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Permeability due to the Increase of Damage in Concrete:
From Diffuse to Localized Damage Distributions

Gilles Pijaudier-Cabot1; Frédéric Dufour2; and Marta Choinska3

Abstract: Experimental tests exhibit a strong interaction between material damage and transport properties of concrete. There are at least
two asymptotic cases where some theoretical modeling exists: in the case of diffuse cracking, the material permeability should be
controlled by damage, e.g., by the decrease of average stiffness due to microcracking. In the case of localized microcracking, and after a
macrocrack has formed, permeability should be controlled by a power function of the crack opening �Poiseuille flow�. For quasi-brittle
materials with evolving microstructure due to mechanical loads, a transition regime on the evolution of permeability between these two
asymptotic cases is expected. In this contribution, we define a relationship between permeability and damage that is consistent with the
two above configurations. One of the key issues is to relate the crack opening to the state variables in the continuum approach, so that the
two asymptotic cases are expressed in the same variable system and can be matched. A simplified approach is used for this purpose. The
permeability law is then derived using a mixing formula that weights each asymptotic regime with damage. To illustrate the influence of
the matching law on structural response, finite-element simulations of a Brazilian splitting test and a comparison with existing test data are
presented.

Keywords: Damage; Concrete; Cracking; Permeability; Porous materials.
Introduction

Transport properties of concrete, like permeability or diffusivity,
are particularly important for structures designed for tightness
such as prestressed concrete containment vessels. In nuclear ves-
sels for example, tightness to gas is critical during their service
life where concrete remains at most microcracked, but also upon
minor accidents when macrocracks may appear. Hence, it is im-
portant to provide relationships between the amount of cracking
in concrete and its permeability that encompass distributed diffuse
microcracking and localized macrocracking at the same time. In
this paper, we are going to focus interest on the intrinsic perme-
ability related to a solid porous material containing cracks. This
parameter depends on the microstructure of the material and dis-
regards the properties of the fluid flowing in the pores �see this
classical definition for instance in Choinska et al. �2007a,b�.

Experimental test data �Choinska et al. 2007b; Sugiyama et al.
1996�, performed on hollow concrete cylinders subjected to com-
pressive loading and at the same time to radial gas flow through
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their thickness, exhibit several regimes of growth of permeability.
The first regime ranges almost up to the peak stress. It is charac-
terized by a slow increase of permeability due to the increase of
the density of distributed microcracks. Sometimes, a decrease of
permeability may be observed. It is due to the closure of existing
microcracks induced by the compressive stress. Nearby the peak
stress, a fast increase of the permeability is observed experimen-
tally. It corresponds to the inception of localized cracking. Finally,
and for an applied strain, which is larger than several times the
peak strain, a third regime may be reached where the specimen
contains major through cracks. It is characterized by a decreasing
rate of growth of permeability with the applied strain compared to
the second regime. Fig. 1 shows these three regimes of growth of
the intrinsic permeability of concrete as observed by Choinska et
al. �2007b� from experiments where the apparent permeability to
gas �nitrogen� was measured. Similar results have been obtained
by Torrenti et al. �1999� and Meziani and Skoczylas �1999� in
triaxial compression. Experiments investigating the permeability
of water provide also similar results, as observed by Kermani
�1991� in axial compression, Wang et al. �1997� with splitting
tests and Gérard �1996� in uniaxial tension.

The evolution of the permeability of concrete with cracking
may be described by two fundamentally different modeling ap-
proaches: on one hand, it can be shown theoretically that the
permeability of a material, which contains diffuse microcracks is
related to the variation of its elastic properties. Dormieux and
Kondo �2004� used homogenization techniques and Chatzigeor-
giou et al. �2005� analyzed the scaling properties of discrete �lat-
tice� models to derive the same result. In this regime, the
permeability can be viewed as a function of a continuum damage
based variable that captures the degradation of the elastic stiffness
of the material. On the other hand, when microcracking has lo-
calized to form a macrocrack, the permeability is a function of the
opening, the connectivity and the tortuosity of the crack. Poi-

seuille flow is the most common assumption �see Dullien �1979��.



From the viewpoint of permeability, the transition between
these two theoretical descriptions is characterized by a percola-
tion threshold, highlighted by Katz and Thompson as reported by
Breysse and Gérard �1997�. From the mechanical point of view,
the same kind of transition is found during the localization of
microcracking and their coalescence to form a macrocrack. The
experiments reported in Fig. 1 show that this transition may not
be sudden, from the hydraulic and mechanical points of view. In
compression, microcracking is progressive and the transition to-
ward the formation of macrocrack is smooth, whereas microc-
racks localize suddenly into a macrocrack in uniaxial tension and
the transition is very sharp. The variation of permeability follows
the same pace, with a greater range of variation.

Discrete approaches to crack propagation and to fluid flow in
fractured media, along with multiscale modeling, provide a pos-
sible connection between fluid flow inside existing discontinuities
and the overall �macroscopic� governing equations for a porous
saturated or unsaturated solid �Réthoré et al. 2007, 2008�. If mi-
crocracking is accurately characterized, pore network models may
also be implemented to describe the influence of micro and mac-
rocracking on the permeability of a porous material �see e.g., the
review by Blunt et al. �2002��. Instead, we have chosen here to
follow a simple phenomenological continuum approach. Diffuse
microcracking will be described with a damage based formula-
tion. A nonlocal model will be implemented to handle damage
localization �macrocracking� due to material strain softening
properly. We will then devise a single law governing the variation
of the intrinsic permeability as a function of continuum damage
that encompasses both distributed damage and localized damage
configurations. In doing so, we shall define a consistent relation-
ship matching two extreme configurations: diffuse microcracking
described by small distributed damage and macrocracking de-
scribed by large localized damage.

The equations that describe the mechanical problem are briefly
recalled in “Mechanical problem—Continuum damage model-
ing.” The basic reasoning for establishing the matching law is
provided in “Permeability matching law.” “Computation of a
crack opening in continuum damage calculations” is devoted to
the computation of the estimate of the crack opening needed in
the localized damage configuration. Finally, “Structural simula-
tions” discuss numerical results and comparisons with existing
test data in the literature.

Mechanical Problem—Continuum Damage Modeling

Our purpose is to devise a single relationship between damage
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Fig. 1. Evolution of the permeability as a function of the applied
strain in a compression test on a hollow cylinder with a radial gas
flow
and permeability over the entire failure process of the material.
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Hence, it is essential to use a setting that allows a proper descrip-
tion of the mechanical response of the material for distributed and
localized damage. A possible candidate is the nonlocal damage
model �Mazars 1984; Pijaudier-Cabot and Bazant 1987�. It offers
a simple set of constitutive relations because damage is isotropic.
It is clear that damage induced anisotropy would provide some
useful information about the anisotropy of the permeability due to
directional cracking. Here, directionality of damage and perme-
ability are not considered for the sake of simplicity. Attention is
restricted to damage due to tensile loads, which is captured quite
satisfactorily by the scalar damage model �see, Mazars and
Pijaudier-Cabot 1989; Fichant et al. 1999�. The permeability that
is investigated corresponds to fluid flow in a plane that is normal
to the applied tensile stresses. These restrictions hold whatever
the amount of damage experienced by the material.

Damage produces a degradation of the elastic stiffness of the
material through a variation of the Young’s modulus. The stress
strain relation reads

�ij =
1 + �

E�1 − D�
�ij −

�

E�1 − D�
��kk�ij� or �ij = �1 − D�Cijkl

0 �kl

�1�

E and �=Young’s modulus and the Poisson’s ratio of the undam-
aged material; �ij and �ij =strain and stress components; Cijkl

0

= initial �elastic� secant stiffness of the material; and �ij

=Kronecker symbol. The evolution of damage is based on the
amount of extension that the material is experiencing during the
mechanical loading. In the nonlocal damage model, it is con-
trolled by the average �̄eq of an equivalent strain �eq defined as

�eq =��
i=1

3

���i�+�2 �2�

where � · �+=Macauley bracket �positive part of a quantity� and
�i=principal strains. The equivalent strain is a norm of the posi-
tive principal strains. It is a measure of the extensions to which
the material is subjected upon loading. Its average is

�̄eq�x� =

	
�

��x − s��eq�s�d�

	
�

��x − s�d�

with ��x − s� = e−�2
x − s
/lc�2

�3�

where �=volume of the structure and ��x−s�=weight function.
lc=internal length of the nonlocal continuum, which is related to
the size of the material heterogeneity �Bazant and Pijaudier-Cabot
1989�. Note that close to the boundary of the solid, the nonlocal
average is adjusted so that upon averaging, a homogeneous local
equivalent strain field transforms into the same homogeneous
nonlocal field. Close to the boundary, the weight functions are
chopped and the weighted average is not the same as for points
located far inside the boundaries of the solid. The loading func-
tion of damage is

f�Y, �� = Y − � with Y = max/t��̄eq� �4�

where �=threshold of damage growth. Initially, �=YD0. In the
course of loading, � assumes the maximum value of the nonlocal

equivalent strain ever reached during the loading history



if f�Y, �� = 0 and ḟ�Y, �� = 0 then D = F�Y� else Ḋ = 0

�5�

F�Y�=generic expression of the damage evolution law. To capture
the difference of mechanical responses of the material in tension
and in compression, the damage variable is split into two parts:
D=�tDt+�cDc, where Dt and Dc are the damage variables in
tension and compression, respectively. They are combined with
the weight coefficients �t and �c �see Pijaudier-Cabot et al.
�1991��. The evolution of damage is provided in an integrated
form, as a function of the variable Y

Dt = 1 −
YD0�1 − At�

Y
−

At

e�Bt�Y−YD0��

Dc = 1 −
YD0�1 − Ac�

Y
−

Ac

e�Bc�Y−YD0�� �6�

Standard values of the model parameters have been provided
by Mazars �1984�. We will focus attention on the response of the
model in tension only. It means that Dc=0, �c=0, and �t=1. The
remaining model parameters are the Young’s modulus E, the Pois-
son’s ratio �, the initial damage threshold, constants At and Bt,
and the internal length lc. For more details about this model and
the connections with fracture mechanics, �e.g., Mazars and
Pijaudier-Cabot 1989,1996�.

Permeability Matching Law

We are going to focus on the intrinsic permeability of the material
free of any stress and we will disregard the reversible stress effect
on the permeability. In the distributed damage configuration, the
permeability of the material may be corrected to account for the
reversible stress effect, e.g., according to a function of the applied
volumetric confinement stress �e.g., Iscan et al. 2006; Tang et al.
2002�. In Poiseuille’s expression of the flow rate, the crack open-
ing appears explicitly as we will see next, and it can be corrected
to account for the reversible stress effect �crack closure�. Before
describing how the permeability can be defined over the entire
range of variation of damage, let us first discuss the two extreme
configurations of diffuse and localized damage.

Diffuse Damage

To represent the interaction between diffuse damage and perme-
ability at the material level, several proposals exist. Gawin et al.
�2003�, Bary et al. �2000�, and Picandet et al. �2001� have pro-
posed formulas in which the permeability is a power law, or an
exponential function of damage. For small enough values of dam-
age �less than 0.15�, these formulas are quite equivalent �Jason et
al. 2007� and we shall use the relationship due to Picandet et al.
�2001� where the intrinsic material permeability is an exponential
function of damage

kD = k0 exp���D�	� �7�

where kD and k0=current and the initial material permeability,
respectively. � and 	=parameters fitted by the authors to 11.3 and
1.64, respectively. This empirical relationship is the best fit of the
evolution of the permeability measured on �uniaxial� compression
specimens after unloading. The permeability has been measured
in the direction of the applied load, i.e., perpendicular to the ex-

tensions due to Poisson’s effect, which cause microcracking in the

3

specimen. It is assumed that it holds similarly in the case of
tension damage too. As reported by Picandet and coworkers, Eq.
�7� along with the fitted values of the material parameters holds
for a variety of concretes �ordinary, high performance, fiber rein-
forced�, and it has been selected so that for standard concrete
mixes it can be implemented without any determination of mate-
rial parameters as a first approximation.

The relationship �7� corresponds to small damage. It holds for
damage ranging between 0 and 0.15, and quickly tends toward
infinite values when damage increases. When devising a single
relationship between damage and permeability covering the com-
plete range of damage, we will use the Taylor expansion of Eq.
�7� to avoid a spurious exponential increase of permeability for
large values of damage

kD
P = k0�1 + ��D�	 +

��D�2	

2
+

��D�3	

6
� �8�

Localized Damage—Crack Opening
versus Permeability

At complete rupture, one or several macrocracks are expected.
Hence, fluid flow will be governed by these cracks and Poi-
seuille’s law may be considered. For a fluid flowing between two
parallel �rough� plates, the permeability is classically provided by
the expression

kp = 

�u�2

12
�9�

where �u�=crack opening and 
=roughness of the crack. Some
tortuosity factor may be added too. If we consider a crack of
length L in a specimen of cross section S exposed to a gradient of
pressure, the total flow rate per unit thickness of specimen �and
per unit gradient of pressure� is obtained from Darcy’s equation
by adding the flow rate through the crack and the flow rate
through the undamaged material around the crack. The resulting
apparent permeability kap is

kap . S = 

�u�2

12
. �u�L + k0S �10�

Note that outside the crack, the permeability is assumed to
remain equal to the initial one k0. The “crack permeability” kf is
the contribution of the crack to the apparent permeability

kf = 

�u�3

12
.

L

S
�11�

This permeability corresponds to the second configuration �local-
ized damage� in the relationship between damage and permeabil-
ity. It is the material permeability that is expected to be reached
when damage is close to 1, at material failure. The difficulty is
that kf is a geometry dependent �structural� parameter. It contains
the crack length and the cross-section of the material exposed to
fluid flow. In the case of multiple periodic cracking, this ratio
reduces to the crack spacing �e.g., Gérard 1996�.

Within a continuum description of damage, the above expres-
sion of the permeability requires the knowledge of the crack lo-
cation, its length and the possible crack spacing in addition to the
crack opening. A more convenient formulation of the contribution
of the crack to the apparent permeability can be derived assuming
that the crack is replaced by a band of intense damage, as shown
in Fig. 2. Let us call �lc the width of this damage band that is

equivalent to the macrocrack. It is proportional to the internal



length as depicted in �Bazant and Pijaudier-Cabot 1989�. For the
sake of simplicity, damage is assumed to be constant inside this
band and the permeability is denoted as kl. The apparent perme-
ability derives now from the flow rate in the band with material
permeability kl and in the rest of the specimen with permeability
equal to that of the intact material k0

kap . S = �lckl · L + k0S �12�

We may now equate Eqs. �10� and �12� and the material per-
meability kl inside the band is

kl =

�u�3

12�lc
�13�

If this permeability kl is entered at the Gauss point level in a
finite element computation, it is expected that the structural hy-
draulic calculation will provide the apparent permeability defined
in Eq. �12�. This equivalence requires also that the width of the
damage band �lc be small compared to the size of the structure so
that the narrow damage band is close to a crack �even though it
can be discretized with several finite elements within the width�.
The remaining difficulty is the calculation of the crack opening.
This point will be discussed in “Computation of a crack opening
in continuum damage calculations.”

Matching Law

We need now to define a relationship governing the growth of
permeability covering the complete range of variation of damage.
In addition, this relationship ought to be consistent with the two
above extreme configurations of diffuse damage �Eq. �9�� and
localized damage �Eq. �13��. A simple matching law mixing the
logarithms of the extreme permeabilities is used

log�k� = �1 − D�log�kD
p � + D log�kl� �14�

This equation satisfies the two following requirements: when
damage is close to zero Eq. �9� is recovered, and when damage is
close to one Eq. �13� is recovered. Small values of damage cor-
respond to distributed diffuse microcracking while large values of
damage correspond to localized macrocracking.

Other combinations can be devised, with the same limits when
damage is close to zero and close to one �Choinska et al. 2007a�.
The difference lays in the relative weights that are given to the
two extreme cases. For instance, a linear combination in the form
of a standard mixing law �k= �1−D�kD

p +Dkl� still satisfies the
requirements for small and large damage but at the same time, it
lends a greater weight to the small damage regime. The resulting
permeability tends toward that of Eq. �13� slower than according
to Eq. �14�. The variation of the permeability may exhibit a local

Fig. 2. �a� Cracked domain �discrete case�; �b� damaged domain
�continuous case�
peak and then decrease, which not very realistic.
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Computation of a Crack Opening in Continuum
Damage Calculations

The permeability defined in Eq. �14� is a local, point wise quan-
tity, same as the permeability of a continuum described by Dar-
cy’s equation. It describes the transition between the two
asymptotic configurations of diffuse and localized damage and it
is intended to be used in boundary value problems to model the
evolution of flow rates across concrete structures upon damage
growth. The derivation of a crack opening as a result of a con-
tinuum damage mechanics calculation is the remaining step to
perform, as it is needed in Eqs. �13� and �14�. Once a continuum
description of failure has been used to model discontinuous fail-
ure, it is not easy to proceed in the reverse direction and to evalu-
ate a crack opening. In recent papers, this problem has been
tackled with the assumption that above a given critical value of
damage, a displacement discontinuity exists and should be incor-
porated in the structural model. From this starting point and on,
advanced computational models based on an explicit description
of the crack �e.g., based on extended finite-element kinematics�
provide sound techniques for calculating a displacement discon-
tinuity �Comi et al. 2007; Simone et al. 2003�. Following a dif-
ferent approach, Dufour et al. �2008� have devised an
approximate direct technique for extracting a discontinuity of dis-
placement from a continuum damage finite element �FE� calcula-
tion without the need for enhancing the structural kinematics with
displacement discontinuities. Any of these techniques may be
used to compute the displacement discontinuity due to crack
opening. Nevertheless, we shall devise a simpler and more
straightforward estimate of the displacement jump �u�.

We assume again that the crack, according to the damage
model, is described as a band of intense damage of width �lc. The
crack opening �u� is equal to the cumulated deformation across
�normal to� the damage band. Subsequently, we assume that the
crack does not close upon unloading and therefore, the crack
opening is computed as if the loading was monotonically increas-
ing. It means that we neglect the reversible displacements upon
unloading and that we neglect crack closure �and it yields of
course an overestimation of the permeability�. We obtain

�u� =	
0

�lc

�Y − YD0�dx �15�

As the damage distribution in the damaged zone is assumed to
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be homogeneous, one obtains the crack opening as



�u� = �Y − YD0��lc �16�

By substitution of Eqs. �5� and �6� in Eq. �16�, the crack opening
may be represented as a function of the damage

�u� = �F−1�D� − YD0��lc �17�

It should be recalled that this derivation remains based on
simple—not to say simplistic—assumptions. The equivalence be-
tween the damage band and the crack assumes that the entire
deformation of the band is converted into crack opening, which is
an overestimation of the crack opening. Some part of this defor-
mation corresponds to material damage around the crack that is
not part of crack opening. Recall also that we investigate the
permeability of the unloaded material. Upon unloading the crack
may probably close although in practice it does not close com-
pletely due to dilatancy during the failure process and crack
roughness. The closure of the crack is not accounted for here.

For the sake of illustration, let us consider the material param-
eters given in Table 1 and let us compute the evolution of material
permeability as described by the matching law in Eq. �14�. The
internal length lc is arbitrary chosen equal to 0.02 m, while � is
equal to 2. The initial permeability k0 considered in the simula-
tions is taken equal to 10−17 m2 and 
=1. The growth of perme-
ability with damage and with the variable that controls the growth
of damage is shown in Figs. 3 and 4. The matching law provides
a correct representation of the permeability for damage ranging
between 0 and 0.15, as well as for strong damage where it tends
toward the permeability given according to Poiseuille’s law.

Structural Simulations

To illustrate the matching permeability law on a structural con-
figuration, we consider concrete disks loaded either according to
the splitting test or to the BIPEDE experiment �Gérard 1996� �see
Fig. 5�. In this latter one, a disk made of mortar is glued to steel

Table 1. Parameters of Mazars’ Damage Model

E 37.7 GPa

� 0.2

YD0 1.10−4

At 1.0

Bt 15,600

lc 20 mm
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Fig. 4. Evolution of the logarithm of permeability with the nonlocal
equivalent strain
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plates. Tension is applied to the plates and it is transmitted to the
disk, in which one or two transverse cracks appear. At the same
time water flows through holes in the steel plates and through the
disk. The apparent permeability �to water� is measured in the
course of loading and cracking of the disk. In the present com-
parisons, we shall consider the tests in which a single crack de-
velops. Note that in the splitting test and in the BIPEDE test, the
two distributions of damage are quite similar.

Mechanical Problem—Brazilian Splitting Test

The cylindrical specimen is loaded along a diametral plane by
means of steel bearing plates, as shown in Fig. 6. The steel bear-
ing plates are arbitrary modeled by elastic plates, with a high
Young’s modulus �E=300 GPa� and a Poisson’s ratio equal to
that of concrete to avoid a local confinement effect on concrete.
The set of parameters of Mazars’ damage model �see Table 1�
represents ordinary concrete behavior. The internal length is equal
to 0.02 m.

Numerical simulations are performed with four-node quad-
rangle elements. Due to double symmetry, the computation do-
main consists in one quarter of a specimen. A plane stress
calculation is performed. Damage distributions at peak and at
failure when damage has propagated over the specimen diameter
are depicted in Figs. 7�a and b�. One can observe that damage
develops in a band of a limited width �governed by the internal
length�.

Evolution of Apparent Permeability

For every damage state, a material permeability is computed at
each Gauss point according to the matching law �Eqs. �14� and
�17�� and to the relationship due to Picandet alone, which stands

Fig. 5. BIPEDE test geometry �after Gérard �1996��

Fig. 6. Brazilian splitting test: �a� problem statement; �b� FE mesh



in the case of small damage only �Eq. �7��. Then, a structural
permeability is determined by averaging the permeability over the
surface of the specimen exposed to fluid flow. Results in Fig. 8
show the evolution of the average permeability with the crack
opening displacement �COD� to peak COD ratio. With the match-
ing formula in Eq. �14� the shape of the curve is similar to that in
Fig. 1, and it is also similar to the results by Wang et al. �1997�.
The comparison is qualitative but it is clear that the relationship
between damage and permeability corresponding to diffuse dam-
age �Eq. �7�� cannot be extended to capture the overall permeabil-
ity when localized damage is observed. When this relationship is
implemented alone, the fact that damage may localize into a nar-
row band does not provide the relative decrease of the rate of
growth of permeability observed experimentally. Fig. 8 shows
that Eq. �7� yields an overestimate of the apparent permeability of
the disk. The structural �average� permeability increases by 20
orders of magnitude almost for the COD at peak. It is unrealistic
and far above the range of variation of five to seven orders of
magnitude that is observed experimentally. The same realistic
range is observed according to the matching law in Eq. �14�.

Quantitative comparisons with experiments can be provided
with the data obtained in the BIPEDE experiment for which the
mechanical damage model used here as been calibrated. Gérard
reported experimental data concerning the apparent structural per-
meability to water, same as in Eqs. �10� and �12� indexed by the
tensile strain in concrete during the experiment. This tensile strain
is homogeneous and it is computed assuming that damage devel-

Fig. 7. Damage distributions at �a� peak; �b� at the last loading step
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ops into a band of width �lc and of length equal to the diameter of
the specimen. This strain profile �with a constant strain� is related
to the strain profile computed according to the nonlocal damage
model according to an equivalence of energy dissipation due to
damage �see Bazant and Pijaudier-Cabot �1989��. In this equiva-
lence, the local strain within the band is equal to the peak nonlo-
cal strain. The local strain corresponds also to the average strain
measured experimentally during the tests as reported by Gérard
�1996�. Given this strain, damage and the equivalent crack open-
ing are computed from Eqs. �5�, �6�, and �17�.

Gérard �1996� provided the calibration of the damage model
used in the present study. The model parameters correspond to
concrete D65. They are provided in Table 2. The internal length is
three times the maximum aggregate size. The model parameters
in Eq. �7� are those defined in “Permeability matching law” and

=0.1 in Eq. �13�. � is equal to 1.89, same as in Bazant and
Pijaudier-Cabot �1989�. The initial apparent permeability K0 is
5.10−12 m /s and the dynamic viscosity of water is �
=10−3 kg /m /s.

Fig. 9 shows the comparison between the experiments and the
present matching law. The agreement with experimental data are
quite satisfactory. In the figure, we have also plotted the simula-
tion by Gérard, which takes into account the opening of the crack
explicitly and uses Eq. �9� only in the damage band, the perme-
ability in the rest of the specimen being kept equal to the initial
one �Eq. �10��. The apparent permeability computed according to
the matching law is quite close to that computed by Gérard on the
basis of Poiseuille’s law only. As opposed to Gérard formula, our
approach does not rely on a crack system known in advance. The
distribution of damage is the result of the mechanical computa-
tion, in which the relationship governing the permeability for any
value of damage is inserted point wise. Note also that for small to
moderate damage a formulation that would rely on Eq. �10�, on
Poiseuille law only, would not be consistent from a theoretical
point of view until a macrocrack is formed for which a crack
opening displacement exists.

Table 2. Parameters of Mazars’ Damage Model Used by Gérard �1996�

E 35 GPa

� 0.2

YD0 1.5 10−4

At 1.0

Bt 6,000

lc 30 mm

Fig. 9. Evolution of the permeability to water with the strain in
concrete in the “BIPEDE” test



Conclusions

In this contribution, a formula describing the evolution of perme-
ability with damage has been proposed. It matches consistently
two extreme configurations: in the first one, permeability is an
exponential function of distributed diffuse damage, while in the
second one it is governed by crack opening. By analytical vari-
ables substitution, we have associated the crack opening with the
variable that governs damage in a nonlocal integral damage
model and afterwards we have related this state variable with
damage to arrive to an expression where the permeability is con-
trolled by the variation of material damage solely. An extensive
comparison of the predictions of permeability with experimental
data on split cylinders is in progress, but initial comparisons pro-
vide qualitative and quantitative results that are quite consistent
with existing experimental data.
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