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Abstract 

Grain boundaries in ultrafine grained (UFG) materials processed by severe plastic 

deformation (SPD) are often called “non-equilibrium” grain boundaries. Such boundaries are 

characterized by excess grain boundary energy, presence of long range elastic stresses and 

enhanced free volumes. These features and related phenomena (diffusion, segregation, etc.) 

have been the object of intense studies and the obtained results provide convincing evidence 

of the importance of a non-equilibrium state of high angle grain boundaries for UFG materials 

with unusual properties. The aims of the present paper are first to give a short overview of this 

research field and then to consider tangled, yet unclear issues and outline the ways of 

oncoming studies. A special emphasis is given on the specific structure of grain boundaries in 

ultrafine grained materials processed by SPD, on grain boundary segregation, on interfacial 

mixing linked to heterophase boundaries and on grain boundary diffusion. The connection 

between these unique features and the mechanical properties or the thermal stability of the 

ultrafine grained alloys is also discussed. 
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1. Introduction  

 

With grain sizes in a submicron (100 – 1000 nm) or nanocrystalline (< 100 nm) range 

ultrafine-grained (UFG) materials contain in their microstructure a very high density of grain 

boundaries (GB), which can play a significant role in the development and exhibition of novel 

properties. For this reason, UFG materials can be typically considered as interface-controlled 

materials [1]. Unlikely to the nanocrystalline materials where grain boundary material can 

represent a significant, e.g. a per cent or even larger fraction of the whole volume, the volume 

fraction of GBs in an UFG material is less than 1%. However, the structure, kinetic and 

thermodynamic properties of GBs could be modified so significantly that their start to 

dominate some important material properties.  

Already in first works on nanocrystalline materials pioneered by Gleiter and colleagues it was 

suggested that grain boundaries can possess a number of peculiar features in terms of their 

atomic structure in contrast to grain boundaries in conventional polycrystalline materials 

[1,2]. Further studies delivered plenty of indications towards this idea, evidencing 

simultaneously the fact that solely the grain size is not the deciding parameter. For example, 

specific grain boundaries were revealed in ultrafine-grained materials produced by severe 

plastic deformation (SPD) techniques [3]. In the recent decade the use of SPD techniques for 

grain refinement and nanostructuring of metals and alloys attracted intensive attention and 

received much development due to their possibility not only to enhance properties of different 

materials but also to produce mulifunctionality of the materials including commercial alloys 

and composites and presently, these developments witness the stage of transition from 

laboratory research to their practical application [4-6].  

Depending on the regimes of SPD processing different types of grain boundaries can be 

formed in the UFG materials (high- and low-angle, special and random, equilibrium and so-

called “non-equilibrium” grain boundaries) [3,7], which paves the way to grain boundary 

engineering of UFG materials, i.e. to the control of their properties by means of varying the 

grain boundary structure. For example, recent studies demonstrated that transport properties 

of UFG materials (diffusion, segregation, etc.) are markedly affected by a so-called “non-

equilibrium” grain boundary state [8-10]. At this place it is important to highlight that a broad 

spectrum of diffusivities of short-circuit paths is observed in UFG materials – contributions of 

high-angle grain boundaries with both “normal” and significantly enhanced diffusion rates 

can be differentiated in SPD-processed materials [11, 12]. In this context, the “normal” 

diffusion rates are those which reveal the relaxed general high-angle grain boundaries as they 
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are present in well-annealed polycrystalline counterparts
1
 and the non-equilibrium interfaces 

are characterized by considerably higher diffusion coefficients. This hierarchy of interfaces in 

terms of their corresponding diffusivities is proposed [12] to explain the apparent 

contradictions between earlier publications that reported either conventional or unusual 

properties for grain boundaries in nanocrystalline or ultrafine grained materials. 

The notions on non-equilibrium grain boundaries were first introduced in the scientific 

literature in the 1980s [13, 14] reasoning from investigations of interactions of lattice 

dislocations with grain boundaries. According to [14] the formation of a non-equilibrium 

grain boundary state is characterized by three main features, namely, excess grain boundary 

energy (at the specified crystallographic parameters of the boundary), the presence of long 

range elastic stresses (Figure 1) and enhanced free volume. Discontinuous distortions of 

crystallographically ordered structures, that may come about by accommodation problems of 

differently oriented crystallites of finite sizes or by high densities of lattice dislocations and 

their interaction with grain boundaries can be considered as sources of elastic stress fields that 

modify the atomic structure of high angle grain boundaries so that their excess free energy 

becomes enhanced. Somewhat unfortunately, these “unusual” grain boundaries have been 

termed “non-equilibrium” grain boundaries although in a strict sense, each grain boundary is a 

non-equilibrium defect if segregation effects (see section 3) are not to be considered. Since 

however the term has been accepted and utilized by the entire community who works on 

severe plastic deformation, we will also use it here. 

 

 

 

                                                 
1
 Where they are typically the fastest short-circuit diffusion paths 
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A model for these non-equilibrium grain boundaries has been developed by A.A. Nazarov, 

A.E. Romanov and R.Z. Valiev in a series of papers [15, 16] describing their formation. 

Lattice dislocations that are created during the plastic straining move towards high angle grain 

boundaries on their respective glide planes during continued straining and then, when 

reaching a high-angle grain boundary, transform into so-called “extrinsic grain boundary 

dislocations”, i.e. dislocations that do not contribute towards the misorientation of the two 

adjacent grains. As a net effect, high angle grain boundaries with high densities of such 

extrinsic grain boundary dislocations would also contain increased energy and free volume 

and considerable microstrain associated with the grain boundary region [15].  

In recent years the non-equilibrium grain boundaries in UFG materials and related phenomena 

(diffusion, segregation, etc.) have been the object of intense studies performed by the authors 

of this paper and the obtained results provide convincing evidence of the importance of a non-

equilibrium state of high angle grain boundaries for UFG materials with unusual properties. 

At the same time the complexity of such research becomes evident, involving the most 

contemporary techniques of structural analysis and, occasionally, different interpretation of 

the obtained results. All this specifies the aims of the present paper - first, to introduce the 

readers to this research field of recent studies of grain boundaries in bulk nanostructured 

materials where unique features about their structures and properties are outlined; second, to 

consider tangled, yet unclear issues and outline the ways of oncoming studies. The available 

models of the “non-equilibrium” GBs will be examined against the newest experimental data. 

 

2. Structure of grain boundaries in ultrafine grained materials 

The atomistic structure of random high-angle grain boundaries has been discussed since 

several decades by different models assuming quite different structural arrangements ranging 

from an amorphous structure to local structural units with high packing densities that are 

arranged non-periodically along the boundary plane, see e.g. [17-19], to mention just a few 

examples. In recent years, atomistic simulations have considerably contributed to the 

understanding of grain boundary structures [20-23], yet without yielding a unique description 

of the atomic structure of random high angle grain boundaries.  

However, the goal set for the present review is not to unravel the real space arrangement of 

atoms within the boundary plane of random high angle grain boundaries, but analyze the 

structural modifications of high angle grain boundaries inflicted by severe plastic deformation 

processing, for formation of which during SPD processing exist already strong indications, 
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see e.g. [3, 24]. In earlier studies of grain boundaries in UFG materials processed by SPD 

techniques there have been already used various, often mutually complementary, structural 

methods: transmission electron microscopy (TEM), X-ray diffraction, Mössbauer 

spectroscopy, dilatometry, differential calorimetry and others (see, e.g. [3]). They clearly 

evidenced that mostly high-angle grain boundaries leading to grain refinement can be formed 

after optimization of SPD processing routes and these grain boundaries possess specific non-

equilibrium structures. Later, structure sensitive probes have been applied that are sensitive to 

modifications of the atomic structure, such as grain boundary diffusion measurements (see 

section 5) or high resolution transmission electron microscopy (HRTEM) analyses, in order to 

identify and characterize transformations of the grain boundary structure due to the severe 

deformation processing.  

Z. Horita et al. [24] as well as R.Z. Valiev et al. [3] noticed serrated contrast features in bright 

field transmission electron microscopy (TEM) images and also in HRTEM analyses, 

respectively that were interpreted as evidence for a high local density of dislocation structures 

associated with the apparent non-equilibrium grain boundary. However, due to the possible 

Moiré effect occurring in the projection of sample regions near interfaces and due to the 

delocalization of information in HRTEM analyses by aberrations of the electromagnetic 

lenses, unambiguous interpretations of grain boundary structures require more sophisticated 

analyses, which today can be provided by the use of so-called Cs-corrected TEMs that are 

corrected for spherical aberration. Figure 2(a) shows the HRTEM image of a grain boundary 

with both adjacent grains oriented with their <110> zone axis parallel to the electron beam in 

a Pd90Ag10 alloy that had been severely deformed by repeated rolling and folding. The details 

of the synthesis process are similar to the procedure described earlier [25, 26]. The image was 

taken with a FEI-Titan TEM equipped with a field emission cathode and a Cs-corrector. The 

non-equilibrium character of this grain boundary in term of the interpretations given earlier by 

Z. Horita et al. or R.Z. Valiev et al. is manifested in the non-uniform faceted form (Fig. 2(a)) 

of the two joining <110>-oriented grains. Grain boundaries with similar features are 

commonly observed for materials after SPD processing [27]. Yet, it should be noted that not 

all grain boundaries in severely deformed materials present morphologies as in Figure 2(a). In 

fact, only a minority of grain boundaries with an average spacing of a few grain diameters 

display non-uniform faceting, implying that also during SPD processing, the localization of 

deformation controls the evolution of the microstructure.  
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In order to analyze whether the non-uniformly faceted grain boundaries might correspond to 

non-equilibrium grain boundaries, the residual microstrain present at the grain boundary 

shown in Fig. 2(a) was analyzed by the method of geometric phase analysis (GPA) that allows 

calculating relative magnitudes of the in-plane components of the strain tensor and of the 

tensor of rigid body rotation with respect to a reference lattice, based on the intensity 

distribution in high resolution electron micrographs [28, 29]. Details concerning the analysis 

and concerning the conditions under which the HRTEM micrograph was taken can be found 

in [9]. One result of this analysis is displayed in Fig. 2(b) as the rigid body rotation. In 

addition to the misorientation between the two neighbouring grains, a clear and significant 

variation of the colour representing the variation of the relative rotations of the lattice is 

observed in the near-boundary region. It should be noted, that the bright spots (“hot spots”) in 

Fig. 2(b) represent regions where a discontinuity in the transmitted phase of the electron wave 

occurs, i.e. these spots mark the positions of the core region of full or partial dislocations. 

Additionally, local structures within the distorted grain boundary region that show an abrupt 

change of the local orientation of the crystal lattice with respect to the orientation of the lattice 

of the parent grain could also contribute such bright features in the strain maps, since the 

linear density of the hot spots that is estimated to be about 10
9
 m

-1
 is much too high to be 

associated with the extrinsic GB dislocations only. By integrating the strain over rectangular 

regions with the long axis perpendicular to the estimated boundary plane, the width of the 

boundary in terms of the strain distribution was found to be in a range of 1.5 nm to 2 nm, 
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which is about double the value for relaxed grain boundaries analyzed by the same method 

(The GB width was directly determined by following the rotational component of the 

averaged strain field around the grain boundary). The observed topology of the strain 

distribution at this grain boundary in the severely strained Pd-Ag alloy clearly serves to 

contribute an enhanced excess free energy density to the grain boundary energy, supporting 

the existence of non-equilibrium grain boundaries after SPD processing. This first result of 

strain mapping at such a grain boundary is also direct support for the interpretations of GB 

segregations and the diffusion studies discussed in the following chapters. 

Thus, with respect to the grain boundary structure in SPD-processed materials with ultrafine 

grain size, recent studies enable to conclude that: 

 Non-equilibrium grain boundaries exist in UFG materials and these specific grain 

boundaries possess an increased free energy density, increased width, high density of 

dislocations (full or partial) associated with the near-boundary region and 

correspondingly large residual microstrain.  

 The structural width of non-equilibrium grain boundaries is significantly smaller than 

10 nm, if the rotational component of the strain gradient across the interface is used as 

a measure of the width. It reaches a value of 1.5 to 2.0 nm being still twice as large as 

the width of relaxed high-angle grain boundaries in annealed coarse-grained materials. 

The shear components of the strain field reveal similar values of the grain boundary 

width. 

The density of „hot spots‟ in GPA of a non-equilibrium grain boundary is remarkably large, 

about 10
9
 m

-1
 (Fig. 2(b)) and, thus, these features cannot be directly interpreted in terms of 

e.g. extrinsic grain boundary dislocations. In fact, these features in the strain map indicate the 

presence of distinct structural units with an abrupt change of the local orientation of the 

crystal lattice (in addition to full or partial dislocations), which might result from severe 

dislocation accumulation and/or dislocation dissociation at the grain boundary. Note that the 

density of “extrinsic grain boundary dislocations” was estimated based on diffusion 

measurements (see section 5) to be about 510
7
 m

-1
 in Ni processed by Equal Channel 

Angular Pressing (ECAP) [27]. Yet, these structural features need to be investigated, e.g. by 

comparing strain maps of grain boundaries obtained by atomistic simulations with respective 

results based on high resolution transmission electron microscopy.  
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3. SPD induced GB segregation 

The grain size refinement mechanism during SPD is controlled by the
 
generation of 

dislocations, the way they do dynamically reorganize to form low angle - and finally, for 

larger strains, high angle boundaries [3, 30]. On the other hand, it is also well known that 

impurities or solute elements may have strong interactions with dislocations. They usually 

lead to a stronger strain hardening due to a higher dislocation production rate during 

deformation [31], but alloying elements may also modify the stacking fault energy [32, 33] 

making twinning more or less energetically favourable. These features may explain why a 

small change in the alloying element concentration or in the impurity level can dramatically 

change the grain size achievable by SPD. This is particularly impressive in aluminium alloyed 

with few percent of Mg. Indeed, pure Al processed by High Pressure Torsion (HPT) leads to a 

grain size of 800 nm [34], while it is decreased to 150 nm in Al-3%Mg [35] and reaches even 

100 nm in Al-6%Mg [36]. It is also important to note that extremely low levels of impurities 

may also dramatically influence the grain size achievable by SPD as reported in Al [37] and 

in Ni [38] but it should be noted that the effect of impurities seems less pronounced in Cu [37]. 

This specificity could be explained by the relatively smaller stacking fault energy of Cu, and 

thus a lower mobility of dislocations leading to more accumulation of dislocations to 

contribute to grain refinement at room temperature.  

Solute elements are known to interact with all kinds of structural defects like vacancies [39], 

dislocations [40, 41], stacking faults [42] and grain boundaries [43]. This latter phenomenon 

has been widely investigated in numerous alloys because of its dramatic influence on the 

mechanical behaviour (creep, toughness or ductility). For example, it has been reported that in 

Al alloys Mg may segregate along grain boundaries [44-46], similar features were observed 

for Si, P and C in bcc Fe [47], while B exhibits the same behaviour in Ni3Al [48], FeAl [49], 

but was also detected along /‟ heterophase interfaces in superalloys [50]. Moreover, small 

quantities of residual impurities (especially of strongly segregating ones like P, S or C in Cu 

or Ni) can significantly modify GB diffusivities even at the ppm level [51, 52]. 

Indirect evidence of grain boundary segregation in UFG materials processed by SPD has been 

reported in a few cases where the thermal stability has been investigated as a function of the 

impurity level in nickel [38] or as a function of the concentration of Sb in copper [53]. 

However, there are only a limited number of reports providing direct evidence of grain 

boundary segregation in UFG materials processed by SPD. Most of them rely on atomic scale 

characterization thanks to Atom Probe Tomography (APT). Unfortunately, this technique 

provides only very limited crystallographic information and the GB misorientation is usually 
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unknown. Moreover only small GB areas can be analyzed making any statistics almost 

impossible. Anyway, it was demonstrated that GB segregation in SPD materials is not a 

marginal feature but could be observed in various kinds of alloys.  

Segregated elements could be some impurities resulting from the casting process, like O and 

C in titanium [56]. In the case of accumulated processes, like Accumulated Roll Bonding, 

even if surfaces are carefully cleaned between each step, some contamination may occur and 

additional impurities might be incorporated leading at the end to some significant 

segregations [57]. In steels processed by SPD, the progressive decomposition of carbides 

leads to carbon supersaturated solutions. Released carbon atoms are trapped by dislocations 

and significantly hinder dynamic recovery processes leading to a grain size of only 10-20 nm 

for pearlitic steels processed by HPT [58]. This is one order of magnitude smaller than in 

commercially pure Fe, demonstrating the strong influence of SPD induced segregations on the 

grain size refinement mechanisms. However, this specific case cannot primarily be considered 

as GB segregation. It is the result of solute element (for instance carbon) trapping by 

dislocations in the course of SPD. 

Combining strengthening by grain size reduction with solid solution hardening or precipitate 

hardening are two attractive ways for the improvement of the mechanical properties of UFG 

materials. It was even proposed by some authors that a fine distribution of nanoscaled 

precipitates may act as sites for trapping and accumulating dislocations, leading to an increase 

of the strain hardening and subsequently to an increased ductility [59, 60]. The main 

challenge is to control the precipitation kinetics in a situation where recrystallisation, grain 

growth, and heterogeneous precipitation along dislocations and/or grain boundaries are very 

likely to occur. This approach was quite successfully pursued by Kim and co-authors in a 

6061AA alloy processed by Accumulative Roll Bonding (ARB) [61, 62]. They have shown 

that a significant strengthening could be obtained thanks to the combination of an ultrafine 

grained structure and nanoscaled precipitates. Similar features together with an improved 

ductility were also reported by Zhao and co-authors on a 7075 AA and by Ohashi and co-

authors on an Al-11wt%Ag alloy processed by ECAP followed by a precipitation treatment 

[63-66]. In any case, the deformed material has to contain a significant concentration of 

alloying elements in solid solution that could be candidate for some GB segregations. Such 

feature was reported in 6061 AA processed by HPT [10] or ECAP [67], where Mg, Cu and Si 

segregations along planar defects attributed to grain boundaries were observed. The solute 

element enriched layer is only about 2 nm and the local enrichment does not exceed 2 at.%. 

Mg segregation was also reported for an AlMgCuZn alloy processed by ECAP [68], a 
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7075AA processed by HPT [69] and an Al-6.8%Mg processed by HPT [70]. In this latter 

case, after large deformation by HPT (20 turns), a mean grain size of about 100 nm is 

achieved, with a large fraction of High Angle Grain Boundaries (HAGB). Using APT, very 

strong local enrichments up to 25 at. % in a much thicker layer (6 to 8 nm) were observed 

(Fig. 3). This thickness is much larger than the GB width measured on HRTEM images 

thanks to GPA (about 2 nm, see section 2), where this parameter was defined as a zone where 

the averaged rotational component of the strain field is changed from the value in one grain to 

that in its neighbour. It seems, a non-equilibrium GB may incorporate a larger amount of 

segregating atoms with respect to relaxed interfaces (as a result of the increased free volume) 

but the thickness of the segregated layer might not only be determined by the distorted layer 

near the non-equilibrium GB (as it is defined by GPA).  

APT data also revealed that grain boundaries are not homogeneously covered and that the Mg 

concentration in solid solution may strongly vary from one grain to another [70]. Such 

features might indicate that the local configuration of the GB and especially dislocations lying 

in the vicinity of the boundaries may affect the distribution of solute elements. It is also 

interesting to note that this material exhibits a very high yield stress after HPT processing, 

much higher than a prediction based on the Hall-Petch law. Thus, it seems that GB 

segregations could significantly affect the deformation mechanisms (dislocation nucleation 

and glide) in UFG materials processed by SPD. 
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The physical mechanisms of SPD induced segregation are still under debate. The driving 

force for GB segregations is usually the minimization of the grain boundary energy [43], 

however in some specific cases, some so-called non-equilibrium GB segregations may occur. 

If the density of vacancies is above the equilibrium value, they might diffuse towards sinks 

like GBs. Then, in case of a positive binding energy between a solute element and vacancies, 

the flux of vacancies may lead to non-equilibrium GB segregations. A high density of point 

defects usually arises from irradiation or deformation [71]. The latter has been recently 

demonstrated in the in-situ annealing experiments on HPT Cu and Ni samples [72].  

The large density of point defects created during SPD may enhance the atomic mobility. In 

case of equilibrium grain boundary segregation, these point defects simply promote the 

diffusion of solute elements that would be impossible at low temperature. Dislocations may 

also play a significant role in enhancing the atomic mobility, through the well known pipe 

diffusion mechanism or solute drag if the velocity of the dislocations is not too high. 

Comparable to materials under irradiation, it is also reasonable to assume that a vacancy flux 

towards GBs acting as sinks may promote the formation of non equilibrium grain boundary 

segregations.  



12 

 

However, some irradiation experiments performed on stainless steel nanostructured by HPT 

have clearly demonstrated that GB segregation which did not appear during SPD could be 

triggered by irradiation [73]. Therefore, while there is little doubt about the large density of 

point defects created during SPD, the flux toward grain boundaries is probably much lower 

because of other sinks like dislocations activated during the process. 

 

4. Heterophase boundaries and multiphase alloys during SPD 

It is known since a very long time that heterophase boundaries may promote the grain size 

reduction during deformation and thus the resulting strengthening. This is the typical case of 

drawn pearlitic steels, for which an interlamellar spacing of only 20 nm is commonly 

achieved in mass production leading to a yield stress of up to 3 GPa or more [74-76]. 

Following this approach, multiphase materials containing different phases with the capability 

of co-deformation are of particular interest for the SPD community. There are several ways of 

producing heterophase boundaries. Normal casting produces multiphase structures and fine 

structures may be formed during solidification for the compositions corresponding to an 

eutectic or eutectoid reaction. However, SPD is a good tool to further break down the sizes of 

the dispersoids regardless of the alloying compositions [77]. The fragmentation can be 

achieved by intense slip of dislocations and repetitive processing of SPD refines the particle 

size to the nanometer levels. Examples are an Al-5wt%Cu alloy [78], Al-11wt%%Ag alloy 

[66] and Al-Mg-Si alloy [77]. It was shown that the grain size was reduced by the presence of 

such heterophase particles in the matrix [79-83] and the typical range of the grain size is 100 

to 500 nm [3]. Some other multiphase materials may exhibit a grain size as small as 10 or 20 

nm [84-85]. Figure 4 shows the nanoscaled structure of such a material (a CuCr composite 

containing 57% Cu and 43% Cr) where the grain size achieved thanks to HPT is about 20 nm. 

In an Fe-based alloy where the elastic modulus was designed to be low by addition of alloying 

elements, a phase transformation occurred during HPT and it was shown that the grain size 

was reduced to 20-50 nm with high strength and good ductility [86]. 

An artificial way of preparing a multiphase nanostructured alloy can be derived from the ARB 

technique, using as starting material a sandwich structure made of different metals [87, 88]. 

Heterophases may also be produced by mixing with different kinds of powders and 

consolidation by HPT or ECAP. Examples are inclusions of ceramic particles or carbon 

nanotubes in the metallic matrix [89-92]. Allotropic phase transformations through processing 

by HPT under high pressure produces heterophase boundaries even though the sample is 

composed of single pure metals such as Ti and Zr [93-99].  
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During SPD, large densities of lattice defects like dislocations or boundaries are created; 

pushing systems far away from the thermodynamic equilibrium state and these features may 

affect their stability [3, 99]. Thus, phase transformations may occur, leading to the 

decomposition of second phase particles and the vanishing of heterophase interfaces. It also 

introduces supersaturation of alloying elements and thus brings about significant hardening by 

solid solution [100-102]. Such features were reported in steels where Fe3C carbides were 

dissolved after HPT [58, 103, 104] but also in FeNi alloys [105, 106] processed by HPT or in 

an Al-Cu alloy processed by ECAP [78, 107]. In any case, dislocations are thought to play a 

major role by shearing precipitates and by dragging solute atoms. 

 

 

In the case of the CuCr composite processed by HPT, APT data clearly revealed some non-

equilibrium interdiffusion (Fig. 4). Interfaces are not chemically sharp and some Cu is 

transported across the Cu/Cr interfaces forming Cu supersaturated solutions in the bcc Cr 
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phase. Similar features were reported in Cu-Fe [108, 109], Cu-Co [110] and Al-Ni [88] binary 

systems. Such mechanical mixing does occur only in the nanoscale regime and is thus 

probably promoted by the high interfacial energy and SPD induced vacancies that may 

promote the atomic mobility [108]. However, some other authors do believe that dislocations 

play a critical role and are underlying the so-called “kinetic roughening” model [111]. Atoms 

would be shifted across interfaces by the shear of atomic glide planes. The final state would 

be determined by the balance between these forced jumps and decomposition due to thermal 

diffusion. Recent APT measurements on the Cu-Ag system seem to validate this approach 

[112].  

In summary, SPD produces high densities of lattice defects and refines the size and 

distribution of second phases through fragmentation by intense shear. SPD can also introduce 

supersaturation of alloying elements or precipitation of fine particles during subsequent aging.  

 

5. Diffusion along grain boundaries in ultrafine grained materials 

As it was stated above (section 2) the diffusion investigations are a highly sensitive probe for 

investigation of structural modifications on the atomic scale since the thermally-activated 

diffusivity depends exponentially on the corresponding activation barriers which are 

determined by the interatomic potentials and the atomic environment. Thus, dedicated 

measurements of the atomic mobility at low temperatures, when diffusion within undisturbed 

regions of the crystal lattice is frozen, can be used for analyzing the structural modifications 

of short-circuit diffusion paths, such as grain boundaries.  

The preceding analysis demonstrated that SPD processing modifies structure (see section 2 & 

4) and thermodynamics of interfaces introducing various defects (e.g. abundant GB vacancies 

and dislocations at and near interfaces) and (optionally) inducing segregation (section 3). 

These structure modifications affect the kinetic properties of interfaces, which is the subject 

of the present analysis. 

First direct measurements of grain boundary diffusion in severely deformed materials yielded 

ambiguous results – both similar [113] and enhanced [114-116] rates of atomic transport were 

deduced with respect to the grain boundary diffusivities in reference coarse-grained materials. 

Systematic measurements by the radiotracer technique discovered a hierarchic nature of 

internal interfaces which are developing as a result of strong dislocation activity during SPD 

processing and, presumably, of a localization of plastic flow [12, 117]. Both “conventionally 

fast” as well as “ultra-fast” short-circuit diffusion paths were observed in SPD processed 

materials, with the latter being embedded in a network of grain boundaries akin relaxed high 
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angle GBs as they exist in annealed coarse-grained materials (where these boundaries 

constitute the fastest short-circuit diffusion paths) [12]. This is an important discovery of the 

radiotracer method which provides sample-averaged information. The existence of a hierarchy 

of interfaces in plastically-deformed metals has been pointed out by Hansen and co-workers 

[118, 119] by introducing the so-called extended or geometrically necessary boundaries 

(GNBs) and incidental dislocation boundaries (IDBs). However, the diffusion studies indicate 

another type of the hierarchy which corresponds to other kinds of involved interfaces, since 

the diffusivity of dislocation or low-angle dislocation grain boundaries is definitely lower than 

that of general high-angle interfaces [116, 120]. Generalizing these findings, the following 

hierarchy of interfaces in SPD materials can be proposed (in the order of decreasing 

diffusivities): 

 non-equilibrium interfaces (probably of different types and representing a certain 

spectrum of diffusivities and structures); 

 general high-angle grain boundaries (with diffusivities and, probably, structure being 

similar to those of relaxed high-angle grain boundaries); 

 highly defected (non-equilibrium) twin boundaries with diffusivities similar to those 

of the previous level [121]. Note that diffusion along relaxed twin boundaries is hardly 

measurable; 

 low-angle boundaries, dislocation walls, single dislocations. 

A comprehensive theory of SPD processing and grain refinement has to include all these 

levels of the hierarchy, which on the other hand may critically depend on processing routes 

and regimes (temperature, strain rate, applied pressure and so on). It is important that these 

levels correspond to different scales with the mesh size ranging from several micrometers (the 

non-equilibrium boundaries) down to hundred (dislocation walls) or even tens of nanometers 

(nano-twins). The appearance of general high-angle grain boundaries (with properties similar 

to those of relaxed interfaces in the coarse grained counterparts) in SPD materials depends 

obviously on processing temperature because this fact might be a clear indication of dynamic 

recovery processes during SPD.  
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In Figure 5, the results of radiotracer measurements of grain boundary self-diffusion in UFG 

Ni (3N8 purity) after ECAP-processing (circles and dashed lines, [27]) are compared to the 

grain boundary diffusivity values that were obtained on a coarse-grained, polycrystalline 

material with a relaxed (annealed) grain boundary structure and a grain size of about 100 µm 

(the solid line, [52]). Clearly, short-circuit diffusion is significantly faster in UFG Ni than in 

coarse grained Ni and this diffusion enhancement depends critically on the temperature 

interval.  

At lower temperatures, below about 400 K (region I), an almost linear Arrhenius behaviour is 

measured, with the corresponding activation enthalpy being roughly half of that which 

characterizes the coarse-grained Ni material. The experimental data at the temperatures above 

400 K show a cross-over to a distinctly different yet consistent Arrhenius dependence (region 

II). This fact points to the attainment of a partially relaxed state of the non-equilibrium grain 

boundaries with a different metastable structural configuration as compared to that produced 
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during SPD at room temperature and which is kinetically stable over a significant interval of 

annealing temperatures. The interval III corresponds to relaxation of the non-equilibrium state 

of GBs and overlapping processes of recrystallization / grain growth. 

The regions II and III appear to be well separated in ECAP Ni due to the relatively low purity 

of the material used (99.6wt%). As a result of GB segregation of residual impurities the UFG 

microstructure turned out to be relatively stable and no significant recrystallization / grain 

growth was detected below 600 K [27]. 

The extremely fast tracer penetration in severely deformed pure Ni is consistent with the 

previous results of radiotracer diffusion measurements on ultra-fast transport in SPD-

processed pure Cu [122-124] and Cu-based alloys [125-126]
2
. On the other hand, such a clear 

kink in the Arrhenius dependence was not observed for grain boundary diffusion in UFG pure 

Cu and Cu-based alloy. This fact correlates with a lower homologous temperature of SPD 

processing (i.e. T/Tm, where Tm is the melting point) for nickel (T/Tm=0.17) in comparison to 

that for copper (T/Tm=0.22), since the SPD process was carried out at room temperature in all 

cases under consideration. The low homologous temperature of deformation reduces the 

dynamic recovery processes which affect the concentrations of point defects, impurity 

segregation, atomic transport along interfaces and result in modified GB structures. 

Such an observation substantiates the complexity of „non-equilibrium GBs‟. We have to admit 

that in addition to common parameters required to specify a relaxed high-angle grain 

boundary (i.e. the misorientation, inclination and the translation vector), extra parameters 

have to be introduced to characterize the non-equilibrium state. In a simplest approximation 

one may think of the defect density and/or the free volume density. Kinetic parameters, e.g. 

relaxation time(s), and thermodynamic parameters, e.g. segregation, compound formation or 

chemical ordering/disordering effects at interfaces, might also be involved in view of an 

inherent metastability of these interface states.  

The region II substantiates a specific structure state of grain boundaries in SPD processed 

materials. It is important to note at this point, that a direct comparison of the diffusion 

measurements, which represent a macroscopically averaging method, with the highly local 

microstructure analyses results obtained by TEM-based techniques is not feasible. Yet, in all 

cases where SPD processed material was studied, similar contrast features as in Fig. 2(a) were 

observed by TEM and similar fast and ultrafast contributions to grain boundary diffusion were 

found. This correlation is sketched in Fig. 5 for ECAP Ni. The zipper contrast at the majority 

                                                 
2
 An important difference is the absence of so-called percolated porosity in SPD Ni, which was discovered in 

ECAP Cu [127] and Cu-based alloys [128]. This porosity represents an extremely fast transport path toping the 

above introduced list of the short-circuit paths for diffusion in UFG materials. 
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of GBs and strain contours around these GBs in the as-prepared state correlate with 

significant enhancement of interface diffusivity (region I). In the temperature interval II, the 

kink in the diffusion rate correlates with partial relaxation of the zipper contrast while the bulk 

strain/stress state is conserved to a large extent. Only in the interval III the recrystallization / 

grain growth processes trigger interface relaxation and recovery of the GB diffusivity. We 

conclude that the combined results on kinetics and structure of interfaces indicate that the 

non-equilibrium grain boundaries, revealing an increased width, a high density of localized 

defects (yet to be quantified) and high residual strain levels associated with them, possess a 

significantly enhanced diffusivity.  

Figure 5 indicates clearly that the term „non-equilibrium grain boundary‟ encompasses a wide 

range of different states of interfaces with basically different kinetic/structure properties, cf. 

regions I and II. Remarkably enhanced diffusivities (although with significantly different 

effective activation enthalpies) and specific grain boundary structures observed in regions I 

and II substantiate a non-equilibrium state of interfaces in the corresponding temperature 

intervals. However, the pertinent interfaces reveal different TEM contrasts with presumably 

different strain/stress levels and defect populations. In the particular case of ECAP Ni, 

deformed at room temperature, we may talk about at least two distinct states of the non-

equilibrium interfaces. The fundamental questions arise. What is common between the states I 

and II? Which properties have to be used for an unambiguous definition of the non-

equilibrium state? The atomistic/structure reasons of the diffusivity enhancement also have to 

be understood. 

The high diffusion rates are believed to be related to higher excess free energies of non-

equilibrium grain boundaries in severely deformed Ni. Adopting the semi-empirical Borisov 

formalism [129] the excess free energy of non-equilibrium interfaces in ECAP Ni was found 

to be about 30% larger than in the annealed coarse-grained material [27], whereas about 10% 

increase was reported for SPD Cu [121].  

We propose to generalize this formalism and to use the above-mentioned ansatz as a measure 

of the excess free energy of interfaces irrespective of their state. This phenomenological 

model gives rise to a definition of the non-equilibrium state of an interface with respect to 

relaxed general high-angle grain boundaries and furthermore introduces a convenient measure 

for the non-equilibrium state. In a series of papers by Nazarov et al. [15, 16] the non-

equilibrium state of interfaces in SPD materials was related to the content of the extrinsic 

grain boundary dislocations (see section 2). It is interesting that both structure and kinetic 

approaches can be combined proving an extensive characterization of ECAP Ni [28]. The 
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cross-over in the diffusion behaviour at 400 K, Fig. 5, correlates with a characteristic change 

of the relaxation time of the array of extrinsic grain boundary dislocations calculated 

according to Ref. [15] (and with the change of a typical HRTEM contrast at the interfaces) 

[27]. Whereas the agreement is encouraging for the region I in Fig. 5, the diffusion approach 

allows characterizing the state of interfaces in other regions where the dislocation approach of 

Nazarov et al. [15] fails since it predicts fully relaxed grain boundaries. 

We have to admit that along with arrays of extrinsic grain boundary dislocations other defects 

should be included too. The following processes/phenomena contribute to the non-equilibrium 

state of grain boundaries in SPD processed materials: 

 abundant vacancies and vacancy-like defects in interfaces produced by severe 

deformation; 

 redistribution of the related excess free volume, release of local strains/stresses 

 chemical effects (ordering) may be important in alloys and compounds affecting the 

atomic redistribution and retarding e.g. the stress/strain relaxation; 

 segregation can be especially important in alloys involving even 2D compound 

formation along interfaces (see section 3). 

The effective activation enthalpy of interface diffusion in ECAP Ni in the region I is similar 

to the effective activation enthalpy, which was found for recovery of vacancies in the material 

by DSC, suggesting that interface self-diffusion in as-prepared UFG Ni is governed by 

deformation-induced vacancies or vacancy-like defects. Basically, redistribution of these 

defects along with the stress relaxation in grains determined the transition from state I to state 

II with increasing temperature. 

There is a striking correlation between the above mentioned kink in the Arrhenius dependence 

of Ni GB self-diffusion and the annihilation of single vacancies in SPD-processed Ni which 

was reported to occur at about 400 K, see e.g. [27, 130]. This fact indicates that the 

redistribution of vacancy-like defects – including their annihilation at GBs – results in a 

partial relaxation/transformation of the deformation-induced non-equilibrium state of the 

interfaces with lowering of the effective activation enthalpy of GB diffusion. 

In order to give further insights into grain boundary structures affected by SPD processing, 

grain boundary diffusion of substitutionally (Ag) and interstitially (Co) diffusing solutes was 

investigated in coarse-grained (CG) as well as in UFG -Ti produced by ECAP [131].  

Co is known to be a so-called “ultrafast diffuser” in the crystalline bulk of CG -Ti [132]. It 

occurred that Co is an ultrafast diffuser in grain boundaries of CG -Ti, too. Astonishingly, at 

least at a first sight, grain boundary diffusion of Co in UFG -Ti is slower than the interface 
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diffusion in CG -Ti while for Ag as diffusing species, grain boundary diffusion in the UFG 

material is significantly faster [131]. Due to SPD processing, a high concentration of defects, 

including those at grain boundaries, is created. The associated excess free volume offers 

effective (substitutional) traps for interstitially diffusing Co atoms. On the other hand, the Ag 

diffusivity is dramatically increased in UFG -Ti as a result of severe plastic deformation. It 

is assumed that the physical origin of the increased diffusivity of Ag in UFG -Ti is the 

formation of non-equilibrium GBs during the deformation process and the increase of the 

excess free volume of the interfaces.  

In general the diffusion along non-equilibrium grain boundaries depends on the diffusion 

mechanism of the tracer. Interstitially diffusing atoms are trapped or scattered due to the high 

concentration of lattice defects in grain boundaries, which were induced by the severe plastic 

deformation. Accordingly, the interstitial diffusivity of such kind of elements can be slowed 

down. 

A recent study by E. Schafler et al. [133] using X-ray line profile analysis showed that only 

half of the deformation-induced vacancies remain after unloading material from the high-

pressure conditions maintained during the deformation. Thus, a significantly higher vacancy 

concentration is present in the material during deformation and this may potentially result in a 

much higher atomic mobility during the SPD treatment. Indeed, even if the very high applied 

pressure might hinder the migration of vacancies, the atomic mobility is the product of 

vacancy concentration and the vacancy mobility. Since the vacancy concentration is 

significantly increased during SPD, the atomic mobility could be also increased. The 

experimental observations of SPD induced segregations or enhanced particle dissolution are 

nice examples of enhanced atomic mobility (see section 3 and 4). Since grain boundary 

diffusion measurements were performed ex-situ (after the deformation and the high pressure 

has ceased), it is believed that the atomic mobility could be even higher during SPD. 

However, It remains unclear, if due to the increased value of the vacancy migration enthalpy 

under high hydrostatic pressure [134] the distribution of vacancies is rather homogeneous 

during the severe deformation.  
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Yet, due to the presence of a thermodynamic driving force, preferential diffusion of vacancies 

to the most potent sinks that are within diffusion distance, i.e. towards the high angle grain 

boundaries, can be safely assumed
3
. This scenario would lead to a composite structure with 

potentially more compliant GB regions and strong grain interiors.  

 

 

6. Summary and Outlook 

The results presented in this paper provide a strong evidence that SPD-processing synthesizes 

material with a significant fraction of high angle grain boundaries that possess higher excess 

free energy density, enhanced atomic mobility along the boundary plane, significant residual 

strain fields located at the near-boundary region and strongly increased segregation at the 

boundary and in the near-boundary region. These observations agree with early experiments 

[135, 136] and models [15] of non-equilibrium grain boundaries that suggested that SPD 

processing can trigger the interfaces to attain a non-equilibrium state as a result of heavy 

interaction with dislocations or imposed plasticity constraints. 

However, the results also indicate that the final state of GBs created by SPD depends either on 

the dynamic recovery processes occurring in the vicinity of the boundaries, but also on 

possible interactions between lattice defects and impurities and/or solute elements. This could 

lead to a large variety of GBs, exhibiting various roughness, strain distribution, 

misorientation, local defect density, and these GB features can play a significant role in the 

properties of UFG materials. In addition, these features are closely related to the SPD 

processing regimes (temperature, strain rate and degree, applied pressure). 

Due to their inherent large amount of GBs, the properties of UFG materials are rather 

sensitive to GB structures. For example, the thermal stability is one of the most important 

parameters for various applications (especially for creep and superplastic properties that have 

been demonstrated for various UFG alloys processed by SPD). It is interesting to note that on 

this point, GB structure and segregations might have a significantly favourable effect, as 

demonstrated for nanocrystalline Ni obtained by electrodeposition [38] and UFG Cu 

processed by ECAP [53]. Moreover, it seems that GB segregations could also affect the 

deformation mechanisms, leading in some cases to an increase of the strength that deviates 

from the Hall-Petch law [54]. Although the exact underlying mechanisms are not fully 

                                                 
3
 yet, abundant vacancies and interstitials are created and annihilated during dislocation climb providing an 

important vehicle for deformation. The diffusion distances are small for such processes (about interatomic 

distances) and these defects can easily be removed. This effect may explain partially the observations of Schafler 

[133]. 
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understood in a more general way, Molecular Dynamics (MD) simulations have shown that 

small composition fluctuations along grain boundaries may have a significant influence on the 

mechanical behaviour of bulk nanostructured materials [55]. In particular, the model 

suggested in [54] that is based on the influence of GB segregations on the formation of 

dislocations at grain boundaries enabled to evaluate the values of activation volume and 

strain-rate sensitivity of flow stress that agreed well with experimental data measured for the 

UFG Al alloy. 

Moreover, so far the observation of the different properties of these high energy grain 

boundaries that have been measured either with local probes or stem from macroscopically 

averaging techniques, have yet to be shown to refer to one specific type of grain boundaries. 

The recent results obtained on the properties of grain boundaries in SPD-processed materials 

have also shown that the relaxation behaviour of these high-energy boundaries is far more 

complex than proposed by the earlier models of non-equilibrium grain boundaries.  

It should be noted at this point, that there exists an apparent disagreement between the 

diffusional and structural (as measured by GPA) GB width (sections 2&5), on the one hand, 

and the chemical width determined by segregation studies (section 3), on the other hand. 

Whereas the structure and diffusional grain boundary widths represent well-known quantities, 

see e.g. [137, 52], the width of the segregated layer as a measure of non-equilibrium state, e.g. 

in a nominally single-phase material, has to be treated with caution. There is also another 

apparent contradiction between diffusion measurements giving the evidence of a fastest 

percolating pathway forming a mesh with a typical size corresponding to 5-10 grain 

diameters, while published bright-field TEM data taken at low resolution [135, 136] indicated 

a much larger proportion of “non-equilibrium” grain boundaries. It seems realistic to imagine 

that grain boundaries with a spectrum of excess free energy densities exist and that not all 

non-equilibrium grain boundaries affect diffusion in the same way such that a hierarchy 

among boundaries exists in SPD materials with respect to atomic mobility, residual stresses 

etc.. Some of these boundaries might yield specific contrast features in TEM (but one should 

note also that boundaries may also relax during thin foil preparation), some of them (or 

others) might reveal extra fast atomic mobility along the boundary plane by diffusion 

experiments, while there might exist some non-equilibrium state that has never been 

characterized yet by any technique. Presently, it seems still utopian to imaging an experiment 

in which diffusivity, atomic structure and segregation behaviour would be measured for the 

same non-equilibrium interface with reasonable accuracy, although such measurements are 

feasible in the case of bicrystals.  
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In this respect, it is of current concern to introduce quantitative parameters describing non-

equilibrium grain boundaries. This will serve as the basis for creating the classification of 

different types of non-equilibrium GBs, which is important for further developing the concept 

of GB engineering of UFG materials towards the controlled enhancement of their properties. 

One such quantitative parameter could be defined on the basis of the relative excess free 

energy density with respect to a relaxed random high angle grain boundary. We have 

proposed a definition of the non-equilibrium state of interfaces in terms of a measurable 

quantity – the associated diffusion rate. There are a number of other parameters – the level of 

lattice distortion near an interface, the width measured by GPA, or the chemical width – 

which may be proposed to quantify the non-equilibrium state.  

Moreover, the role of the non-equilibrium grain boundaries concerning the observed 

performance of SPD processed materials with ultrafine grained microstructure, especially 

concerning their mechanical properties, is still ubiquitous. Should the performance of the 

materials be described by a composite model consisting of grain interiors, grain boundaries 

and non-equilibrium grain boundaries? Further studies on model materials applying several 

different measurement methods on the very same specimens might allow addressing these 

important issues in the future. 

This paper substantiates the importance of a combined research which should include 

measurements of a number of the above-mentioned properties in the same material including 

their relaxation behaviour. One of the most striking and unique feature of SPD-processed 

materials is the creation of a hierarchy of fast diffusion pathways with significantly different 

atomic mobilities. This result of detailed measurements of the grain boundary diffusion rate is 

likely to reflect the different types of grain boundaries after SPD processing that cover 

different types of non-equilibrium grain boundaries as well as relaxed high angle grain 

boundaries. So far, the creation of percolating networks of pathways with specific atomic 

mobilities as well as the interaction of this microstructural feature with the macroscopic 

properties and performance of the materials is yet to be analyzed. 

The use of strongly segregating impurities in UFG materials with non-equilibrium interfaces 

may provide another attractive route for property tuning by desired segregation of the selected 

elements. Most deep traps with high segregation energies will be filled by (oversized) solute 

atoms reducing the grain boundary energy. One may consider a scenario that the excess free 

energy of structural non-equilibrium interfaces becomes zero due to segregation and these 

defects will be thermodynamically stable. The kinetic properties of such interfaces would 
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represent a highly topical subject as well as the response of the modified UFG material on 

mechanical as well as functional properties. 

In this paper, the analysis was mainly focused on the non-equilibrium state of general high-

angle GBs in SPD materials. Following [138], special GBs can be introduced in UFG 

materials to tune the desired properties. We note that twin boundaries can also be triggered to 

a non-equilibrium state by severe deformation [139] that might be crucial for the combination 

of high strength and reasonable ductility [140]. 

The concept of GB engineering or GB design was introduced by T.Watanabe in [138] where 

it had been proposed that the properties of polycrystalline materials may be effectively 

changed by deliberate and careful tailoring of grain boundary character distribution. The 

concept of grain boundary engineering can be developed and applied to SPD materials since a 

wide variety of GBs could be achieved by variation of SPD processing routes and regimes 

[141, 142]. Indeed, low and high angle grain boundaries with various proportions could be 

obtained, including some segregations of solute elements or nanoscaled precipitates that could 

dramatically change the properties like the thermal stability. Therefore, the design of specific 

grain boundaries for optimal properties could be considered in the near future. Such an 

approach may open a new area for bulk nanostructured materials.  

Thus, one can expect that new advanced properties may be achieved through variations of GB 

structure in the ultrafine-grained materials processed by SPD and these studies, in the authors‟ 

opinion, should become a dynamic trend of further research in the field of nanomaterials and 

nanotechnologies.  
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