is the relative discomfort of the lower quality option, relative

to the better quality one, g(n − n̄) − c̄, greater is the effort, while greater is

the congestion, n− n̄, greater is the effort. We do further comparative statics

exercises as follows.

III(i). Analysis of equilibrium effort: Consider the symmetric Nash equi-

librium outcome. We first check what happens to equilibrium effort with in-

creasing congestion, that is with n increasing. Assume α > −1. Hence e∗

12Notice that in this model we have assumed that the impact of effort is the same for all
individuals. However, the individuals may differ in their abilities to exert effort (one young
passenger exerting one unit of effort may be more successful than a older one). Similarly
one hour spent on studying by a clever student can be more effective than another. In other
words, the same amount of work can be done by the cleverer student by expending lesser
effort (that is the opportunity cost of effort is lower for the better quality student). Hence
this formulation is very much reminiscent of cost differentials between types in (quality)
signaling games (see the classic job market signaling paper Spence [27].) This idea is basically
captured by the heterogeneity in the cost functions.
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increases (decreases) with n, if the following derivative is positive (negative):

∂

∂n

(
n − n̄

n2
(g(n − n̄) − c̄)

)

=

(
2n̄ − n

n3

)
(g(n − n̄) − c̄) +

(
n − n̄

n2

)
∂g(.)

∂n
.

Recall that ∂g(.)
∂n

> 0, n > n̄, and g(n − n̄) > c̄. The following proposition

summarizes the different cases.

Proposition 3. Consider the symmetric Nash equilibrium effort e∗ as given

in Equation (9). Then ∂e∗

∂n
> 0 if

(
2n̄ − n

n3

)
(g(n − n̄) − c̄) +

(
n − n̄

n2

)
∂g(.)

∂n
> 0

whereas ∂e∗

∂n
< 0, if the opposite inequality holds.

Moreover, if the cost of the low quality option, g(n− n̄), is constant, and equal

to ḡ, then: ∂e∗

∂n
> 0 if n < 2n̄; ∂e∗

∂n
= 0 if n = 2n̄; ∂e∗

∂n
< 0 if n > 2n̄.

Hence effort unambiguously increases as congestion increases if twice the num-

ber of seats is greater than the number of people on board.

Assuming g(n − n̄) is a constant function of n, we get ∂g(.)
∂n

= 0. Hence in this

case
∂e∗

∂n
=

(
2n̄ − n

n3

)
(g(n − n̄) − c̄).

The following graph lays out this case.

Effort

Number of 

passengers 

Figure 1: Change in effort with congestion
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In this case, for effort to be non-negative, we have n > n̄, hence e∗ = 0 at

n = n̄. Effort rises till n = 2n̄, and with even greater crowd, that is n > 2n̄,

effort falls with increasing n. Also

∂2e∗

∂n2
= (g(.) − c̄)

(
2

n
− 6n̄

n2

)
,

so that ∂2e∗

∂n2 < 0 for n < 3n̄, and ∂2e∗

∂n2 > 0 for n > 3n̄. That is, the curve of

effort is concave for n < 3n̄ and convex thereafter.

Similarly we can derive other plausible comparative static effects as summa-

rized in the following lemma.

Lemma 1. Consider the symmetric Nash equilibrium effort e∗ as given in

Equation (9). The change in equilibrium effort with change in parameters n̄, c̄

and χ are as follows: ∂e∗

∂n̄
< 0, ∂e∗

∂c̄
< 0, ∂e∗

∂χ
< 0.

Hence we see that greater the number of available seats, lower will be equi-

librium effort; the greater the discomfort of availing the better quality option

(like the cost of travelling while seated), lower will be equilibrium effort; the

higher the cost of exerting effort, lower will be equilibrium effort.

III(ii). Analysis of total cost. Again consider the symmetric equilibrium ef-

fort as given in proposition 2. Substituting for effort (from (9)) and probability

(which is n̄
n
), the total cost can be calculated as follows:

C∗
i (n) =c̄

n̄

n
+ g(n − n̄)

(
1 − n̄

n

)
+

χ

(1 + α)

[
1

n2χ
(n − n̄) (g(n − n̄) − c̄)

]
.

Letting f(n) =
(

n̄
n
− n−n̄

(α+1)n2

)
, we see

C∗
i (n) =f(n)c̄ + (1 − f(n))g(n − n̄)

=(1 − f(n))(g(n − n̄) − c̄) + c̄.(10)

We can calculate13 C∗
i > 0.

Notice that the expost cost of a seated person (of one availing the better quality

option) is

c̄ +
n − n̄

(α + 1)n2
(g(n − n̄) − c̄).

13Notice that 1−f(n) = 1− n̄
n

+ n−n̄
(α+1)n2 > 0 since n̄ < n so that n̄

n
< 1. Also g(n−n̄)− c̄ > 0,

that is, cost of using the low quality option is bigger than that of the high quality option.
Hence C∗

i > 0.
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Similarly, that of a person standing (of someone availing the lower quality

option) will be

g(n − n̄) +
n − n̄

(α + 1)n2
(g(n − n̄) − c̄).

Now, consider total expected costs as given in (10). Let g(.), the cost of the

low quality option, be a constant function of n. Then we have from (10),

∂C∗
i

∂n
= −f ′(n)(g(.) − c̄).

Hence sign
∂C∗

i

∂n
is opposite of sign f ′(n). Now

f ′(n) = − n̄

n2
− 2n̄ − n

n3(α + 1)
.

We can compute that f ′(n) < 0 if n < 2n̄, and hence
∂C∗

i

∂n
> 0. With n > 2n̄,

f ′(n) < 0 if α > n−2n̄
nn̄

− 1 in which case
∂C∗

i

∂n
> 0. Now α > n−2n̄

nn̄
− 1 reduces to

α + 1 >
1

n̄
− 2

n̄
.

Recall that the condition for the convexity of the objective function in the

symmetric case was α > − 2
n
. Moreover, 1 > 1

n̄
(for n̄ > 1). Hence the above

condition is always true. Hence the equilibrium expected cost per person

always rises with increased congestion.

We can also compute change in equilibrium expected cost with change in n̄.

Here
∂C∗

i

∂n̄
= −∂f(n)

∂n̄
(g(.) − c̄).

Like before, (g(.)− c̄) > 0. Hence sign
∂C∗

i

∂n
is opposite of sign ∂f(n)

∂n̄
. Also, here

∂f(n)

∂n̄
=

1

n
+

1

n2(α + 1)
> 0.

Hence
∂C∗

i

∂n̄
< 0.

The following proposition summarizes the findings14:

Proposition 4. Consider the symmetric Nash equilibrium effort e∗ as given

in Equation (9). The associated equilibrium total cost increases with increase

14Note that the total effort cost in the symmetric case is given by:

nχ
e∗(α+1)

α + 1
=

(
n − n̄

n

)(
g(.) − c̄

α + 1

)
.
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in congestion, n, and decreases with increase in the better quality good. That

is,

(11)
∂C∗

i

∂n
> 0.

(12)
∂C∗

i

∂n̄
< 0.

III(iii). Analysis of total dissipation. ‘Total dissipation’, defined as ne∗,

is the total effort exerted and dissipated due to congestion. As n increases,

there are more people exerting effort so there is an upward pressure on total

dissipation, while each person is likely to exert lesser effort (as discussed above),

which puts a downward pressure on total dissipation, hence a priori, it is not

obvious in which direction total dissipation moves. After some rearrangements,

the expression for total dissipation is given by

ne∗ = n

[
n − n̄

n2

] 1

α+1
[
g(n − n̄) − c̄

χ

] 1

α+1

.

Again for simplicity of calculations, let us assume, g(n − n̄) is a constant

function of n, and hence
[

g(n−n̄)−c̄

χ

] 1

α+1

becomes a constant, call it L. So the

expression for change in total dissipation with change in n is given by

∂(ne∗)

∂n
= L

[(
n − n̄

n2

) 1

α+1

+ n
1

α + 1

(
n − n̄

n2

) 1

α+1
−1(

2n̄ − n

n3

)]
.

Here ∂(ne∗)
∂n

> 0 when nα > n̄(α − 1), while ∂(ne∗)
∂n

< 0 when nα < n̄(α − 1).

The following proposition summarizes the findings.

Proposition 5. Consider the symmetric Nash equilibrium effort e∗ as given

in Equation (9). We have the following cases:
∂(ne∗)

∂n
> 0, if nα > n̄(α − 1); ∂(ne∗)

∂n
< 0, if nα < n̄(α − 1).

Notice that when α > 0, we get ∂(ne∗)
∂n

> 0, if n > n̄
(
1 − 1

α

)
; ∂(ne∗)

∂n
<

0, if n < n̄
(
1 − 1

α

)
. However, the reverse condition holds for α < 0. In this

case we get15 ∂(ne∗)
∂n

> 0, if n < n̄
(
1 − 1

α

)
; ∂(ne∗)

∂n
< 0, if n > n̄

(
1 − 1

α

)
.

15Also the cut-off n̄
(
1 − 1

α

)
tends to 2n̄ as α tends to −1. However since α > − 2

n
> −1

for n > 2, the cut-off is actually bounded away from 2n̄ (which is the relevant cut-off for
changes in equilibrium effort).
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Diagrammatically, we obtain the change in total cost and change in total dis-

sipation with congestion as follows:

Figure 2: Change in individual cost and total dissipation with n

III(iv). Analysis of number of ‘seats/prizes’. Suppose the social planner

contemplates on increasing the number of seats in a public transport vehicle,

or seats in a coveted educational institute. This will correspond to increasing

n̄, the better quality good, in our model. Let the per unit cost of n̄ be given

as π so that total cost of providing n̄ units of the better quality good is πn̄.

Moreover, let the ‘space’ (or resources) occupied by one unit of the better

quality good be J (this could be literally the space occupied by a seat within a

bus, or classroom space, campus accommodation, etc. for a ‘seat’ in a coveted

educational institute). Hence the total amount of ‘space’ occupied by the

better quality good is Jn̄. Let S be the total capacity (depending on the

context, this could be the total available space in a vehicle or total number of

seats in all educational institutes). Let also S be fixed (as is likely to be true

in the short run). Hence the amount of ‘space’ for the lower quality good is

S − Jn̄. Moreover feasibility implies S ≥ Jn̄.

It is also plausible that the quality associated with the low-quality good falls

as more and more of the better quality good is provided. That is, essentially,

with limited total capacity, it is possible that providing for more of one quality
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good reduces the quality of the other. For example, as more seats are pro-

vided, the space available to stand in the bus falls, and even with the same

amount of congestion, the ‘disutility’ or cost of travelling by standing, can

increase. Similarly, if more seats are provided for elite educational institutes,

it is possible for resources (teaching, administrative, housing facilities, etc.) to

be allocated more towards those institutes so that the quality of education in

the lesser quality institutes suffer.

In terms of the model, let g = g(n − n̄, S − Jn̄) with g(.) varying inversely

with S − Jn̄. Let us assume a simple functional form of g(.) as follows16:

g(n − n̄, S − Jn̄) =
n − n̄

S − Jn̄
.

with S > Jn̄. Hence the problem for the planner would be to find n̄ that

minimizes total costs which is the sum of costs of all individuals travelling as

well as costs of increasing n̄. That is, the planner minimizes:

n∑

i=1

Ci + πn̄.

Substituting all the values in the cost function, we get

n∑

i=1

Ci = n̄c̄ +
(n − n̄)2

S − Jn̄
+

(n − n̄)

n(α + 1)

[
n − n̄

S − Jn̄
− c̄

]
.

Hence the objective function for the planner becomes

n∑

i=1

Ci + πn̄ = n̄c̄ +
(n − n̄)2

S − Jn̄
+

(n − n̄)

n(α + 1)

[
n − n̄

S − Jn̄
− c̄

]
+ πn̄.

The following proposition lays down the optimal number of seats.

Proposition 6. Consider the symmetric Nash equilibrium effort e∗ as given

in Equation (9). Let S, n be large and let J(π + c̄) < 1 hold. Also let

n = S
J

(√
1 − J(π + c̄) + 1

)
. Then the first-order approximate solution of

16Note that, for this form, dg(.)
dn̄

= Jn−S
(S−Jn̄)2 . Having more seats has two consequences. If

Jn̄ < S < Jn (the problem of congestion arises when S < Jn, that is the total space required
for all the users is not available), then dg(.)/dn̄ > 0, since providing more seats decreases
the number of standing users, and thus increases congestion of standing users. On the other
hand, if Jn̄ < Jn < S, then total space available is more than that required by all the users
and hence the problem of congestion does not arise. In this case dg(.)/dn̄ < 0, since more
seats decrease the number of standing users, and thus reduce congestion of standing users.
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the optimal number of seats, n̄∗ is given by:

(13) n̄∗ =






n if n ≤ S
J

S
J
−
(
n − S

J

)
1√

1−J(π+c̄)
> 0, if S

J
≤ n ≤ n

0, if n ≥ n.

Proof: See Appendix D.

Hence if the number of agents competing is too great, then it is optimal not

to have any better quality good (like seats in a train etc.). But if it is not,

then we should have a positive optimal amount of seats. The following graph

shows the change in optimal number of seats with change in congestion.

Number of 

passengers 

Optimal 

number of 

seats

Figure 3: Change in optimal number of seats with change in n

Since S
J

≤ n ≤ n is the interesting range, we analyse this further in the

following proposition which lays down some interesting comparative statics.

Proposition 7. Consider the optimal number of seats n̄∗ as given in Propo-

sition 6. Then the following hold:

(a) n̄∗ decreases with π; (b) n̄∗ decreases with n; (c) n̄∗ decreases with c̄; (d)

n̄∗ decreases with J ; (e) n̄∗ decreases with S.

Proof: See Appendix E.

This supports the intuition that the optimal number of seats, n̄∗ falls as π, c̄,

J , or n increases (ceteris paribus). As π increases, it means the per unit cost

of providing the better quality good increases (like cost of wood for providing
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additional seats in a bus, cost of administrative and other support for extra

seat in an educational institute etc.), and hence everything else same, it is

optimal to provided less of that good.

Similarly, as c̄ increases, it means the cost associated with consuming the better

quality good is increasing (like the fatigue experienced in travelling by sitting

or the opportunity cost faced by students while studying at elite educational

institutes), in which case the optimal units of the better quality good should

fall.

Again, J increasing implies the ‘space’ occupied by one unit of the better

quality good increasing (like space occupied by a seat in a bus, or the housing,

classroom and other spaces occupied by a student in an elite educational in-

stitute), in which case, the optimal number of units of the better quality good

should go down.

Also the provision of better quality goods going down when n increases, or

congestion increases. The possible explanation could be that with increasing

n the goal of the planner is to provide as many units of the good as possible to

the consumers but since the better quality good involves more space and cost,

it is optimal to reduce the supply of such better quality goods and increase that

of the inferior quality goods. This explains why there are not too many seats

in a bus in crowded countries like India - the goal is to accommodate as many

people as possible, even if they are standing, in order to provide transportation

to maximum number of people.

However, as total capacity S increases (for example, if the size of the interior

of a bus increases, or new educational institutes come up), the optimal number

of seats increases.

IV. Model with different efforts for different types of goods

Let there be n people wanting to buy a unit of the good - either low or high

quality (assume there are two kinds of prizes - a good one and a not-so-good

one). Let n̄ be the number of units available of the higher quality good. Hence

only n̄ number of people get the better quality good, while the remaining n− n̄

people either consume the low quality good or do not consume any good at



28 ANDRÉ DE PALMA AND SOUMYANETRA MUNSHI

all. Let εi be the possible outcome for every individual. Then

εi =






−1, if i does not get any good at all

0, if i gets the low quality good

1, if i gets the higher quality good.

Hence the space of all outcomes Ω will be given by

Ω =

{
v̄ = (ε1, ..., εn) : εi = −1, 0, 1;

∑

i

max{εi, 0} = n̄

}
.

Let eil be the effort exerted by the ith person to get the low quality good, and

eih be the effort exerted by the ith person to get the higher quality good.

Assumption 2. “Holistic” Approach with Dual Efforts: Let probability

pv̄ of outcome v̄ be proportional to the sum of the efforts of the people who are

successful in obtaining the better quality good in the outcome v̄ as well as the

efforts of the people who are successful in obtaining the inferior quality good in

the outcome v̄. That is

pv̄ ∝






∑

v̄∈Ω
εi(v̄)=0

eil +
∑

v̄∈Ω
εi(v̄)=1

eih





.

Again, notice that this formulation is similar to the basic model with λ = 0,

since the people who do not finally get any good, do not contribute to the

probability of any outcome. This is just a simplifying assumption since this

modest addition leads to a sufficiently complicated model.

The formulation means that if i does not get any good, εi = −1, and his

contribution to both the terms is 0. If i gets the lower quality good, then

εi = 0, so that his contribution to the first expression is eil while that to the

second expression is 0, so that his total contribution is his effort of getting the

low quality good eil. If i gets the higher quality good, then εi = 1, and his

contribution is eih.

If K is the constant of proportionality, then

pv̄ = K ×






∑

v̄∈Ω
εi(v̄)=0

eil +
∑

v̄∈Ω
εi(v̄)=1

eih





.
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The following lemma lays down the value of K.

Lemma 2. Let
∑

i eil = eL and
∑

i eih = eH . Then K is given by

K =
1(

n

n̄

)
2(n−n̄−1)

{
eL(n−n̄

n
) + 2 n̄

n
eH

} .

where eil is the effort exerted by the ith person to get the low quality good, and

eih be the effort exerted by the ith person to get the higher quality good.

Proof: See Appendix F.

Let us now compute the probability that a particular person, say 1, has ob-

tained the low quality good, that is ε1 = 0.

Pr{ε1 = 0} = K ×






∑

i

eil





∑

v̄∈Ω
εi(v̄)=0
ε1(v̄)=0

1




+
∑

i

eih





∑

v̄∈Ω
εi(v̄)=1
ε1(v̄)=0

1










.

Now calculating as before, we get the following:

∑

v̄∈Ω
εi(v̄)=0
ε1(v̄)=0

1 =






(
n−1

n̄

)
× 2(n−1−n̄) if i = 1

(
n−2

n̄

)
× 2(n−2−n̄) if i 6= 1,

∑

v̄∈Ω
εi(v̄)=1
ε1(v̄)=0

1 =





0 if i = 1
(

n−2
n̄−1

)
× 2(n−1−n̄) if i 6= 1.

Substitution and some lengthy calculations yield:

Pr{ε1 = 0} =
n − n̄

2(n − 1)
+

n − n̄

2(n − 1)
× e1l(n + n̄ − 1) − eL − 2n̄e1h

eL(n − n̄) + 2n̄eH

.

Hence for any individual i, the following proposition lays down the expression

of the probability for a person to obtain the low quality good:

Proposition 8. The probability that person i has obtained the low quality good

is

(14) Pr{εi = 0} =
n − n̄

2(n − 1)
+

n − n̄

2(n − 1)
× eil(n + n̄ − 1) − eL − 2n̄eih

eL(n − n̄) + 2n̄eH

.
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We can also calculate the probability that person 1 has obtained the higher

quality good, that is ε1 = 1, as follows:

Pr{ε1 = 1} = K ×






∑

i

eil





∑

v̄∈Ω
εi(v̄)=0
ε1(v̄)=1

1




+
∑

i

eih





∑

v̄∈Ω
εi(v̄)=1
ε1(v̄)=1

1










.

Calculating, we get the following:

∑

v̄∈Ω
εi(v̄)=0
ε1(v̄)=1

1 =





0 if i = 1
(

n−2
n̄−1

)
× 2(n−1−n̄) if i 6= 1,

∑

v̄∈Ω
εi(v̄)=1
ε1(v̄)=1

1 =






(
n−1
n̄−1

)
× 2(n−n̄) if i = 1

(
n−2
n̄−2

)
× 2(n−n̄) if i 6= 1.

Again, substitution and some lengthy calculations yield:

(15) Pr{ε1 = 1} =
(n − n̄)eL + 2(n − n̄)e1h − (n − n̄)e1l + 2(n̄ − 1)eH

(n − 1)
(
eL

n−n̄
n̄

+ 2eH

) .

Hence for any individual i, the following proposition summarizes the probabil-

ity of a person to obtain the better quality option:

Proposition 9. The probability that person i obtains the higher quality option

is

(16) Pr{εi = 1} =
(n − n̄)eL + 2(n − n̄)eih − (n − n̄)eil + 2(n̄ − 1)eH

(n − 1)
(
eL

n−n̄
n̄

+ 2eH

) .

Let Pih be the probability of getting the higher quality good (that is Pr{εi =

1}), Pil be the probability of getting the lower quality good (that is Pr{εi = 0}),
and (1−Pil −Pih) is the remaining probability of not getting any good at all.

Hence, in the symmetric case, with eil = el,∀i and eih = eh,∀i, we get, the

probability of a person getting the better quality good, Ph and that of a person

getting the poorer quality good Pl (notice there is no i subscript since it is the
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same for all i), as follows:

Pl =
n − n̄

2(n − 1)
+

(n − n̄)

2n(n − 1)

el(n̄ − 1) − 2n̄eh

el(n − n̄) + 2n̄eh

(17)

Ph =
n̄

n
.(18)

Observation 7. Notice that Ph is just as in the random probability model.

That is, the probability that one gets the higher quality good when everybody

exerts equal effort to get the higher and the lesser quality goods, is given as in

the random probability model by n̄
n
.

Modelling cost of travelling: Let each individual i exert effort eih for the

high-quality good and eil be the effort the individual exerts for the low-quality

good (like exam preparation etc. for getting into elite educational institutes,

and that for getting into other institutes, in the context of education, or effort

to only board and stand or board and sit, in the context of travelling in public

transportation).

If individual i gets the better quality good (after having exerted effort eih for

the high quality good and eil for the low quality good good), his cost is (assume

for simplicity that χih = χh,∀i and χil = χl,∀i)

c̄ + χh

eαh+1
ih

αh + 1
+ χl

eαl+1
il

αl + 1
.

Similarly, if individual i gets the lower quality good after having exerted effort

eih and eil, his cost is (for simplicity, we assume g(n − n̄) = ḡ, a constant

function, and not varying with the level of congestion)

ḡ + χh

eαh+1
ih

αh + 1
+ χl

eαl+1
il

αl + 1
.

Let τ be the cost of not being able to get any good at all (like the time cost

of delay if one misses a bus, or the psychological cost of not being admitted to

any educational institute for higher studies and so on). So if individual i fails

to get any good, after having exerted effort to obtain either type of the good,

his cost is

τ + χh

eαh+1
ih

αh + 1
+ χl

eαl+1
il

αl + 1
.

Moreover since we assume that getting a good is always preferable to not

getting any good, it must be true that c̄ ≤ ḡ ≤ τ . Hence the expected cost for
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an individual i is

Ci =Pihc̄ + Pilḡ + (1 − Pih − Pil)τ + χh

eαh+1
ih

αh + 1
+ χl

eαl+1
il

αl + 1
.

The following proposition lays down the cost-minimizing effort levels:

Proposition 10. Consider the congestion game with two types of efforts,

namely effort eh for the high-quality good and effort el for the low quality

good. Moreover, consider linear cost of effort, that is, αl = αh = 0, ∀i. Then

the cost-minimizing effort levels are given by

e∗l = 0(19)

e∗h =
n − n̄

2n2χh

(τ − 2c̄ + ḡ).(20)

Proof. The F.O.Cs for interior optimum efforts will be as follows:

∂Ci

∂eih

=
∂Pih

∂eih

(c̄ − τ) +
∂Pil

∂eih

(ḡ − τ) + χhe
αh

ih

∂Ci

∂eil

=
∂Pih

∂eil

(c̄ − τ) +
∂Pil

∂eil

(ḡ − τ) + χle
αl

il .

The change in probabilities are as follows (assuming eih = eh,∀i, eil = el,∀i):

∂Pih

∂eih

|eih=eh
eil=el

=
2(n − n̄)

n2
(
el

n−n̄
n̄

+ 2eh

)

∂Pih

∂eil

|eih=eh
eil=el

= − n − n̄

n2
(
el

n−n̄
n̄

+ 2eh

)

∂Pil

∂eih

|eih=eh
eil=el

= − n̄(n − n̄)(el(n − n̄ + 1) + 2n̄eh)

n2(el(n − n̄) + 2n̄eh)2

∂Pil

∂eil

|eih=eh
eil=el

=
(n − n̄)(el(n − n̄)(n + n̄ − 1) + 2n̄eh(n + n̄))

2n2(el(n − n̄) + 2n̄eh)2
.

Substituting the above in the F.O.Cs and simplifying we get the following

expressions:

− 2n̄(n − n̄)(τ − c̄)(el(n − n̄) + 2n̄eh)

− (ḡ − τ)n̄(n − n̄)(el(n − n̄ + 1) + 2n̄eh) + χhe
αh

h n2(el(n − n̄) + 2n̄eh)
2 = 0

2n̄(n − n̄)(τ − c̄)(el(n − n̄) + 2n̄eh)

+ (ḡ − τ)n̄(n − n̄)(el(n − n̄)(n + n̄ − 1) + 2n̄eh(n + n̄))

+ 2χle
αl

l n2(el(n − n̄) + 2n̄eh)
2 = 0.
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Letting αl = αh = 0, the F.O.Cs reduce to the following:

− 2n̄(n − n̄)(τ − c̄)(el(n − n̄) + 2n̄eh)

− (ḡ − τ)n̄(n − n̄)(el(n − n̄ + 1) + 2n̄eh)

+ χhn
2(el(n − n̄) + 2n̄eh)

2 = 0.(21)

2n̄(n − n̄)(τ − c̄)(el(n − n̄) + 2n̄eh)

+ (ḡ − τ)n̄(n − n̄)(el(n − n̄)(n + n̄ − 1) + 2n̄eh(n + n̄))

+ 2χln
2(el(n − n̄) + 2n̄eh)

2 = 0.(22)

Notice that (21) gives the cost-minimizing choice of eh for any given el. Simi-

larly (22) gives the cost-minimizing choice of el for any given eh. We can check

from the FOCs that for any eh ≥ 0, the solution of el turns out to be negative.

Hence the only feasible el = 0. Hence for el = 0, the equilibrium effort for the

high quality good can be solved to be

e∗h =
n − n̄

2n2χh

(τ − 2c̄ + ḡ).

We can check that the SOCs are also satisfied at these values. �

Notice that (20) is very similar to the optimal effort in the basic model (instead

of (g(.) − c̄), now we have the average of (g(.) − c̄) and (τ − c̄), with g(.) = ḡ,

and also α = 0). Hence all the comparative statics of the basic model will

carry through.

Interestingly we see that even when we allow for multiple types of goods,

this model yields that positive effort will only be exerted to obtain the better

quality good17. Hence the finding rationalizes the demand for seats in public

transport as well as great competition for gaining seats in elite educational

institutes.

V. Extension: Two Different Populations

Let us assume there are two distinct subgroups in the population, group a

and group b (we could think of them as an ‘old’ group and a ‘young’ group,

or ‘men’ and ‘women’, or ‘local’ and ‘tourists’ etc.). Let a generic group be

17This result is reminiscent of the usual result in signaling games, the Spence education
model, for example, where in a separating equilibrium, the ‘bad/low’ type of a worker exerts
the minimum possible or 0 level of effort.
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denoted by r, r = a, b. Let the expected cost of travelling of an individual in

group r be given as follows:

Cr(n) = Prc̄r + (1 − Pr)gr(n − n̄) + χr

eαr+1
r

αr + 1
, r = a, b,

where Pr is the probability that a member of group r gets to sit in the bus, and

it is the same for all members in this group. Here Pr will be given as follows:

Pr =
n̄ − 1

n − 1
+

[
er

naea + nbeb

]
n − n̄

n − 1
, r = a, b

where nr is the number of people in group r, such that na + nb = n.

Now the FOC for minimization for group a is given by (assuming an interior

optimum exists):

∂Ca(n)

∂ea

=
∂Pa

∂ea

(c̄a − g(n − n̄)) + χae
αa

a = 0

where
∂Pa

∂ea

=

[
n − n̄

n − 1

] [
nbeb

(naea + nbeb)2

]
.

Hence the FOCs for cost minimization of the two groups will be as follows

(assuming interior optimum):

n − n̄

n − 1

[
nbeb

(naea + nbeb)2

]
(ga(n − n̄) − c̄a) = χae

αa

a

n − n̄

n − 1

[
naea

(naea + nbeb)2

]
(gb(n − n̄) − c̄b) = χbe

αb

b

which are two equations in two unknowns ea and eb and can be solved for the

equilibrium values of the efforts of the two groups. Dividing the first FOC by

the second and letting αa = αb = α, we get, relative effort as follows:

ea

eb

=

[
ga(n−n̄)−c̄a

naχa

gb(n−n̄)−c̄b

nbχb

] 1

α+1

.

This yields the expected insight that the relative effort of group a, (ea/eb)

increases as (χb/χa) rises, that is the cost of effort falls in one’s own group

relative to the other. Also, for fixed n, (ea/eb) falls as (nb/na) increases, that

is as its own group size falls relative to the other group’s size. Moreover (ea/eb)

rises as [(ga(n−n̄)− c̄a)/(gb(n−n̄)− c̄b)] increases, that is the cost of consuming
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the lower quality good increases more, relative to that of consuming the better

quality good in one’s own group, compared to the other.

VI. Conclusion

In this paper, we have introduced a new (“holistic”) approach to evaluate suc-

cess probabilities in multi-player, multi-prize contests. In this formulation, we

start from the probability of the aggregate outcome, and then derive individ-

ual probabilities of success from it. It turns out that in the case of a single

prize, the generalization we obtain, boils down to the individual probability of

success of the classic CSF introduced by Tullock (see Observation 6).

We then use this probability to study optimal effort exertion in the presence

of scarcity, that is, when the number of players is strictly greater than the

number of prizes. Moreover, we have introduced certain other complexities

in our setting. For example, in our setting, the high quality good (prize) is

subject to scarcity, while the low quality good (which a player will consume

by default if he fails to get the prize) is subject to congestion. However, it is

always preferable to get the higher quality good, even if the other lower quality

good is not subject to congestion. That is, a player may or may not obtain a

unit of the prize, while no player can be excluded from the low quality good.

In addition, there is congestion faced by users of the low quality good as the

number of such users increase.

Our analysis yields that when costs of effort are symmetric among players,

then a symmetric Nash equilibrium exists in which all players exert the same

level of effort, and this effort first increases and then falls with congestion (see

Fig. 1). The associated total cost increases with congestion while the total

dissipation could first fall and then increase or first increase and then fall with

congestion, depending on parametric restrictions (see Fig. 2). In this case, we

also analyse the optimal number of prizes as a matter of policy instrument for

the public authorities (see Fig. 3).

As an analysis of scarce resource facing excessive demand, the proposed ap-

proach is amenable to different contexts like getting admissions into elite ed-

ucational institutions, procuring seats in congested public transportation, or

getting allotments in regulated housing markets, among others. In all these
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situations, prices do not clear the market and agents exert effort to have access

to the limited number of high quality good (prizes).

We have also envisaged an extension of the basic model in this paper. Here

we study effort exertion with two different types of goods, a better quality and

an inferior quality good. In this case too, we begin with a “holistic” approach,

but with dual efforts, and derive success probabilities of individuals gaining

access to any one of these two goods. If an agent does not get the high or the

low quality good, he has access to a third alternative (worse than getting any

of the two goods). We show that in equilibrium, all effort will be devoted to

having access to the better quality alternative.

Instead of two, in principle, multiple quality prizes that can be obtained with

competitive effort, could be modelled with our framework, but the computa-

tions get that much more complex, without necessarily adding to the insights.

Since the model computes the probability that an individual has access to a

good (of a particular quality), it is straightforward to introduce risk aversion

in the approach (where the risk represents the risk of not finding a proper

place). Preliminary results show that, as expected, equilibrium effort (in the

symmetric case) increases with increasing risk aversion.

Empirical investigation of the model is definitely an interesting avenue of future

research. To this end, and keeping in mind the transportation example, we

have just completed the administration of an internet survey (called Mimetic)

in Paris, where we assess transport mode choice, departure time choice, value

of time and aversion to risk. For those choosing the public transport, we also

ask questions about their willingness to pay, for a seat, or for less congestion;

commuters typically have the option of finding a seat, standing with low den-

sity congestion and standing with a high density crowd. This will help us to

get approximate values of the parameters of our model and hence help us to

test the accuracy of predictions for levels of equilibrium effort, cost, dissipa-

tion and other variables of interest. Being able to assess the amount of effort

(and being able to monetarize it), provides a new dimension to the cost benefit

analysis. In such a manner, it will be possible to assess the congestion cost in

public transportation, a topic which has been neglected so far. Similarly, we

can apply the method for measuring the cost of effort in other situations (such

as education, or the regulated housing market).
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The framework we have developed has potentially other applications, out-

side those mentioned so far. Consider for example the marriage market, with

the number of potential grooms (players) higher than that of potential brides

(prizes). Not allowing for polygamy (so that a prize cannot be shared) and

assuming the same ‘quality’ of the brides (same “attractiveness”, for exam-

ple), we are in a situation just like in our model, essentially a multi-player,

multi-prize contest. Employing our approach therefore, we can find the equi-

librium efforts exerted by the potential grooms (efforts at convincing and woo-

ing the few women). Hence our approach provides an alternative solution to

the Beckman-Koopmans standard matching model used in the economics of

the family (see Chiappori, McCann and Nesheim [5]).

The cluster-based heuristic interpretation of our probability model (see Section

II(ii)) is particularly applicable in this case. Here, it means that a few men

would concentrate their effort to seduce the same woman. Note that the choice

of the cluster can be strategic, although this has not been modelled so far.

However, when the quality of the prizes differ (like in the more realistic situa-

tion of different women being of varying appeal), the situation is more involved.

The women who are perceived to be too “attractive” may generate a level of

effort among the competitors that is socially too high (causing total dissipation

and total cost to rise). On the other hand, with asymmetric costs of efforts,

the individuals who exert more effort, are likely to be determined and more

reliable (indicating lower cost of exerting effort and hence being better as a

potential grooms), so that effort may also provide a useful signal.

However in the present paper, we have not explored the (more realistic) sit-

uation of both multiple-quality prizes, as well as asymmetric costs of effort

exertion. These questions will be the topic for future research.
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40 ANDRÉ DE PALMA AND SOUMYANETRA MUNSHI

Appendix
(The appendix has been divided into two parts - Appendices A, B, C, D, E,

F have been referred to in the main body of the paper, and hence have been

placed under ‘Appendix for Online Publication’, while appendices G and H

have not, and hence have been placed under ‘Appendix Not Necessary for

Online Publication’. Appendix G illustrates on the correlation of outcomes

in the basic model and appendix H draws a parallel of our probability model

with a simple lottery.)

Appendix For Online Publication

Appendix A. Derivation of the probability model with an

example

Consider the basic probability model with λ = 0. Let n = 3, n̄ = 2. Then the

possible outcomes and associated probabilities are as follows:

v̄1 = (1, 1, 0) :p1 = K(ε1(v̄1)e1 + ε2(v̄1)e2 + ε3(v̄1)e3) = K(e1 + e2)

v̄2 = (1, 0, 1) :p2 = K(ε1(v̄2)e1 + ε2(v̄2)e2 + ε3(v̄2)e3) = K(e1 + e3)

v̄3 = (0, 1, 1) :p3 = K(ε1(v̄3)e1 + ε2(v̄3)e2 + ε3(v̄3)e3) = K(e2 + e3)

Hence summing over all outcomes we get,

1 = p1 + p2 + p3 = K ∗
3∑

i=1

ei

(
∑

v̄∈Ω

εi(v̄)

)

= K ∗
(

e1

(
∑

v̄∈Ω

ε1(v̄)

)
+ e2

(
∑

v̄∈Ω

ε2(v̄)

)
+ e3

(
∑

v̄∈Ω

ε3(v̄)

))

Now:
∑

v̄∈Ω

ε1(v̄) =
∑

v̄∈Ω
ε1(v̄)=1

1 = 2

∑

v̄∈Ω

ε2(v̄) =
∑

v̄∈Ω
ε2(v̄)=1

1 = 2

∑

v̄∈Ω

ε3(v̄) =
∑

v̄∈Ω
ε3(v̄)=1

1 = 2
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Hence substituting we get

1 = K ∗ 2 ∗ (e1 + e2 + e3)

And 2 =
(
3
2

)
, for this example.

Now consider an example with n = 3, n̄ = 2, e1 = 8, e2 = e3 = 1. Then we

get the following:

P1 =
1

2
+

8

10

1

2
=

18

20

P2 =
1

2
+

1

10

1

2
=

11

20

P3 =
1

2
+

1

10

1

2
=

11

20

Again the sum equals n̄ = 2. This means (roughly) that person 1 exerting

high effort gets to sit with a very high probability in one of the seats, while

the other two people exerting the same low probability gets to sit with almost

equal probability in the remaining 1 seat.

Appendix B. Proof of Proposition 2

Proof. We can write the objective function as:

Ci (e i, e−i; n) = g (n − n̄) + [c̄ − g (n − n̄)] Pi + χi

eα+1
i

α + 1
.

Now Pi = n̄−1
n−1

+ n−n̄
n−1

ei∑
j

ej
.

Therefore, we can rewrite the objective function as

Ci (e i, e−i; n) = g (n − n̄) + [c̄ − g (n − n̄)]

[
n̄ − 1

n − 1

]

+ [c̄ − g (n − n̄)]

[
n − n̄

n − 1

]



ei∑

j

ej



+ χi

eα+1
i

α + 1
.

Consider a change of variable ei = exp (Ei), so that

Pi =
exp (Ei)∑

j

exp (Ej)
.

Also let
ĉ =

[
g (n − n̄) n−n̄

n−1
+ c̄ n̄−1

n−1

]
,

ω = [g (n − n̄) − c̄] n−n̄
n−1

.
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Hence the objective function can be written:

Ci (E i, E−i; n) = ĉ − ωPi +
χi

α + 1
exp [(α + 1) Ei] .

Therefore, the F.O.C.s are:

(23)
∂Ci (E i, E−i; n)

∂Ei

= −ωPi (1 − Pi) + χi exp [(α + 1) Ei] = 0.

Thus equation (24) defines the best reply of agent i, with respect to the strategy

of the other agents, Ebr
i .

Now assuming χi = χ∀i, we get the symmetric Nash equilibrium as follows

(refer to appendix C for the asymmetric solution):

exp [E∗] = e∗ =

[
ω

χ

(
n − 1

n2

)] 1

α+1

or

e∗ =

[
1

χ

(
n − n̄

n2

)
[g (n − n̄) − c̄]

] 1

α+1

.

The S.O.C.s are (which are true even for the asymmetric case):

∂2Ci (E i, E−i; n)

∂E2
i

= −ω (1 − 2Pi) Pi (1 − Pi) + χi (α + 1) exp [(α + 1) Ei] .

Substituting the F.O.C. in the S.O.C., we get,

∂2Ci (E i, E−i; n)

∂E2
i

|f.o.c. = −ω (1 − 2Pi) Pi (1 − Pi) + (α + 1) ωPi (1 − Pi)

= ωPi (1 − Pi) [− (1 − 2Pi) + (α + 1)]

= ωPi (1 − Pi) [2Pi + α] .

For convexity of the objective function, we need the above expression to be

positive. Therefore, a sufficient condition would be [2Pi + α] > 0, for any Pi.

For this, α > 0 is a sufficient condition.

In the symmetric case, the condition becomes,
[

2
n

+ α
]

> 0 which reduces to

α > − 2
n
. For very large n, this implies again that the cost function is convex.

Uniqueness. The condition for uniqueness is

∑

j=1...N,
j 6=i

∣∣∣∣
∂Ebr

i

∂Ej

∣∣∣∣ < 1.



ANALYSIS OF MULTI-PLAYER, MULTI-PRIZE CONTESTS 43

Let

Ωi = −ωPi (1 − Pi) + χi exp [(α + 1) Ei] = 0.

Thus, by the implicit function theorem, we get,

∂Ebr
i

∂Ej

= − ∂Ωi/∂Ej

∂Ωi/∂Ei

= − ω (2Pi − 1) PiPj

−ω (1 − 2Pi) Pi (1 − Pi) + χi (α + 1) exp [(α + 1) Ei]

=
Pj(2Pi − 1)

(1 − Pi)(2Pi + α)
.

Hence ∣∣∣∣
∂Ebr

i

∂Ej

∣∣∣∣ =
Pj|2Pi − 1|

(1 − Pi)(2Pi + α)
.

Hence summing over all j 6= i, we get

∑

j=1...N
j 6=i

∣∣∣∣
∂Ebr

i

∂Ej

∣∣∣∣ =
|2Pi − 1|
2Pi + α

which is a decreasing function of α. Hence, for α = −1,

∑

j=1...N
j 6=i

∣∣∣∣
∂Ebr

i

∂Ej

∣∣∣∣ = 1.

And ∀α > −1,
∑

j=1...N
j 6=i

∣∣∣∣
∂Ebr

i

∂Ej

∣∣∣∣ < 1.

This proves uniqueness and the proposition. �

Appendix C. Asymmetric Case

We can write the objective function as follows (notice c̄i instead of c̄, gi(.)

instead of g(.), αi instead of α and χi instead of χ, as costs for individual i):

Ci (e i, e−i; n) = gi (n − n) + [ci − gi (n − n)] Pi + χi

eαi+1
i

αi + 1
.

Recall

Pi =
n − 1

n − 1
+

n − n

n − 1

ei∑
j

ej

.
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Like before, with ei = exp (Ei) and

Pi = exp(Ei)∑
j

exp(Ej)
,

ĉi =
[
gi (n − n) n−n

n−1
+ ci

n−1
n−1

]
,

ωi = [gi (n − n) − ci]
n−n
n−1

,

we get

Ci (E i, E−i; n) = ĉi − ωiPi +
χi

αi + 1
exp [(αi + 1) Ei] .

Therefore, the F.O.C.s are:

(24)
∂Ci (E i, E−i; n)

∂Ei

= −ωiPi (1 − Pi) + χi exp [(αi + 1) Ei] = 0.

That is,

ωiPi (1 − Pi) = χi exp [(αi + 1) Ei] .

Let Φ =
∑
j

exp (Ej) =
∑
j

ej. Then, we get

0 = ωi

exp (Ei)

Φ

(
1 − exp (Ei)

Φ

)
− χi [exp (Ei)]

αi+1

= ωi exp (Ei) (Φ − exp (Ei)) − Φ2χi [exp (Ei)]
αi+1 .

Since ei = exp (Ei), the F.O.C. becomes:

ωi (Φ − ei) ei − Φ2χi (ei)
αi+1 = 0

Φ2χi (ei)
αi+1 + ωi (ei)

2 − Φωiei = 0.

The first-order condition, simplifies as follows:

(ei)
αi +

ωi

χi

ei

Φ2
− ωi

Φχi

= 0.

If αi = 0∀i: We have ωi

χi

ei

Φ2 = ωi

Φχi
− 1, or ωi

χi
= Φ − Φ2 χi

ωi

ei =

(
1 − Φ

χi

ωi

)
Φ.
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Thus:

∑

j

ej = Φ
∑

j

(
1 − Φ

χi

ωi

)
= Φ

(
n − Φ

∑

j

χj

ωj

)
= Φ;

Φ =
(n − 1)∑

j

χj

ωj

e∗i =



1 −
(n − 1) χi

ωi∑
j

χj

ωj




(n − 1)∑

j

χj

ωj

.

The following proposition summarizes our findings in the asymmetric case.

Proposition 11. Consider asymmetric but linear cost of effort, that is, cost of

effort of individual i is given by χiei, ∀i. Let ωi = [gi (n − n) − ci]
n−n
n−1

. Then

the Nash equilibrium level of effort of individual i is given by

(25) e∗i =



1 −
(n − 1) χi

ωi∑
j

χj

ωj




(n − 1)∑

j

χj

ωj

.

Note that e∗r > e∗s iff χs

ωs
> χr

ωr
.

We can also compute equilibrium probabilities in this case to be as follows:

(26) P ∗
i = 1 −

(n − n̄) χi

ωi∑
j

χj

ωj

.

Notice that lower is the cost of exerting effort, χi

ωi
, relative to

∑
j

χj

ωj
, the higher

is the probability of finding a seat (please refer to footnote 11 in the paper for

an interpretation of heterogeneity of cost functions in our context).

Moreover, note that if all cost of effort (χi) are multiplied by τ , then each

level of effort is divided by τ , and the total cost of effort
∑
j

χjej (for this case

of αi = 0) remains the same. Taking effort multiplicatively has no impact of

consumers surplus, so that the tax revenue (τ − 1)
∑
j

ej corresponds to the

social benefit.
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We can verify that in the symmetric case, we have:

e∗ =

(
1 − (n − 1)

n

)
(n − 1) ω

nχ

e∗ =
ω

χ

(
n − 1

n2

)
=

[g (n − n) − c]

χ

(
n − n

n2

)

as derived earlier.

Appendix D. Proof of Proposition 6

Proof. The planner minimizes the following objective function w.r.t n̄:

n∑

i=1

Ci + πn̄ = n̄c̄ +
(n − n̄)2

S − Jn̄
+

(n − n̄)

n(α + 1)

[
n − n̄

S − Jn̄
− c̄

]
+ πn̄.

Differentiating w.r.t. n̄, the F.O.C. is:

(π + c̄)(S − Jn̄)2−2(n − n̄)(S − Jn̄) + (n − n̄)2J

− (S − Jn̄)

n(α + 1)
(n − n̄ − c̄(S − Jn̄)) +

(n − n̄)(Jn − S)

n(α + 1)
= 0.

This is a quadratic equation in n̄ and can be written in the form An̄2+Bn̄+C =

0 where the coefficients are as follows:

A = −J

[
−J(π + c̄) + 1 +

1 − Jc̄

n(α + 1)

]

B = 2S

[
−J(π + c̄) + 1 +

1 − Jc̄

n(α + 1)

]

C = (π + c̄)S2 − 2nS + Jn2 − 2S

α + 1
+

c̄S2

n(α + 1)
+

Jn

α + 1
.

In general, it is difficult to get a closed-form solution to the above equation.

Hence we let n and S be large (as is plausible) and take first order approxima-

tions. This means we can approximate −J(π+ c̄)+1+ 1−Jc̄
n(α+1)

by −J(π+ c̄)+1,

as the last term with n in the denominator is of smaller size, since n ≫ 1. This

results in the following first order approximations for A and B:

Ã = −J [−J(π + c̄) + 1]

B̃ = 2S [−J(π + c̄) + 1] .

To get the approximation for C, we see that out of the six terms the last

three terms are of smaller size, e.g. the terms 2S
α+1

, c̄S2

n(α+1)
are of smaller size

compared to (π + c̄)S2, and Jn
α+1

is of smaller size compared to Jn2 (as n ≫ 1
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and S ≫ 1). So it follows that the first order approximation for C is given by

C̃ = (π + c̄)S2 − 2nS + Jn2.

Now substituting the first order approximations in the equation and solving,

we get

(S − Jn̄)2(J(π + c̄) − 1) + (S − Jn)2 = 0.

So for any feasible solution, we must have J(π+ c̄) < 1. (This is plausible given

π, c̄, and J are likely to be small and can be chosen appropriately). Hence we

can solve n̄∗ from above to be:

n̄∗ =
S

J
−
(

n − S

J

)
1√

1 − J(π + c̄)
.

(Notice that Jn > S, otherwise n̄ = n and the problem of congestion would

not be relevant.) We can check that the S.O.C. for minimization also holds.

However, notice that if n is very large, then n̄∗ will become negative, so that

the optimal n̄ will be 0. Hence we can solve for the cut-off of n for feasible n̄,

by setting
S

J
−
(

n − S

J

)
1√

1 − J(π + c̄)
= 0.

This solves for

(27) n =
S

J

(√
1 − J(π + c̄) + 1

)
.

Call n in (27), n. Hence

(28) n̄∗ =





0, if n ≥ n;

S
J
−
(
n − S

J

)
1√

1−J(π+c̄)
> 0, if n < n.

�
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Appendix E. Proof of Proposition 7

Proof. Differentiating n̄∗ we get the following:

∂n̄∗

∂π
= −

(
n − S

J

)(
− 1

(
√

1 − J(π + c̄))2

)
(−J) < 0,

∂n̄∗

∂n
= − 1√

1 − J(π + c̄)
< 0,

∂n̄∗

∂c̄
= −

(
n − S

J

)(
− 1

(
√

1 − J(π + c̄))2

)
(−J) < 0,

∂n̄∗

∂J
= − S

J2
−
[

S

J2

1√
1 − J(π + c̄)

+

(
n − S

J

)(
− 1

(
√

1 − J(π + c̄))2

)
(−(π + c̄))

]
,

< 0

∂n̄∗

∂S
=

1

J
+

1

J

√
1 − J(π + c̄) > 0.

This proves the proposition. �

Appendix F. Proof of lemma 2: Derivation of K

Proof. Summing over all possible outcomes, we get

1 =
∑

v̄∈Ω

pv̄ = K ×






∑

v̄∈Ω

∑

v̄∈Ω
εi(v̄)=0

eil +
∑

v̄∈Ω

∑

v̄∈Ω
εi(v̄)=1

eih





.

1 =K ×






∑

i

eil




∑

v̄∈Ω
εi(v̄)=0

1



+
∑

i

eih




∑

v̄∈Ω
εi(v̄)=1

1









.

(There is no effort counted for εi = −1.) Now

(∑
v̄∈Ω

εi(v̄)=0
1

)
counts the number

of vectors of length (n − 1) (since the ith person’s outcome is known which is

to get the low quality good), where there are n̄ number of 1’s (since n̄ people

are getting the higher quality good), and the rest can have any two possible

outcomes, ε = 0,−1, that is they may have got the lower quality good, or may

not have got any good at all. Hence we get the following:

∑

v̄∈Ω
εi(v̄)=0

1 =

(
n − 1

n̄

)
× 2(n−1−n̄).
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Similarly,

(∑
v̄∈Ω

εi(v̄)=1
1

)
counts the number of vectors of length (n − 1) with

(n̄ − 1) number of 1’s (since the ith person has got the higher quality good),

and is given by

∑

v̄∈Ω
εi(v̄)=1

1 =

(
n − 1

n̄ − 1

)
× 2(n−1)−(n̄−1) =

(
n − 1

n̄ − 1

)
× 2(n−n̄).

Substituting these in the above expression, and letting
∑

i eil = eL and
∑

i eih =

eH , we can solve K as following:

K =
1(

n

n̄

)
2(n−n̄−1)

{
eL(n−n̄

n
) + 2 n̄

n
eH

} .

�
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Appendix (Not Necessary For Online
Publication)

Appendix G. Correlation

Let us see the correlation between the outcomes of two individuals, that is,

say we are interested in the correlation of the outcomes players 1 and 2,

Corr(ε1, ε2). Now

Corr(ε1, ε2) =
Cov(ε1, ε2)√

V ar(ε1)V ar(ε2)

=E(ε1ε2) − E(ε1)E(ε2).

We know (from calculations before) that E(ε1) = Pr{ε1} = 1. Similarly

E(ε2) = Pr{ε2 = 1}. Also E(ε1ε2) = Pr{ε1ε2} = 1 (since in all other possibil-

ities, ε1 or ε2 or both are 0 and there is no contribution to the expectation).

Now (restricting to the λ = 0 case), we have

Pr{ε1 = 1, ε2 = 1} =
∑

v∈Ω
ε1(v)=1
ε2(v)=1

p
v

=
∑

v∈Ω
ε1(v)=1
ε2(v)=1

K

[
n∑

i=1

εi(v)ei

]

(where K is as given in (4) with λ = 0)

= K





n∑

i=1

ei

∑

v∈Ω
ε1(v)=1
ε2(v)=1

εi(v)





= K





n∑

i=1

ei

∑

v∈Ω
ε1(v)=1
ε2(v)=1
εi(v)=1

1





.
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Now

∑

v∈Ω
ε1(v)=1
ε2(v)=1
εi(v)=1

1 =






(
n−2
n̄−2

)
if i = 1

(
n−2
n̄−2

)
if i = 2

(
n−3
n̄−3

)
if i 6= 1, 2

.

Substituting and simplifying, we get

Pr{ε1 = 1, ε2 = 1} =
(n̄ − 1)(n̄ − 2)

(n − 1)(n − 2)
+

(e1 + e2)∑
i ei

(n − n̄)(n̄ − 1)

(n − 1)(n − 2)
.

Recall that

Pr{εi = 1} =
n̄ − 1

n − 1
+

ei∑
i ei

n − n̄

n − 1
.

Hence we get

Cov(ε1, ε2) =
(n̄ − 1)(n̄ − 2)

(n − 1)(n − 2)
+

(e1 + e2)∑
i ei

(n − n̄)(n̄ − 1)

(n − 1)(n − 2)

−
[
n̄ − 1

n − 1
+

e1∑
i ei

n − n̄

n − 1

] [
n̄ − 1

n − 1
+

e2∑
i ei

n − n̄

n − 1

]
.

Also we can calculate that

V ar(ε1) = (Pr{ε1 = 1})(1 − Pr{ε1 = 1}).

Now by substituting all the expressions we can get Corr(ε1, ε2). Now, in

order to keep the calculations tractable, we make the simplifying assumption

of letting n being large (so that 1
n
≈ 0). In this case, dividing the expression

for Cov(ε1, ε2) throughout by n and letting 1
n
≈ 0, we get

Cov(ε1, ε2) =
n̄

n

2

+
(e1 + e2)∑

i ei

n̄

n

(
1 − n̄

n

)

−
[
n̄

n
+

e1∑
i ei

(
1 − n̄

n

)] [ n̄

n
+

e2∑
i ei

(
1 − n̄

n

)]
.

Simplifying the above expression we get

Cov(ε1, ε2) = − (e1e2)

(
∑

i ei)2

(
1 − n̄

n

)2

< 0

Hence Corr(ε1, ε2) < 0. In fact, we can calculate the expression for Corr(ε1, ε2)

more precisely in this case. Notice that when n is large

Pr{ε1 = 1} =
n̄

n
+

e1∑
i ei

(
1 − n̄

n

)
.
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And variance can be calculated as

V ar(ε1) =

(
n̄

n
+

e1∑
i ei

(
1 − n̄

n

))(
1 − n̄

n

)(
1 − e1∑

i ei

)
.

Hence substituting and simplifying, we get the expression for the correlation

coefficient as below:

Corr(ε1, ε2) = −
e1e2

(
∑

i ei)2√(
n̄
n

+ e1∑
i ei

(
1 − n̄

n

))(
1 − e1∑

i ei

)(
n̄
n

+ e2∑
i ei

(
1 − n̄

n

))(
1 − e2∑

i ei

)

< 0.

Notice that the correlation coefficient is generalizable to that between outcomes

of any two individuals i and j after appropriately substituting for 1 and 2 in

the expression on the R.H.S. Hence we see that, as expected, the correlation

between outcomes of any two individuals is negative, that is, as one person’s

chance of getting a better-quality good increases, that of the other falls. The

following proposition summarizes the findings.

Proposition 12. The correlation coefficient between the outcomes of any two

individuals, say individual i and individual j, i 6= j, is given as

Corr(εi, εj) = −
eiej

(
∑

i ei)2√(
n̄
n

+ ei∑
i ei

(
1 − n̄

n

))(
1 − ei∑

i ei

)(
n̄
n

+
ej∑
i ei

(
1 − n̄

n

))(
1 − ej∑

i ei

)

=
− eiej

ē2√(
n̄ + ei

ē

(
1 − n̄

n

)) (
n − ei

ē

) (
n̄ +

ej

ē

(
1 − n̄

n

)) (
n − ej

ē

)

< 0.

Moreover, in case the number of better quality goods is small relative to the to-

tal number of consumers, so that n̄
n
≈ 0, we can further simplify the expression

of correlation coefficient to arrive at the following corollary.

Corollary 2. If n̄
n
≈ 0 then we get

Corr(εi, εj) = −
√

eiej

(
∑

i ei − ei)(
∑

i ei − ej)
.

Appendix H. Lottery

Consider a situation in which each person can buy more than one ticket for a

limited number of prizes. Say there are k number of people, n the total number
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of tickets for n̄ number of prizes (seats), with n > n̄. Let ei be the number

of tickets purchased by player i (note this has nothing to do with effort as of

now). Assume all available tickets are bought, that is,
∑k

i=1 ei = n and also

ei ∈ {1, 2, ..., n − k + 1}. Hence the space of all outcomes Ω, is as follows:

Ω :=
{
v = (ε11(v), . . . , ε1e1

(v), ε21(v), . . . , ε2e2
(v), . . . , εk1(v), . . . , εkek

(v))

∈ {0, 1}n :
k∑

i=1

ei∑

j=1

εij(v) = n̄
}

.

where εkek
(v) is the n-th component of the vector v.

The restriction
∑k

i=1

∑ei

j=1 εij(v) = n̄ reflects the fact that in any outcome all

the prizes are won by someone. Moreover the first e1 outcomes in v reflects

the outcomes for the tickets bought by player 1. Note that here εij(v) = 1

means that in the outcome v the i-th person has won in the jth ticket and

otherwise εij(v) = 0. Also note that the number of outcomes in the space is

given by

|Ω| =

(
n

n̄

)
=

n!

n̄!(n − n̄)!
.

Now let us compute the probability that any one person, say person 1, has won

p prizes (where p ≤ e1, that is number of prizes won is less than the number

of tickets bought by person 1 and p ≤ n̄, that is the number of prizes won

is less than the total number of prizes). Now all outcomes are equally likely.

Moreover person 1 wins p prizes with e1 number of tickets in
(

e1

p

)
ways. For

each such way, the rest n̄ − p prizes can be won by n − e1 tickets in
(

n−e1

n̄−p

)
.

Hence the probability is given by:

Pr{Player 1 wins p prizes} =
∑

v∈Ω
ε11(v)+···+ε1e1

(v)=p

1(
n

n̄

)

=

(
e1

p

)(
n−e1

n̄−p

)
(

n

n̄

) .

More generally, the probability that the ℓth player will win p prizes is given

by:

Pr{Player ℓ wins p prizes} =

(
el

p

)(
n−el

n̄−p

)
(

n

n̄

) .
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Now our model can be related to this lottery set-up in the following way: Let

each ticket, for example, to be a unit of effort exerted, so that more number of

tickets will correspond to more effort exerted (of course, effort in our model is

a continuous variable while number of tickets can only be discrete). If tickets

have a (uniform) price, that might be interpreted as χ in our model. Hence

the total expenditure, of person i, to purchase ei number of tickets, would be

χei, the total ‘effort cost’ of player i in our model (assuming α = 0, or linear

cost of effort).

Interestingly, in the (usual) case with every person buying only one ticket

ei = 1,∀i (or alternatively the symmetric effort case with everybody exerting

the same effort), the probability that the ith person wins is given by

Pr{Player i wins p prizes} =

(
1
1

)(
n−1
n̄−1

)
(

n

n̄

) =
n̄

n
.

which is the usual random probability model that we had.
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Sorbonne)

E-mail address: andre.depalma@ens-cachan.fr

Indian Institute of Management Bangalore (IIMB)

E-mail address: soumyanetra.munshi@iimb.ernet.in


