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Abstract

In spatial evolutionary games the fitness of each individual is traditionally deter-
mined by the payoffs it obtains upon playing the game with its neighbors. Since
defection yields the highest individual benefits, the outlook for cooperators is
gloomy. While network reciprocity promotes collaborative efforts, chances of
averting the impending social decline are slim if the temptation to defect is
strong. It is therefore of interest to identify viable mechanisms that provide
additional support for the evolution of cooperation. Inspired by the fact that
the environment may be just as important as inheritance for individual devel-
opment, we introduce a simple switch that allows a player to either keep its
original payoff or use the average payoff of all its neighbors. Depending on
which payoff is higher, the influence of either option can be tuned by means
of a single parameter. We show that, in general, taking into account the envi-
ronment promotes cooperation. Yet coveting the fitness of one’s neighbors too
strongly is not optimal. In fact, cooperation thrives best only if the influence of
payoffs obtained in the traditional way is equal to that of the average payoff of
the neighborhood. We present results for the prisoner’s dilemma and the snow-
drift game, for different levels of uncertainty governing the strategy adoption
process, and for different neighborhood sizes. Our approach outlines a viable
route to increased levels of cooperative behavior in structured populations, but
one that requires a thoughtful implementation.
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1. Introduction

Understanding the evolution of cooperation among unrelated individuals rep-
resents one of the major challenges of evolutionary biology and of behavioral
sciences (Nowak, 2006). According to the principles of Darwinian selection, any
behavior that brings benefits to others but not directly to oneself will soon disap-
pear (Darwin, 1958). However, this is not fully consistent with observations that
attest to the existence of cooperative behavior, with examples ranging from the
communities of microorganisms to animal and human societies (Milinski, 1987;
Binmore, 1994; Colman, 1995; Doebeli and Hauert, 2005). In order to explain
the emergence and maintenance of cooperation, evolutionary games, with the
focus on social dilemmas, have provided several fundamental insights (Hofbauer
and Sigmund, 1998; Ohtsuki et al., 2006; Ren et al., 2006; Ohtsuki and Nowak,
2006). And especially the prisoner’s dilemma games and its extensions have
been considered and studied frequently (Mesterton-Gibbons, 1991; Nowak and
May, 1992; Mesterton-Gibbons, 1992; Milinski and Wedekind, 1998; Moyano
and Sánchez, 2009; Souza et al., 2009; Chen et al., 2009; Traulsen et al., 2010;
Jiménez et al., 2008; Poncela et al., 2007; Sysi-Aho et al., 2005; Hauert and Doe-
beli, 2004; Santos and Pacheco, 2005) in order to shed light on how cooperation
can evolve and how it can be maintained. In its general form the prisoner’s
dilemma game states that the players must choose either cooperation or defec-
tion without knowing the decision of their co-players. A cooperator receives
the reward R when meeting another cooperator, but only the sucker’s payoff S
when facing a defector. On the contrary, a defector exploiting the cooperator
gets the temptation T , but only the punishment P if encountering another de-
fector. Because the above payoffs strictly satisfy the ranking T > R > P > S
and 2R > (T+S), eventually the defectors will prevail irrespective of what their
opponent choose, and thus will become the dominant strategy. Altogether, we
are faced with a social dilemma that if left “untreated” will lead to the tragedy
of the commons (Hardin, 1968).

Over the past decades, several mechanisms have been identified that can off-
set an unfavorable outcome of social dilemmas and lead to the evolution of coop-
eration (Nowak, 2006). Examples include kin selection (Hamilton, 1964), direct
and indirect reciprocity (Ohtsuki, 2004; Nowak and Sigmund, 1998a,b; Pan-
chanathan and Boyd, 2004; Ohtsuki and Iwasa, 2004, 2006), effective strategies
such as the tit-for-tat (Imhof et al., 2007; Baek and Kim, 2008) or win-stay-
lose-shift (Nowak and Sigmund, 1993; Chen et al., 2008), voluntary participa-
tion (Szabó and Hauert, 2002), and of course spatially structured populations
(Nowak andMay, 1992; Nowak et al., 1994; Nakamaru et al., 1997, 1998). Mostly
notably, if players are arranged on a lattice and interact only with their nearest
neighbors, then cooperators can survive by means of forming compact clusters
which minimizes the exploitation by defectors and protects those cooperators
that are located in the interior of such clusters (Nowak and May, 1992). Along
this line of research studies on the evolution of cooperation have received a sub-
stantial boost. For example, complex networks with the connectivity structure
similar to that of social networks have been recognized as very beneficial for the
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evolution of cooperation (Abramson and Kuperman, 2001; Santos and Pacheco,
2005, 2006; Santos et al., 2006; Tang et al., 2006; Ohtsuki et al., 2006; Floŕıa
et al., 2009; Gómez-Gardeñes et al., 2008; Rong et al., 2007; Poncela et al., 2007;
Kuperman and Risau-Gusman, 2008; Gómez-Gardeñes et al., 2007; Du et al.,
2009). In particular, the heterogeneity, or diversity, allows for cooperative be-
havior to prevail even if the temptations to defect are large (Szolnoki and Szabó,
2007; Perc and Szolnoki, 2008; Santos et al., 2008; Perc and Wang, 2010). The
mobility of players can also lead to an outbreak of cooperation, even when the
conditions are noisy and do not necessarily favor the spreading of cooperators
(Helbing and Yu, 2008, 2009; Jiang et al., 2010). Uncertainty, if appropriately
tuned, may also have a positive impact on the evolution of cooperation (Perc,
2006; Vukov et al., 2006). Moreover, there exist comprehensive reviews that
capture succinctly recent advances on this topic (Szabó and Fáth, 2007; Perc
and Szolnoki, 2010; Roca et al., 2009).

However, while some of the works focus predominantly on the effects of in-
dividual properties, others build on the influence of external factors. Notably
though, the conceptual relatedness of these seemingly very disparate mecha-
nisms is often neglected. Here our aim is to propose an approach that inte-
grates seamlessly between individual and external factors by means of a single
parameter. The definition of fitness has already been modified for this pur-
pose, for example based on the extension of Hamilton’s rule (L. Lehmann and
L. Keller, 2006; Doebeli and Hauert, 2006), and here we also focus on this par-
ticular aspect of evolutionary games. As suggested in many previous works
concerning also complex networks and processes taking place on them (Albert
and Barabási, 2002; Bianconi and Barabási, 2001), taking into account the fact
that different nodes (players) have a different ability to compete successfully for
a dominant position within the network is achieved best by assigning a fitness
to each individual. Naturally, here we also consider individual fitness as be-
ing representative for the ability or potential of each individual to survive and
reproduce. Moreover, we build on the fact that individual success in general de-
pends on the inheritance as well as on environmental factors, and indeed many
paradigmatic examples can been found in the biological and social sciences sup-
porting this assertion (Krakauer, 2005; Cant and English, 2006; Keller, 1997;
Schelling, 1978; Rodrigues et al., 2009). For example, a young lion not only
inherently knows how to suckle on its mother, but it has to gradually learn also
how to prey and protect its territory according to the numbers of competing
opponents. If it fails at either of these tasks, its chances of survival are slim. By
considering the traditional payoff accumulation (what the players obtain upon
playing with their neighbors) as something related to inheritance, and by con-
sidering the average payoff of all the neighbors as being representative for the
environment, we propose a simple single-parameter dependent payoff function
that allows us to determine just how much it pays to prefer one or the other,
i.e., inheritance or the environment. In addition, the proposed payoff function
incorporates a coevolutionary ingredient in that the influence of the two factors
depends dynamically on its expected performance.

We focus on the prisoner’s dilemma game, but present also detailed results
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for the snowdrift game. As the interaction network, we consider the square
lattice with different numbers of neighbors in order to relevantly assess the
importance of neighborhood size. We also examine the effects of different levels
of uncertainty by strategy adoptions on the evolution of cooperation. Depending
on the value of the parameter that determines how strongly individuals covet
their neighbors (in the sense of wanting to rely completely on the average payoff
of their neighborhood rather than on the traditionally obtained payoffs), we
demonstrate that cooperation can be promoted substantially if compared to
the traditional version of the game (Szabó and Tőke, 1998; Szabó et al., 2005).
Importantly though, we find that the facilitation of cooperation is optimal only
if the inheritance and the environment are represented equally strong in the
final fitness of each player. Since our findings are robust to variations of the
governing evolutionary game, the neighborhood size, as well as to variations of
the level of uncertainty governing the strategy adoptions, we conclude that the
proposed approach outlines a viable route to resolving social dilemmas.

The paper is structured as follows. Section 2 features the methods and the
description of evolutionary games, while section 3 contains the results. In the
last section we summarize our conclusions.

2. Methods

For simplicity, but without loss of generality, we consider variants of the
prisoner’s dilemma and the snowdrift game of which the outcomes depend on a
single parameter only. For the prisoner’s dilemma game, the payoffs are T = b,
R = 1 and P = S = 0, where 1 ≤ b ≤ 2 quantifies the temptation to defect and
represent the advantage of defectors over cooperators. Although being in effect
the so-called weak prisoner’s dilemma in that P = S rather than P > S, this
version captures all the relevant aspects of the game (Nowak and May, 1992).
In order to test the validity of our conclusions, we also employ the snowdrift
game with the payoffs T = 1 + r, R = 1, S = 1 − r and P = 0, thus satisfying
the ranking T > R > S > P , where 0 ≤ r ≤ 1 represents the so-called cost-to-
benefit ratio. Indeed, the snowdrift game is frequently studied as an alternative
to the perhaps better known prisoner’s dilemma (Hauert and Doebeli, 2004; Du
et al., 2009; Wang et al., 2006).

As the interaction network, we use L×L square lattices with periodic bound-
ary conditions. Each vertex i is initially designated as a cooperator (si = C)
or defector (si = D) with equal probability. The game is iterated forward in
accordance with the Monte Carlo simulation procedure comprising the following
elementary steps. First, player i acquires its payoff Pi by playing the game with
all its neighbors. Next, the environment of player i is assessed by the average
payoff of all its neighbors P , that is,

P =

∑k

j=1Pj

k
, (1)

where k denotes the neighborhood size of player i, Pj represents the payoff of
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player j who is one of the neighbors of player i, and the sum runs over all the
neighbors of player i.

Before proceeding with the details of how individual fitness is determined,
we would like to motivate our approach better, in particular describing why
inheritance and environment are represented by individual (traditional) payoffs
and the average payoff of all the neighbors, respectively. From the biological
point of view, inheritance refers to the fact that individuals pass down their
genetic material to their offspring. In the context of evolutionary games, this
corresponds to players passing their strategy to the next generation based on
their payoffs (Szabó and Tőke, 1998; Ohtsuki and Nowak, 2006). Naturally,
each accumulated payoff at present is the best reflection of the strategy which
was inherited from the previous generation. On the other hand, in social sys-
tems the performance of each individual is affected not just by inheritance, but
also by environmental factors (Rodrigues et al., 2009; Ghalambor et al., 2007;
Strassmann, 1989), implying that to some extent individual success is related to
the performance of its neighbors or rather the neighborhood as a whole. In or-
der to capture this influence succinctly, we consider the average payoff of all the
neighbors as the simplest measure to assess the influence of the environment.
Motivated by the fact that the environment (here represented by P ) may be
just as important as inheritance (here represented by Pi), but also by the fact
that in general the impact of these two factors may vary, we finally evaluate the
fitness of player i according to

fi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0.5− u)× P + (0.5 + u)× Pi if (Pi > P ),

(0.5 + u)× P + (0.5− u)× Pi if (Pi < P ),

0.5× P + 0.5× Pi if (Pi = P ),

(2)

where the selection parameter 0 ≤ u ≤ 0.5 is used for fine-tuning. Evidently, for
u = 0 both influences determine the final fitness of player i in equal capacity.
For u > 0, however, the better performing influence will be preferred, i.e.,
represented stronger in the final fitness. In the limit case of u = 0.5 the fitness fi
is absolutely determined either by the environment or by inheritance, whichever
is performing better at the time. Alternatively, Eq. (2) can also be interpreted
as follows: Before each generation (during the simulation, each full Monte Carlo
step is regarded as a new generation), we assume that the influence of inheritance
and environment on individual development is the same because we cannot
objectively predict the magnitude of their influence before the appearance of a
new generation. However, after the impact of both is evaluated, the influence
will change accordingly. If the performance of neighbors is better, the player
may benefit from the environment. Otherwise, the influence of its neighbors
may be reduced or is kept constant. Following the determination of fitness,
player i adopts the strategy sj from its randomly selected neighbor j (whose
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fitness fj is determined in the same way as fi) via the probability

W (sj → si) =
1

1 + exp[(fi − fj)/K]
, (3)

where K denotes the amplitude of noise or its inverse (1/K) the so-called in-
tensity of selection (Szabó and Tőke, 1998). Positive values of K imply that
better performing players are readily imitated, but it is not impossible to adopt
the strategy of a player performing worse. Such errors in judgment can be at-
tributed to mistakes and external influences that affect the evaluation of the
opponent. During a full Monte Carlo step (MCS) all players will have a chance
to pass their strategy once on average.

Results of Monte Carlo simulations presented below were obtained on pop-
ulations comprising up to 400× 400 individuals, whereby the fraction of coop-
erators Fc was determined within 105 full MCS after sufficiently long transients
were discarded. Moreover, final results were averaged over up to 40 independent
runs for each set of parameter values in order to assure suitable accuracy.

3. Results

As is known, in the prisoner’s dilemma game the cooperators will be deci-
mated fast even if the temptations to defect are moderate. It is thus challeng-
ing to identify non-trivial mechanisms that may sustain cooperation under such
conditions. In order to address this puzzle, we consider first the effect of the
redefined fitness, as given by Eq. (2). Figure 1 shows the characteristic spatial
distributions of cooperators and defectors for different values of the parameter
u. If u = 0.5 (top left panel), where each player’s performance is absolutely
determined by either the inheritance or the environment (depending on per-
formance), cooperators will go extinct, the final outcome thus being complete
dominance of defectors. However, upon a slight decrease of u, the survival of
cooperators becomes viable in that a small fraction of cooperators can prevail by
means of forming small clusters or patches on the spatial grid. By continuing to
decrease u, the clusters of cooperators become larger and more common, which
ultimately results in averting the impeding social decline. More interestingly, for
u = 0 (bottom right panel), when the influence of inheritance is equal to that of
the environment, cooperators thrive best, and may even outperform defectors.
Hence, these results suggest that the parameter u, determining the composition
of the fitness of each player can substantially promote cooperation, enabling its
maintenance where otherwise defection would reign completely. Yet coveting
the fitness of one’s neighbor too strongly (which is implied by u = 0.5), even
if at the moment the neighbors are performing much better, is not optimal for
the evolution of cooperation.

In order to provide a quantitative assessment of the impact of different val-
ues of u, we show in Fig. 2 how the fraction of cooperators Fc and the critical
temptation to defect bc, at which cooperators go extinct, depends on this newly
introduced parameter. Results presented in the top panel of Fig. 2 depict Fc in
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dependence on the parameter b for different values of u. One can find, compared
with the traditional version of the game, that the introduction of u can sub-
stantially promote the emergence and maintenance of cooperation. Moreover,
the presented results demonstrate explicitly that the switch of the parameter u
from 0.5 to 0 makes cooperators stronger and more resilient to the invasion of
defectors. These quantitative results clearly attest to the fact that the environ-
ment plays a vital role in individual development, specifically by the evolution
of cooperation, yet redundantly leaning on it (or the traditional accumulation
of payoffs), which is implied by u = 0.5, will not be optimal.

It’s also interesting to consider how the critical threshold value bc, marking
the extinction of cooperators, varies in dependence on the selection parameter
u for different neighborhood sizes. From the bottom panel of Fig. 2, it can be
observed that the value of bc decreases monotonously from 1.82 to 1.42 while
increasing u from 0 to 0.5 in case of the traditional square lattice (k = 4).
However, if the neighborhood size on the square lattice is enlarged, this effect
becomes less and less pronounced as k increases, and in fact at k = 24 only
a marginal difference in bc can be observed if comparing the u = 0 and the
u = 0.5 case. This result is in fact expected since increasing the neighborhood
size will gradually lead to well-mixed conditions (Szabó and Szolnoki, 2009),
but it also implies directly that the observed phenomenon is inherently routed
in the spatiality of the interaction structure. Below we will provide further
evidence supporting such a conclusion when we investigate how different values
of K affect the evolution of cooperation by different values of u. Nevertheless, it
is also worth pointing out that the general features of our results remain intact
upon changing the neighborhood size, which vouches for their robustness.

In order to explain how and why different values of u promote cooperation,
we first examine time courses of Fc for different values of the selection param-
eter u. From Fig. 3, it becomes obvious fast that in the early stages of the
evolutionary process (note that values of Fc were recorded also in between full
Monte Carlo steps) the performance of defectors is better than that of coop-
erators. This is in fact what one would expect, since defectors, as individuals,
should be more successful than cooperators, which in turn should manifest in
the decimation of the later. What is not necessarily expected, is that the tide
shifts in favor of cooperators rather strongly following their initial decline, and
in fact the more so the smaller the value of u. In particular, when the value of u
is large, i.e., close or equal to 0.5, cooperators will ultimately go extinct or pend
at the brink of extinction. With the decrease of u, however, the tide may change
strongly in favor of the cooperators. For u = 0, for example, it can be observed
that the initial downfall of cooperators is rather shallow, and ultimately, they
can restore their presence on the spatial grid in equal capacity as the defec-
tors. This suggests that in the initial stages of the game, when the cooperators
are not yet clustered, the defectors can successfully exploit them. However, as
the cooperative clusters form, they become impervious to the defector attacks,
which is due not only to spatial reciprocity, but also due to the newly identified
mechanism which can amplify the effect of spatial reciprocity substantially. Ul-
timately, the cooperators can therefore survive at higher temptations to defect
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than would be possible by spatial reciprocity alone.
It is next of interest to examine the evolution of cooperation for different

values of u in dependence on the uncertainty by strategy adoptions. The latter
can be tuned via K in Eq. (3), which acts as a temperature parameter in the
employed Fermi strategy adoption function (Szabó and Tőke, 1998). Accord-
ingly, when K → ∞ all information is lost and the strategies are adopted by
means of a coin toss. Figure 4 features full b−K phase diagrams for the square
lattice at u = 0.5 (top) and u = 0 (bottom). Interestingly, u = 0.5 eradicates
(as do interaction networks incorporating overlapping triangles (Szabó et al.,
2005; Szolnoki et al., 2009)) the existence of an optimal K, as can be observed
from the phase diagram presented in the top panel, which exhibits an inverted
bell-shaped D ↔ C + D transition line, indicating the existence of the worst
(K ≈ 0.4) rather than an optimal temperature for the evolution of coopera-
tion. This in turn implies that introducing a strong preference towards either
the inheritance (the fitness as determined by the traditional accumulation of
payoffs) or the environment (the fitness as determined by the average payoff of
all the neighbors) effectively alters the interaction network. While the square
lattice obviously lacks overlapping triangles and thus enables the observation
of an optimal K, trimming the importance via u seems to effectively enhance
linkage among essentially disconnected triplets and thus precludes the same ob-
servation. A similar phenomenon was observed recently in public goods games,
where the joint membership in large groups was also found to alter the effective
interaction network and thus the impact of uncertainly on the evolution of coop-
eration (Szolnoki et al., 2009). Conversely, the phase diagram presented in the
bottom panel of Fig. 4 is well-known (at least qualitatively), implying the exis-
tence of an optimal level of uncertainty for the evolution of cooperation, as was
previously reported in (Perc, 2006; Vukov et al., 2006). In particular, note that
the D ↔ C+D transition line is bell shaped, indicating that K ≈ 0.15 is the op-
timal temperature at which cooperators are able to survive at the highest value
of b. This phenomenon can be interpreted as an evolutionary resonance (Perc,
2006), albeit it can only be observed on interaction topologies lacking over-
lapping triangles (Szabó et al., 2005; Szolnoki et al., 2009). Altogether, these
results confirm that the observed promotion of cooperation is routed strongly
in the spatiality of the interaction network, which is clearly manifested by an
extensive gap between the C ↔ C +D and the D ↔ C +D transition lines at
u = 0, indicating that cooperators may survive even if b is close to the maximal
value.

Finally, it is of interest to explore the generality of our observations by means
of different evolutionary games. Due to the famous claim that the spatial struc-
ture may inhibit the evolution of cooperation in the snowdrift game (Hauert and
Doebeli, 2004), the snowdrift game naturally becomes an appropriate candidate
for this task. Figure 5 depicts the fraction of cooperators Fc in dependence
on the parameter r for different values of u. Similarly as in Fig 2, it can be
observed that with the value of u decreasing, the evolution of cooperation is
facilitated, which is qualitatively consistent with the results obtained for the
prisoner’s dilemma game. Interestingly though, the effect is less pronounced,

8



which may be attributed to the fact that the spatiality is indeed less crucial (is
in fact detrimental) for the evolution of cooperation in the snowdrift game, than
it is for the evolution of cooperation in the prisoner’s dilemma. This assertion if
fully confirmed upon examining the dependence of the critical r = rc for differ-
ent neighborhood sizes k. We remind the reader that for the prisoner’s dilemma
game the fact that larger values of k decrease the level of cooperation is expected
since increasing the neighborhood size will gradually lead to well-mixed condi-
tions. Since the spatial structure is known to be crucial for the sustenance of
cooperators in the prisoner’s dilemma game (Nowak and May, 1992), this is an
expected result that is not difficult to understand. It also means that the spatial-
ity (the fact that interactions are limited to neighbors on the lattice) is crucial
for the observed promotion of cooperation. The results for the snowdrift game
presented in the bottom panel of Fig 5 are different. The paper by Hauert and
Doebeli (2004) identified key differences in the pattern formation of cooperators
by the snowdrift game that is due to the different payoff structure (if compared
to the prisoner’s dilemma game). While in the spatial prisoner’s dilemma coop-
erators can survive by forming large, compact clusters, in the spatial snowdrift
game cooperators form only small filament-like clusters. The latter make it
advantageous to adopt strategies that are opposite to neighboring strategies,
ultimately resulting in the fact that the spatial structure actually inhibits the
evolution of cooperation in the snowdrift game. Our results in the bottom panel
of Fig 5 agree with this in that larger values of k (larger neighborhoods), de-
creasing the impact of spatiality, promote cooperation in the snowdrift game
(note that values of rc become higher for larger k). Thus, the impact of k is
opposite to that for the prisoner’s dilemma game, which is in agreement with
the argumentation proposed by Hauert and Doebeli (2004). On the other hand,
the impact of the parameter u is the same in that the smaller it is the larger the
value of Fc. A special case is the result for k = 4 by the snowdrift game, where
the parameter u seems to play an even more crucial role than for higher values
of k. A precise reason for this was impossible for us to find. Intuitively, for
k = 4 the conflict between the fact that spatial structure inhibits the evolution
of cooperation while small values of u promote it is expressed most severely,
thus leading to the strong dependence, i.e., much stronger than for larger values
of k or for any value of k in the prisoner’s dilemma game. Note that in the
latter game the aforementioned conflict does not emerge because there the spa-
tial structure at k = 4 is in fact optimal for the evolution of cooperation, while
for the snowdrift game it is the most prohibitive. Nevertheless, these results
support the fact that the newly identified mechanism that boosts the effect of
spatial reciprocity is generally valid, and should thus be observable also under
circumstances that were not explicitly taken into account in this paper.

4. Discussion

The evolutionary success of cooperators in social dilemmas is an important
and vibrant topic. In order to provide insights into this fascinating phenomenon,
the prisoner’s dilemma, as a basic and general metaphor for the problem, is
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commonly employed. In its original form, it is to be expected that rational indi-
viduals will favor defection of cooperation. This can be averted by introducing
spatially structured interactions (Nowak and May, 1992). In the spatial setting,
cooperators are able to survive by forming compact clusters, which disables the
defectors to exploit those that are located in the interior of such clusters. How-
ever, if the temptation to defect is sufficiently large, the spatial reciprocity may
fail to sustain cooperation. To overcome this, various additional mechanisms
that may promote cooperation have been proposed. Some of them focused on
individual properties of players, as for example the teaching activity (Szolnoki
and Szabó, 2007), while others focused on the external factors (or the environ-
ment), as for example the structure of the interaction network (Abramson and
Kuperman, 2001). Motivated by this fact, and by the concept of fitness as often
defined from the biological viewpoint, we introduce here an alternative definition
of fitness that is composed from inheritance (the payoffs as obtained by playing
the game with the neighbors) and the environment (the average payoff of all the
neighbors). Depending on which payoff is higher, the influence of either option
can be tuned by means of a single parameter u. Our approach is of course
a minimalist one, allowing for proof of principle rather than accurate claims
about specific setups, yet it demonstrates effectively that the concept of fitness
is amenable to simple adjustments that may have wanted consequences for the
evolution of cooperation. In particular, by means of systematic simulations,
we have shown that considering the environment as a necessary composition of
fitness can greatly promote the evolution of cooperation, especially if compared
to the traditional version of the game (either the prisoner’s dilemma or the
snowdrift game) that does not take into account the role of the environment in
individual development. But also, we demonstrate that if the individuals are
too avid in coveting what their neighbors have (in terms of payoffs), the evolu-
tion of cooperation will not be optimally promoted. The best is to adjust both
influences to be represented equally strong.

In addition, we have presented a detailed analysis of the promotion effect
with the help of time courses and the outcome of the games by different levels of
uncertainty governing the strategy adoptions. Although defection is prevalent
in the early stages of the evolutionary process, small values of the parameter
u can revert this trend, typically so that the few remaining cooperators form
very compact clusters that are impervious to defector attacks. These clusters,
although initially small and rare, may inflate fast and ultimately outperform
the defectors. Also interesting is the fact that the introduction of u seems
to alter the effective interaction topology of the square lattice. If the value
of u is large, i.e., if the average payoff of the neighbors is considered as too
strong a factor in the determination of individual fitness, there exists only the
“worst level” of uncertainty, at which cooperators go extinct by the smallest
temptation to defect. Conversely, if u = 0, which constitutes the optimal setup
for the evolution of cooperation, there exists an optimal level of uncertainty,
which can only be observed if the interaction topology is lacking overlapping
triangles (Szabó et al., 2005). However, since the actual topology always remains
unchanged, we attribute the effect on the evolution of cooperation to the possible

10



alteration of the effective interaction topology by means of previously unrelated
individuals due to the consideration of environmental factors.

Lastly, to test whether our approach is effective also in evolutionary games
other than the prisoner’s dilemma, we explore the evolution of cooperation in
the snowdrift game. We obtain qualitatively identical results as by the pris-
oner’s dilemma game, with some minor differences existing with regards to the
impact of different neighborhood sizes. Nevertheless, the conclusion that coop-
eration thrives best only if the influence of payoffs obtained in the traditional
way is equal to that of the average payoff of the neighborhood remains valid,
thus constituting a viable route to increased levels of cooperation in structured
populations.
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network reciprocity as a phase transition in evolutionary cooperation. Phys.
Rev. E 79, 026106.

Ghalambor, C. K., Mckay, J. K., Carroll, S. P., Reznick, D. N., 2007. Adaptive
versus non-adaptive phenotypic plasticity and the potential for contemporary
adaptation in new environments. Funct. Ecol. 21, 394–407.
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Jiménez, R., Lugo, H., Cuesta, J. A., Sánchez, A., 2008. Emergence and re-
silience of cooperation in the spatial prisoner’s dilemma via a reward mecha-
nism. J. Theor. Biol. 250, 475–480.

Keller, L., 1997. Indiscriminate altruism: unduly nice parents and siblings.
Trends Ecol. Evol. 12, 99–103.

Krakauer, A. H., 2005. Kin selection and cooperative courtship in wild turkeys.
Nature 434, 69–72.

Kuperman, M. N., Risau-Gusman, S., 2008. The effect of topology on the spatial
ultimatum game. Eur. Phys. J. B 62, 233–238.

Lehmann, L., Keller, L., 2006. The evolution of cooperation and altruism - a
general framework and a classification of models. J. Evol. Biol. 19, 1365–1376.

Mesterton-Gibbons, M., 1991. An escape from the ’prisoner’s dilemma’. J. Math.
Biol. 29, 251–269.

Mesterton-Gibbons, M., 1992. On the iterated prisoner’s dilemma in a finite
population. Bull. Math. Biol. 54, 423–443.

Milinski, M., 1987. TIT FOR TAT in sticklebacks and the evolution of cooper-
ation. Nature 325, 533–535.

Milinski, M., Wedekind, C., 1998. Working memory constrains human coopera-
tion in the prisoner’s dilemma. Proc. Natl. Acad. Sci. USA 95, 13755–13758.

Moyano, L. G., Sánchez, A., 2009. Evolving learning rules and emergence of
cooperation in spatial prisoner’s dilemma. J. Theor. Biol. 259, 84–95.

Nakamaru, M., Matsuda, H., Iwasa, Y., 1997. The evolution of cooperation in
a lattice-structured population. J. Theor. Biol. 184, 65–81.

Nakamaru, M., Nogami, H., Iwasa, Y., 1998. Score-dependent fertality for the
evolution of cooperation in a lattice. J. Theor. Biol. 194, 101–124.

Nowak, M. A., 2006. Five rules for the evolution of cooperation. Science 314,
1560–1563.

Nowak, M. A., Bonhoeffer, S., May, R. M., 1994. More spatial games. Int. J.
Bifurcat. Chaos 4, 33–56.

Nowak, M. A., May, R. M., 1992. Evolutionary games and spatial chaos. Nature
359, 826–829.

Nowak, M. A., Sigmund, K., 1993. A strategy of win-stay, lose-shift that out-
performs tit-for-tat in the prisoner’s dilemma game. Nature 364, 56–58.

13



Nowak, M. A., Sigmund, K., 1998a. The dynamics of indirect reciprocity. J.
Theor. Biol. 191, 561–574.

Nowak, M. A., Sigmund, K., 1998b. Evolution of indirect reciprocity by image
scoring. Nature 393, 573–577.

Ohtsuki, H., 2004. Reactive strategies in indirect reciprocity. J. Theor. Biol. 227,
299–314.

Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M. A., 2006. A simple rule
for the evolution of cooperation on graphs and social networks. Nature 441,
502–505.

Ohtsuki, H., Iwasa, Y., 2004. How should we define goodness? - reputation
dynamics in indirect reciprocity. J. Theor. Biol. 231, 107–120.

Ohtsuki, H., Iwasa, Y., 2006. The leading eight: Social norms that can maintain
cooperation by indirect reciprocity. J. Theor. Biol. 239, 435–444.

Ohtsuki, H., Nowak, M. A., 2006. Evolutionary games on cycles. Proc. R. Soc.
Lond. B 273, 2249–2256.

Ohtsuki, H., Nowak, M. A., 2006. The replicator equation on graphs. J. Theor.
Biol. 243, 86–97.

Panchanathan, K., Boyd, R., 2004. Indirect reciprocity can stabilize cooperation
without the second-order free rider problem. Nature 432, 499–502.

Perc, M., 2006. Coherence resonance in a spatial prisoner’s dilemma game. New
J. Phys. 8, 22.

Perc, M., Szolnoki, A., 2008. Social diversity and promotion of cooperation in
the spatial prisoner’s dilemma game. Phys. Rev. E 77, 011904.

Perc, M., Szolnoki, A., 2010. Coevolutionary games – a mini review. BioSystems
99, 109–125.

Perc, M., Wang, Z., 2010. Heterogeneous Aspirations Promote Cooperation in
the Prisoner’s Dilemma Game. PLoS ONE 5, e15117.
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Szabó, G., Hauert, C., 2002. Evolutionary prisoner’s dilemma games with vol-
untary participation. Phys. Rev. E 66, 062903.
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Figure 1: Characteristic distributions of cooperators (blue) and defectors (yellow) for different
values of the parameter u. From top left to bottom right u = 0.5, 0.4, 0.3, 0.2, 0.1 and 0,
respectively. All panels depict results obtained for b = 1.45 and K = 0.1 on a 100×100 square
lattice.

Figure 2: Top panel: Frequency of cooperators Fc in dependence on the parameter b for
different values of the selection parameter u. From left to right u = 0.5, 0.4, 0.3, 0.2, 0.1 and
0, respectively (the outcome of the traditional version of the game is denoted dashed). Bottom
panel: Critical threshold values b = bc, marking the transition to the pure D phase (extinction
of cooperators), in dependence on the selection parameter u for different neighborhood sizes.
If compared to the traditional version of the game (both panels), it can be observed that
cooperation can be maintained by significantly higher values of b, and moreover, that larger
neighborhood sizes may lessen the promotive impact significantly. Depicted results in both
panels were obtained for K = 0.1.

Figure 3: Time courses depicting the evolution of cooperation for different values of u. All time
courses were obtained as averages over 20 independent realizations for b = 1.45 and K = 0.1
on a 200× 200 square lattice. Note that the horizontal axis is logarithmic and that values of
Fc were recorded also in between full Monte Carlo steps to ensure a proper resolution.

Figure 4: Full b−K phase diagrams for u = 0.5 (top panel) and u = 0 (bottom panel), obtained
via Monte Carlo simulations of the prisoner’s dilemma game on the square lattice. The green
and red lines mark the border between stationary pure C and D phases and the mixed C+D
phase, respectively. In contrast with previous works considering the square lattice (Vukov
et al., 2006; Szabó et al., 2005), it can be observed that for u = 0.5 (top panel) there exists
an intermediate uncertainty in the strategy adoption process (an intermediate value of K) for
which the survivability of cooperators is worst, i.e., Fc is minimal rather than maximal. This
suggests that the interaction topology is indirectly affected and may give rise to overlapping
triangles if either the inheritance or the environment are favored too strongly depending on
their relative performance at each particular moment in time. Conversely, while the borderline
separating the pure C and the mixed C+D phase for the u = 0 case (bottom panel) exhibits a
qualitatively identical outlay as for the u = 0.5 case, the D↔ C+D transition is qualitatively
different. Note that in the bottom panel there indeed exists an intermediate value of K for
which Fc is maximal rather than minimal, which is in agreement with what can be expected
for interaction topologies that lack overlapping triangles.

Figure 5: Top panel: Frequency of cooperators Fc in dependence on the parameter r for
different values of the selection parameter u. From left to right u = 0.5, 0.4, 0.3, 0.2, 0.1 and
0, respectively. Bottom panel: Critical threshold values of the parameter r = rc, marking
the transition to the pure D phase (extinction of cooperators), in dependence on the selection
parameter u for different neighborhood sizes. It is to be emphasized that these results are
qualitatively in agreement with those obtained for the prisoner’s dilemma game (see Fig. 2).
Depicted results in both panels were obtained for K = 0.1.
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