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Abstract—We propose an adaptive blind source separation
algorithm in the context of robot audition using a microphone
array. Our algorithm presents two steps: a fixed beamforming
step to reduce the reverberation and the background noise and a
source separation step. In the fixed beamforming preprocessing,
we build the beamforming filters using the Head Related Transfer
Functions (HRTFs) which allows us to take into consideration
the effect of the robot’s head on the near acoustic field. In the
source separation step, we use a separation algorithm based on
the l1 norm minimization. We evaluate the performance of the
proposed algorithm in a total adaptive way with real data and
varying number of sources and show good separation and source
number estimation results.

Index Terms—Adaptive blind source separation, fixed beam-
forming, head related transfer functions

I. INTRODUCTION

Blind source separation (BSS) [1] is the ability to estimate
the source signals using their mixtures, without any prior
knowledge of the mixing process or the looked up sources.
In this article, we investigate blind source separation in a real
environment for the application of robot audition. Robot audi-
tion consists in the aptitude of an humanoid to understand its
acoustic environment, separate and localize sources, identify
speakers and recognize their emotions. This complex task is
one of the target points of the ROMEO project1 that we work
on. This project aims to build an humanoid (ROMEO) that can
act as a comprehensive assistant for persons suffering from
loss of autonomy. Our task in this project is focused on the
blind source separation topic using a microphone array (more
than 2 sensors).

One of the main challenges of blind source separation
remains to obtain good BSS performance in a real rever-
berant environment. To reduce the reverberation of a room,
a beamforming preprocessing can be a solution [2]. A fixed
beamforming, contrarily to an adaptive one, does not depend
on the sensors data, the beamformer is built for a set of fixed
desired directions. In [3], we proposed a two-stage iterative
blind source separation technique where a fixed beamforming
is used in a preprocessing step. The advantage of the fixed
beamforming is that the beamforming filters are generally
estimated offline, using the microphone array geometry and
the acoustic field clues. To overcome the problem of the array
geometry modeling and take into account the influence of the
robot’s head on the received signals, we use the Head Related
Transfer Functions (HRTFs) of the robot’s head as steering
vectors to build the fixed beamformer [3].

1Romeo project: www.projetromeo.com

In the robot audition context, the number of sources are
unknown and can change dynamically. In this paper, we
propose a fully adaptive blind source separation algorithm that
can deal with the dynamic change of the number of sources.
The main contributions of this article are: 1) the adaptive
blind source separation algorithm with a fixed beamforming
preprocessing using HRTFs and 2) the adaptive estimation of
the number of sources that changes dynamically thanks to the
fixed beamforming preprocessing.

II. A TWO STEP SEPARATION ALGORITHM

Assume we are in a real room with N sound sources
s (t) = [s1 (t) , . . . , sN (t)]

T and an array of M microphones
with outputs denoted by x (t) = [x1 (t) , . . . , xM (t)]

T , where
t is the time index. We assume that we are in an overdeter-
mined case with M > N . As we are in a real environment
context, the output signals in the time domain are modeled as
the sum of the convolution between the sound sources and the
impulse responses of the different propagation paths between
the sources and the sensors, truncated at the length of L+ 1:

x (t) =

L∑
l=0

h (l) s (t− l) + n (t) (1)

where h (l) is the lth impulse response matrix and n (t) is
a noise vector that will be neglected in the rest of the article2.

In the frequency domain, the output signals at the time-
frequency bin (f, k) can be approximated as: X (f, k) '
H (f)S (f, k), where X(f, k) = [X1(f, k), . . . , XM (f, k)]

H

(respectively S(f, k) = [S1(f, k), . . . , SN (f, k)]
H ) is the

Short-time Fourier transform (STFT) of {x (t)}1≤t≤T (respec-

tively {s (t)}1≤t≤T ) in the frequency bin f ∈
[
1,

Nf

2 + 1
]

and the time bin k ∈ [1, NT ], and H is the Fourier transform
of the mixing filters {h (l)}0≤l≤L. Using an appropriate sep-
aration criterion, our objective is to find for each frequency
bin a separation matrix F (f) that leads to an estimation of
the original sources in the time-frequency domain:

Y (f, k) = F (f)X (f, k) (2)

The inverse short time Fourier transform of the estimated
sources in the frequency domain Y allows the recovery of
the estimated sources y (t) = [y1 (t) , . . . , yN (t)]

T in the
time domain. Separating the sources for each frequency bin
introduces the permutation problem which is solved by the

2We consider discrete sound sources and the diffuse background noise
energy is supposed to be negligible comparing to the source ones.



method described in [4] based on the signals correlation
between two adjacent frequencies.

The separation matrix F (f) is estimated using a two-step
blind separation algorithm:

1) Fixed beamforming preprocessing step: the signals in
the sensors are filtered using the offline estimated beam-
forming filters B (f), the output signal is Z (f, k) =
B (f)X (f, k). More details about this step are pre-
sented in the next section.

2) Source separation step: we apply a blind source sepa-
ration algorithm to the outputs of the beamformer. We
use a sparsity separation criterion based on the l1 norm
minimization to estimate the separation matrix W (f)
[3]. The optimization technique used to update the
separation matrix W (f) is the natural gradient proposed
by Amari et al. in 1996 [5], the update equation is
written as:

Wj+1 (f) = Wj (f)−µ∇ψ (Wj (f))WH
j (f)Wj (f)

(3)
ψ (W (f)) is our loss function, µ is an adaptation step
and j refers to the frame number. The output signal is
Y (f, k) = W (f)Z (f, k) and this separation algorithm
will be referred to as BSS-l1.

The final separation matrix F (f) is written as the combination
of the results of those two steps: F (f) = W (f)B (f)

III. BEAMFORMING PREPROCESSING

A. Offline estimation of the beamforming filters

In the case of robot audition, the geometry of the mi-
crophone array is fixed once for all. To build the fixed
beamformers, we need to determine the “desired” steering
directions and the characteristics of the beam pattern. The
beamformers are estimated only once for all scenarii using
these spatial information and independently of the measured
mixture in the sensors.

In the robot audition context, the microphones are often
fixed in the head of the robot and it is hard to model the
microphone array manifold in this case. In fact, the phase and
magnitude response models of the free field steering vectors
3 model do not take into account the influence of the head
on the surrounding acoustic fields. So we propose to use
the Head Related Transfer Functions4 (HRTFs) as steering
vectors {a (f, θ)}θ∈Θ, where Θ = {θ1, . . . , θNS

} is a group
of NS a priori chosen steering directions [3]. The HRTF
takes into account the head and microphone array geometry
and the influence of the head on the near acoustic field. We
extend the notion of HRTFs to a microphone array case. Let
hm (f, θ) be the HRTF at frequency f from the emission point
located at θ to the mth sensor. The steering vector is then
a (f, θ) = [h1 (f, θ) , . . . , hM (f, θ)]

T . Given the equation of

3The steering vectors represent the phase delays of a plane wave evaluated
at the microphone array elements.

4The HRTFs characterize how the signal emitted from a specific direction
is received at a sensor fixed in a head and are generally used in a binaural
context.

the steering vector, one can estimate the beamformer filters
that will achieve the desired beam pattern according to the
desired direction response θi using the least-square technique
[2]:

b (f, θi) =
R−1

aa (f)a (f, θi)

aH (f, θi)R
−1
aa (f)a (f, θi)

(4)

where Raa (f) = 1
NS

∑
θ∈Θ a (f, θ)aH (f, θ). Given K de-

sired steering directions θ1, . . . , θK , the beamforming matrix
is B (f) = [b (f, θ1) , . . . ,b (f, θK)]

T .

B. Beamforming filtering

In our case, we fix K steering directions such as the
corresponding beams cover all the useful space directions. We
consider {B (f)}

1≤f≤
Nf
2 +1

a set of fixed beamforming filters
of size K ×M , K ≥ N . Those filters are calculated offline,
before the beginning of the processing, for each frequency, as
shown in the previous subsection. The outputs of the beam-
formers at each frequency f are: Z (f, k) = B (f)X (f, k).

C. Highest energy beams selection and source number esti-
mation

After the beamforming, the signal is spatially filtered toward
the K chosen steering directions θ1, . . . , θK . The beams who
are the closest to the sources capture the most of their energy.
From this observation, we propose to estimate the number of
sources by selecting the beams that contain the highest energy.
This can be done as follow (this processing is going to be
referred to as BeamSelect) :

1) In each frequency bin f , after the beamforming filtering,
we select the Nmax steering directions corresponding to
the Nmax beams that give the highest energies.

2) We build over all the selected steering direction a
histogram that corresponds to their overall number of
occurrence as shown in figure 1.

3) After a proper thresholding, we select the peaks that
corresponds to the highest number of selected beams
over all the frequencies. The filters corresponding to
those beams are our final beamforming filters B̃ (f),
the number of peaks is an estimation of the number
of sources and the corresponding steering directions
provide us with a rough estimation of the directions of
arrival (DOA).

IV. ADAPTIVE BLIND SOURCE SEPARATION ALGORITHM
WITH FIXED BEAMFORMING PREPROCESSING

In this section, we present the implementation details of our
two step separation algorithm in a fully adaptive context with
a varying number of sources. The main difficulty in this case
is to adapt the separation matrix F (f) = B̃ (f)W (f) from
one frame to the next one. The idea is to update B̃ (f) and
W (f) separately. As the number of source can vary, B̃ (f) is
updated in each frame by selecting the beams with the highest
energies, and thus, the number of sources and the direction of
arrivals are also estimated. The separation matrix W (f) of
the frame j − 1 is used as initialization matrix for the BSS-
l1 algorithm in the frame j. But as the number of sources



Figure 1: Estimation of the source number using fixed beam-
forming

from the frame j − 1 to the frame j can be different, a size
adjustment of W (f) is necessary. In the following the details
of our algorithm.

Initialization: Frame1:
1) Fixed beamforming preprocessing:

a) beamforming filtering: Z1 (f, :) = B (f)X1 (f, :)

b)
[
Z̃1 (f, :) , N1,doa1

]
= BeamSelect (Z1 (f, :))

2) [Y1 (f, :) ,W1 (f)] = BSS-l1
(
Z̃1 (f, :) ,W0

)
Frame j:

1) Fixed beamforming preprocessing:
a) beamforming filtering: Zj (f, :) = B (f)Xj (f, :)

b)
[
Z̃j (f, :) , Nj ,doaj

]
= BeamSelect (Zj (f, :))

2) Source separation depending on the number of estimated
sources Nj

a) if Nj = 1, Yj (f, :) = Z̃j (f, :)
b) if Nj = Nj−1,[Yj (f, :) ,Wj (f)] =

BSS-l1
(
Z̃j (f, :) ,Wj−1

)
c) if Nj > Nj−1,

i) Estimate the index ind of the new sources
using the estimated DOAs doaj−1 and doaj

ii) Modify the separation matrix Wj−1 (f) by
adding columns and rows in the corresponding
new sources index ind

iii) [Yj (f, :) ,Wj (f)] = BSS −
l1

(
Z̃j−1 (f, :) ,Wj−1

)
d) if Nj < Nj−1,

i) Estimate the index ind of the vanished sources
using the estimated DOAs doaj−1 and doaj

ii) Modify the separation matrix Wj−1 (f) by
deleting the columns and rows of the corre-
sponding vanished source index ind

iii) [Yj (f, :) ,Wj (f)] =

BSS-l1
(
Z̃j−1 (f, :) ,Wj−1

)
V. EXPERIMENTAL RESULTS

A. Experimental database

To evaluate the proposed BSS techniques, we built two
databases: a HRTFs database and a speech database. We

Figure 2: The detailed configuration of the microphone array

recorded the HRTF database in the anechoic room of Telecom
ParisTech. As we are in a robot audition context, we model
the future robot by a child size dummy (1m20) for the sound
acquisition process, with 16 sensors fixed in its head (cf. figure
2). We measured 504 HRTF for each microphone: 72 azimuth
angles from 0° to 355° with a 5° step, 7 elevation angles. The
HRTF database is available for download5.

The test signals were recorded in a moderately reverberant
room where the reverberation time is RT30 = 300 ms. We
chose to evaluate the proposed algorithm on a separation of 2
sources: the first source is always the one placed at 0° and the
second source is chosen from 30° to 90°. The distance between
the sources and the microphone array is 1m20. The output
signals x (t) are the convolutions of 20 pairs of 15s of speech
sources (male and female speaking French and English) by
two of the impulse responses {h (l)}0≤l≤L measured for the
cited directions of arrival. The signals are sampled at 16KHz,
the length of the adaptive analysis window is 1s, the length of
the shift and the STFT window is 64ms and the step size of
the optimization algorithm is µ = 0.05.

B. Results and discussion

First, we want to show the effect of the beamforming
preprocessing by evaluating the Signal-to-Interference Ratio
[6] of the separated sources a) after the beamforming filter-
ing, the inter-beams angle in 5° (BF[5°]) b) with the blind
source separation only (BSS-l1) c) with the beamforming
preprocessing without beams selection (BF[5°]+BSS-l1) and
d) with the beamforming preprocessing and the highest energy
beams selection (BF[5°]+BS+BSS-l1). Figure 3 shows that
the beamforming preprocessing BF[5°]+BSS-l1 improves the
SIR of the estimated sources comparing to the use of the
blind source separation algorithm only BSS-l1. Besides, the
beamforming preprocessing with the selection of the beams
with the highest energy (BF[5°]+BS+BSS-l1) gives the best
separation results.

We now vary the number of sources between one and two.
We estimate the number of sources using our method (BF),
and two eigenvalues based methods (EIG1 [7] and EIG2 based
on a simple thresholding of the sorted eigenvalues of the
covariance matrices in the frequency domain [8]). Figure 4
and 5 show the average of the estimated number of sources
for 20 pairs of speakers in each of the shown DOA. The
results of the source number estimation of our method are
close to EIG2 ones. But our method is a direct result from

5http://www.tsi.telecom-paristech.fr/aao/?p=347



Figure 3: SIR comparison in a real environment: source 1 is
at 0° and source 2 varies from 20° to 90° with a step of 10°

Figure 4: The number of sources estimated through the tem-
poral frames

the beamforming preprocessing, it is simple to implement and
does not need any calculation other than the peaks estimation.
EIG2 takes much more calculation time than our method due
to the calculation of the covariance matrices and the singular
values decomposition.

Figure 5: Results of the estimation of the number of sources
over all the frames

Figure 6: SIR of the separated sources for a number of sources
varying between 1 and 2 and for different DOA

Figure 6 shows the average SIR of all the pairs of mixtures
for different direction of arrivals. Our algorithm follows the
dynamic change of the number of sources and converge
quickly. We recall that the separation matrix is initialized once
and that the adaptation is totally automatic and depends on the
number of estimated sources.

VI. CONCLUSION

We propose a complete adaptive blind source separation
algorithm for robot audition context. Our system can estimate
the number of sources and separate them thanks to its two
steps separation process: the first step is a beamforming
preprocessing which allows us to reduce the reverberation
effect and estimate the number of sources, the second step is
a source separation step based on the l1 norm minimization.
Our estimation of the number of sources is simple, not time
consuming and suitable for a real time application of this
algorithm, which is going to be our next work.
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