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Abstract

In this paper, we provide a nonparametric estimator of the distribution of bi-

variate censored lifetimes, in a model where the two censoring variables di�er only

through an additional observed variable. This situation is motivated by a particular

application to insurance, where the supplementary variable corresponds to the age

di�erence between two individuals. Asymptotic results for our estimator are pro-

vided. The new tools that we develop are used to perform goodness-of-�t tests for

survival copula models. The practical performance is illustrated through simulations

and a real data analysis.
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1 Introduction

In last survivor insurance, an important issue is to infer on the joint distribution of the

lifetimes of two individuals linked through an insurance contract, say (T, U). One of the

di�culties in studying such variables comes from the presence of bivariate censoring, with

a proportion of censored observations which may be quite high. Therefore, most of the

approaches used in this �eld are parametric (typically parametric survival copula models,

see e.g. Shih and Louis (1995)), while nonparametric tools are rarely used, although

they would be required at least to assess the validity of the proposed models. The aim

of this paper is to provide a new nonparametric estimator of the joint distribution of

two lifetimes under bivariate random censoring, in a framework which is adapted to the

study of problems coming from the insurance �eld. A speci�city of such problems is

that an additional variable is generally present, which carries information on the model,

this variable being the age di�erence between the two individuals under study. Using this

information that is often neglected, one can de�ne a quite simple nonparametric estimator

of the distribution of the two lifetimes, which is close to Kaplan-Meier estimator (Kaplan

and Meier (1958)) and to the estimator of Lin and Ying (1993).

Various approaches have been used to perform nonparametric estimation of multivari-

ate lifetimes. Most of them focus on estimating the survival function, without focusing on

the joint distribution itself. Therefore, many of them provide consistent estimators of this

function, but fail to de�ne a true distribution. For example, the estimator of the survival

function proposed by Campbell and Földes (1982) is not monotonic. The nonparametric

maximum likelihood (NPMLE) procedure of Hanley and Parnes (1983) leads to an estima-

tor which is sometimes inconsistent for continuous data (Tsai et al., 1986), while the rate

of convergence of a modi�cation of this estimator suggested by Tsai et al. (1986) achieves

a slow convergence rate (slower that n1/2 where n denotes the sample size). Another

NPMLE approach is proposed by van der Laan (1996), introducing some modi�cation of

the data and using an interval censoring methodology. Although this estimator is shown

to be asymptotically e�cient for these modi�ed data, the convergence rate is also slower

than n1/2. On the other hand, the product-limit type estimator proposed by Dabrowska

(1988), which is often used in practice (see e.g. Luciano et al. (2008), Fan et al. (2000),

Wang and Wells (2000b), Gill et al. (1995), Prentice and Cai (1992)), assigns negative

mass to some points on the plane (Pruitt, 1991b). Nonparametric smoothing techniques

have been used by Pruitt (1991a) (but the implicit de�nition of the estimator leads to

di�culties and a weak performance according to van der Laan (1996)), and by Akritas
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and Van Keilegom (2003) (this last estimator presenting the advantage to de�ne a true

distribution, but, again, with a slower convergence rate, and the necessity of an absolutely

continuous censoring variables).

Among the approaches that we mention, each of them su�ers either from a too slow

convergence rate, or from the fact that the corresponding estimators do not provide true

probability distributions. The estimator proposed by Lopez and Saint Pierre (2011) does

not present these drawbacks, but relies on an assumption on the joint distribution of the

censoring variables which may not be reasonable for the particular application we have

in mind. Indeed, a speci�city of data-sets coming from last-survivor insurance, is that

individuals usually quit the study (for some other cause than death) at the same time.

This induces a speci�c dependence between the two censoring variables involved in the

problem. The main idea of the new estimator that we propose consists of using this

additional information.

The rest of the paper is organized as follows. In section 2, we present the general

censoring framework that we consider. We de�ne a non parametric estimator of the

distribution of (T, U). In section 3, we provide asymptotic results for estimating quantities

of the type E[ϕ(T, U)] for a large class of functions ϕ (the survival function being only a

particular case). A bootstrap procedure is proposed to compute the variance of the error

in such estimation problems. Application of our nonparametric estimator to goodness-

of-�t for copula models is considered. Section 4 illustrates our result through simulation

studies and a real data analysis.

2 A simpli�ed model for bivariate right-censoring

We �rst present in section 2.1 the general bivariate censoring model that will be considered

in the rest of the paper. Estimation of the joint distribution of (T, U) is introduced in

section 2.2.

2.1 Bivariate right-censoring

In the following, we consider two lifetimes (T, U), and i.i.d. replications (Ti, Ui)1≤i≤n of

these random variables. In a bivariate right-censoring model, (Ti, Ui)1≤i≤n are not directly

observed. Instead, one observes{
Yi = inf(Ti, Ci), and δi = 1Ti≤Ci

Zi = inf(Ui, Di), and γi = 1Ui≤Di
,
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where (Ci, Di)1≤i≤n consists of i.i.d. replications of a random bivariate censoring vector

(C,D), and (δi, γi)1≤i≤n are indicator functions allowing the distinction between censored

and uncensored observations.

In many applications, such as last survivor insurance, there exists some clear relation-

ship between the two censoring variables (C,D). In this particular case, if T (resp. U)

denotes the total lifetime of the husband (resp. his wife), C (resp. D) denotes the age

at which the husband (resp. the wife) stops being under observation for any other cause

than death.

Usually, censoring causes are twofold: the end of the observation period (if the person

is not dead at this time, his/her lifetime is not observed), or the surrender of the contract.

In both situations, one can observe that, for many cases, this event which stops observa-

tion occurs at the same time for both members of the couple. Taking the example of a

pension contract with a reversion clause, one can see that surrendering the contract will

automatically remove the two members of the couple from the database (unless one of

them possesses additional contracts that could allow the company to keep some track on

him/her, which is usually not the case due to the complexity of such a tracking process).

If ε denotes the age di�erence between the two members of the couple, then D = C + ε.

Moreover, the variables (εi)1≤i≤n are observed for all couples.

To summarize, in such a framework, observations are made of (Yi, Zi, εi, δi, γi)1≤i≤n,

where the random variables εi represents some age di�erence between the two persons

observed. We now state some identi�ability assumptions that will hold throughout this

paper.

Assumption 1 Assume that

1. D = C + ε.

2. (T, U) is independent from ε, and from C, and P(T = C) = P(U = C + ε) = 0.

3. C is independent from ε.

In Assumption 1, points 2 and 3 are a direct multivariate extension of the classical

identi�ability assumption required to ensure consistency of Kaplan-Meier estimator in the

univariate case (see Stute and Wang (1993)). In section 2.2 below, we show how one can

estimate nonparametrically the distribution of (T, U) under Assumption 1.
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2.2 Nonparametric estimation of the distribution of (T, U)

In this section, we show how to estimate quantities of the type E[ϕ(T, U)] for some func-

tion ϕ. A particular case is the joint survival function SF (t, u) = P(T > t, U > u), which

corresponds to ϕ(T, U) = 1T>t,U>u. In absence of censoring, the answer to this estima-

tion problem consists of using empirical means. De�ning F (t, u) = P(T ≤ t, U ≤ u),

one can rewrite E[ϕ(T, U)] =
∫
ϕ(t, u)dF (t, u), which can be consistently estimated by∫

ϕ(t, u)dFemp(t, u), where Femp(t, u) = n−1
∑n

i=1 1Ti≤t,Ui≤u denotes the empirical distribu-

tion function. In our framework, the empirical distribution in unfortunately unavailable,

since (Ti, Ui)1≤i≤n are not directly observed.

We propose to rely on an estimator of the type

F̂ (t, u) =
n∑

i=1

δiγiWn(Yi, Zi, εi)1Yi≤t,Zi≤u, (2.1)

to generalize the empirical distribution function to our framework. Using such type of

estimators, one can straightforwardly de�ne an estimator of E[ϕ(T, U)] =
∫
ϕ(t, u)dF (t, u)

by ∫
ϕ(t, u)dF̂ (t, u) =

n∑
i=1

δiγiWn(Yi, Zi, εi)ϕ(Yi, Zi). (2.2)

The idea is similar to Lopez (2012) and Lopez and Saint Pierre (2011): instead of assigning

the same n−1−mass to each observation (as it is the case when considering the empir-

ical distribution function), one assigns mass at doubly uncensored observations (since

only these observations are completely relevant to understand the dependence structure

between T and U), while the mass Wn(Yi, Zi, εi) is designed to compensate censoring.

De�ning SG(t) = P(C > t), (with G(t) = P(C ≤ t)) and

F ∗(t, u) =
∑n

i=1 δiγiW
∗(Yi, Zi, εi)1Yi≤t,Zi≤u, with W

∗(y, z, e) = n−1SG(max(y, z − e)−)−1,

one can observe that
∫
ϕ(t, u)dF ∗(t, u) is an unbiased estimator of E[ϕ(T, U)] under As-

sumption 1. Indeed, for any function ψ with �nite expectation, we have, under Assump-

tion 1,

E[δγψ(Y, Z)] = E
[
E
[
1max(T,U−ε)≤C |T, U, ε

]
ψ(T, U)

]
= E [SG(max(T, U − ε)−)ψ(T, U)] .

Unfortunately, this ideal estimator F ∗ can not be computed in practice, since it relies on

the unknown survival function SG. Nevertheless, it is possible to estimate this function

SG. De�ne ηi = 1 − δiγi, and Ai = max(Ti, Ui − εi). The variable Ci is observed as long
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as Ci < Ai (that is ηi = 1). Hence, C can also be considered as a right-censored variable

(censored by variables A), provided that the event {Ci = Ai} has probability 0. This is

actually the case, from point 2 in Assumption 1, where we assumed that P(T = C) =

P(U − ε = C) = 0. Therefore, the distribution of C can be estimated by a Kaplan-Meier

estimator based on the censored sample (Bi, ηi)1≤i≤n, where Bi = inf(Ci, Ai).Moreover, it

is important to notice that Assumption 1 ensures consistency of Kaplan-Meier estimator,

that is, following Stute and Wang (1993), P(A = C) = 0 and A independent from C.

Therefore, de�ning the Kaplan-Meier estimator ŜG of SG, that is,

ŜG(t) =
∏

k:Bk≤t

(
1− dĤ0(Bk)

Ĥ(Bk)

)
,

where Ĥ0(t) = n−1
∑n

i=1 ηi1Bi≤t, and Ĥ(t) = n−1
∑n

i=1 1Bi≥t, a natural choice of a function

Wn in (2.1) is

Wn(y, z, e) =
1

nŜG(max(y, z − e)−)
. (2.3)

This estimator is close to the estimator proposed by Lin and Ying (1993). The di�erence,

in our approach, is the presence of the additional random variable εi corresponding to the

age di�erence.

3 Asymptotic theory

The present section is devoted to the asymptotic results on the nonparametric estimator

de�ned in section 2.2. A Central Limit Theorem for (2.2) is provided in section 3.1. As a

corollary of this result, we deduce asymptotic convergence results for estimating Kendall's

τ coe�cient, which is a classical dependence measure. Section 3.2 provides a bootstrap

procedure in order to investigate the estimation error. In section 3.3, we derive theoretical

results that may be used to perform goodness-of-�t tests for survival copula models.

3.1 An asymptotic representation Theorem for estimator (2.1)

We aim to obtain an asymptotic representation for quantities of the type (2.1). Instead

of considering a single function ϕ, we focus on obtaining results that hold uniformly for

functions ϕ ∈ F , F denoting a class of functions. This uniformity result is required

if we wish to obtain, for example, uniform consistency results for the estimation of the

distribution function. Considering this problem, the natural class of functions to be
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considered is F1 = {(t, u) → 1t≤x,u≤y : x ∈ T , y ∈ U}, where T and U denote the support

of the distribution of each marginal.

In the following, we consider a class of functions F , with envelope Φ, satisfying As-

sumptions 2 and 3 below. Since our proof will rely on empirical processes theory, As-

sumption 2 consists of assuming that a class of functions related to F is Donsker, that

is a class with an uniform central limit theorem property (see van der Vaart and Wellner

(1996) for a precise de�nition of Donsker classes).

Assumption 2 Let G denote the class of positive, monotonic functions bounded by 1, and

χ(T, U,C, ε) = δγSG(max(T, U − ε)−)−2. For any (t0, u0) in R2 such that SF (t0, u0) > 0,

de�ne

Ht0,u0 = {(T, U,C, ε) → χ(T, U,C, ε)f(T, U)g(max(T, U−ε)−)1T≤t0,U≤u0 , f ∈ F , g ∈ G},

and assume that Ht0,u0 is a Donsker class of functions.

Assumption 3 is required only if we wish to obtain consistency on the whole support

of (T, U). It automatically holds if one considers bounded functions with compact support

strictly included in the support of the distribution. It can be understood as an assumption

on the tail of the distributions of T and U. Similar assumptions have been used in Gill

(1983), Stute (1996), or Lopez and Saint Pierre (2011).

Assumption 3 Assume that E [Φ(T, U)2SG(max(T, U − ε)−)−1] <∞. Moreover, de�ne

C(y) =
∫ y

−∞

dG(t)

[1− F (t)][1−G(t−)]2
,

and assume that E[Φ(T, U)C1/2+υ(max(T, U−ε)−)SG(max(T, U−ε)−)−1] <∞, for some

υ > 0 (arbitrary small).

If we consider the particular case of F1, Assumption 2 automatically holds, provided

that the moment conditions of Assumption 3 hold. Generally, this will also be the case for

parametric class of functions, or su�ciently smooth classes of functions using permanence

properties of Donsker classes.

We now state the main theoretical result of this section.

Theorem 3.1 Recall that Bi = inf(Ai, Ci), where Ai = max(Ti, Ui − εi), and that ηi =

1Ci≤Ai
, and let FA(t) = P(A ≤ t) and H(t) = P(B > t). Under Assumptions 1 to 3,∫

ϕ(t, u)d(F̂ − F ∗)(t, u) =
1

n

n∑
i=1

ψϕ(Ti, Ui, εi) +Rn(ϕ), (3.1)
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where supϕ∈F |Rn(ϕ)| = oP (n
−1/2), and

ψϕ(Yi, Zi, εi) =

∫ {
ηiSG(Bi ∨ a)

H(Bi)
−
∫

1Bi≥uSG(u ∨ y)dFA(u)

H(u)FA(u)

+
(1− ηi)1Bi>y

FA(Bi)
− SG(y)

}
ϕ(t, u)dP(T,U,C,ε)(t, u, c, e)

SG(a−)
,

where we used a = max(t, u − e) to shorten the notation, and where P(T,U,C,ε) denotes

the true law of (T, U,C, ε). As a consequence, since E[ψϕ(Y, Z, ε)] = 0, we have, for all

ϕ ∈ F ,

n1/2

(∫
ϕ(t, u)dF̂ (t, u)− E[ϕ(T, U)]

)
=⇒ N (0, σ2

ϕ), (3.2)

with

σ2
ϕ = E

[{
δiγiϕ(Yi, Zi)

SG(Bi−)
− E[ϕ(T, U)] + ψϕ(Yi, Zi, εi)

}2
]
,

and =⇒ denotes the weak convergence.

The proof of this result is postponed to the Appendix section. Equation (3.2) can be

used to compute asymptotic con�dence intervals, provided that one is able to consistently

estimate the asymptotic variance σ2
ϕ. This can be done by replacing all the unknown

distributions functions involved in the expression of σ2
ϕ by their empirical counterparts.

However, this approximation may be too rough in practice, and bootstrap procedures

seem to be more appropriate if one wishes to compute con�dence interval. This bootstrap

method is shown in section 3.2.

In addition to the application of Theorem 3.1 to the class F1 (corresponding to the

estimation of the joint survival function), we show how this result may be used to provide

asymptotic results for the estimation of Kendall's τ coe�cient. Kendall's τ coe�cient is a

classical dependence measure which can be de�ned in the following way. For two random

variables (T, U), τ = P((T1−U1)(T2−U2) > 0)−P((T1−U1)(T2−U2) < 0), where (T1, U1)

and (T2, U2) are independent replications of (T, U). There exists a relationship between

τ and the distribution function F, that is τ = 4
∫
F (x, y)dF (x, y) − 1, see e.g. Nelsen

(2006). Therefore, a natural estimator of τ is

τ̂ = 4

∫
F̂ (x, y)dF̂ (x, y)− 1. (3.3)

As it is shown in Wang and Wells (2000a), censoring may cause this estimator not to be

consistent in some particular situations. Indeed, de�ning SH(y, z) = P(Y > y, Z > z) the

survival function of the observed times, S1 = {(t, u) : SH(t, u) > 0}, and S2 = {(t, u) :
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SF (t, u) > 0}, we can see that some part of the distribution, namely S2 − S1 is never

observed, since the corresponding observations are always censored. If this di�erence of

sets is empty, this does not introduce bias in the estimation of τ. In other situations, some

bias will arise, which can be evaluated according to the method of Wang andWells (2000a).

Corollary 3.2 below shows that this estimator admits an asymptotic representation.

Corollary 3.2 Let ψF denote function ψ as de�ned in Theorem 3.1 for function ϕ = F.

To shorten the notation, we will denote ψt,u the function corresponding to ϕ(Y, Z) =

1Y≤t,Z≤u. Assume that S2 − S1 = ∅. Then,

τ̂ − τ = 4

{∫
F (t, u)d[F ∗ − F ](t, u) +

∫
[F ∗(t, u)− F (t, u)]dF (t, u)

+
1

n

n∑
i=1

{
ψF (Yi, Zi, εi) +

∫
ψt,u(Yi, Zi, εi)dF (t, u)

}}
+ oP (n

−1/2). (3.4)

In the representation of Corollary (3.2), each term is a sum of i.i.d. quantities with zero

expectation and �nite variance. Therefore, Corollary (3.2) shows that τ̂ is asymptotically

Gaussian. Its asymptotic variance (which as a complex form) can be deduced from this

representation. Nevertheless, we do not emphasize this variance, since we recommend

using bootstrap procedures to investigate the law of τ̂ (see section 4.1).

Let us also mention that, if the assumption S2 − S1 = ∅ does not hold, the result is

still true, but with τ replaced by 4
∫
S1
F (x, y)dF (x, y)− 1.

Proof of Corollary 3.2. Write

τ̂ − τ = 4

{∫
F (t, u)d[F̂ − F ](t, u) +

∫
[F̂ (t, u)− F (t, u)]dF (t, u)

+

∫
[F̂ (t, u)− F (t, u)]d[F̂ − F ](t, u)

}
. (3.5)

Applying Theorem 3.1 to function F , the �rst term of (3.5) can be expanded as∫
F (t, u)d[F ∗ − F ](t, u) +

1

n

n∑
i=1

ψF (Yi, Zi, εi) + oP (n
−1/2).

Moreover, again from Theorem 3.1,∫
[F̂ (t, u)− F (t, u)]dF (t, u) =

∫
[F ∗(t, u)− F (t, u)]dF (t, u)

+
1

n

n∑
i=1

∫
ψt,u(Yi, Zi, εi)dF (t, u) + oP (n

−1/2).

9



The third term of (3.5) can be rewritten as∫
[F ∗(t, u)− F (t, u)]d[F ∗ − F ](t, u) +

∫
[F̂ (t, u)− F ∗(t, u)]d[F ∗ − F ](t, u)

+

∫
[F̂ (t, u)− F ∗(t, u)]d[F̂ − F ∗](t, u) := T1 + T2 + T3.

The term T1 is a second order degenerate U−statistics and is therefore of order OP (n
−1).

To study T2, apply Theorem 3.1 to the class of indicator functions 1T≤t,U≤u to obtain

T2 =

∫
ψ(Ti, Ui, εi)d[F

∗ − F ](t, u) + oP (n
−1/2).

The integral in this decomposition is zero, since E[ψϕ(T, U, ε)] = 0, and since
∫
ϕd[F ∗ −

F ](t, u) = 0. Finally, observe that T3 can be rewritten as

T3 =
1

n

n∑
i=1

δiγi[F̂ (Yi, Zi)− F ∗(Yi, Zi)][ŜG(Bi−)− SG(Bi−)]

SG(Bi−)ŜG(Bi−)
,

which is bounded by

|T3| ≤ sup
t,u

|F̂ (t, u)− F ∗(t, u)| sup
b

|ŜG(b)− SG(b)| sup
b

∣∣∣∣∣SG(b)

ŜG(b)

∣∣∣∣∣× 1

n

n∑
i=1

ηi
SG(Bi−)2

.

The �rst supremum is OP (n
−1/2) from Theorem 3.1, the second one is oP (1) from the

uniform consistency of Kaplan-Meier estimator (see Stute and Wang (1993)), while the

third one is OP (1) (see Gill (1983)). Moreover, the empirical mean on the right-hand side

is OP (1) provided that each term of the sum has �nite expectation, which is the case from

Assumption 3. Combining these facts leads to T3 = oP (n
−1/2) and concludes the proof.

3.2 Bootstrap procedure

As we already mentioned, the asymptotic results of Theorem 3.1 may be di�cult to use

when it comes to approximate the law of
∫
ϕ(t, u)dF̂ (t, u). The problem comes from the

complex from of the asymptotic variance, and therefore from the di�culty to estimate it

in an accurate way. Therefore, the aim of the present section is to propose a bootstrap

procedure that allows to circumvent this problem.

Under univariate censoring, two main methodologies have been proposed in the litera-

ture to perform bootstrap, see Efron (1981) and Reid (1981). The methodology of Efron

(1981) consists of using the nonparametric estimators of the distribution of the lifetime
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and of the censoring to resimulate samples. Akritas (1986) showed that only Efron's

methodology was consistent. We therefore propose to adapt this strategy.

The basic idea consists of simulating variables (T, U) according to the estimated dis-

tribution de�ned by F̂ (and renormalized in order to ensure that the total mass is equal

to one). The censoring can be simulated similarly using Ĝ, while ε is simulated according

to its empirical distribution F̂ε(t) = n−1
∑n

i=1 1εi≤t. The procedure is summarized below.

To compute B bootstrap n−samples, repeat for b = 1, ..., B the following simulation

scheme,

1. Simulate independent variables (T b
i , U

b
i )1≤i≤n under the probability distribution F̂ /F̂ (R2).

2. Simulate independent variables (εbi)1≤i≤n under the probability distribution F̂ε.

3. Simulate independent variables (Cb
i )1≤i≤n under the probability distribution Ĝ/Ĝ(R2).

4. The b−th bootstrap sample is composed of (Y b
i , Z

b
i , δ

b
i , γ

b
i , εi)1≤i≤n, where Y

b
i =

inf(T b
i , C

b
i ), Z

b
i = inf(U b

i , C
b
i + εbi), δ

b
i = 1T b

i ≤Cb
i
, γbi = 1Ub

i ≤Cb
i+εbi

.

3.3 Application to survival copula inference

Survival copula models are a common tool to model dependence between two lifetimes

(T, U). Indeed, the bivariate survival function SF (t, u) = P(T > t, U > u) of the random

vector (T, U) admits, by Sklar's Theorem (Sklar (1959)), a copula representation, that is

SF (t, u) = C(ST (t), SU(u)),

where ST (t) = P(T > t) and SU(u) = P(U > u), and where C is a survival copula

function (see e.g. Nelsen (2006)). To understand the dependence between T and U,

which is represented by the copula function C, it is natural to search for an estimator

of C, usually based on a parametric or semiparametric model, see e.g. Shih and Louis

(1995). Nonparametric inference is then required to assess the validity of the model.

Wang and Wells (2000b) proposed to extend the methodology of Genest and Rivest

(1993) in presence of censoring. This approach relies on the estimation of the function

v → K(v) = P(SF (T, U) ≤ v). If we consider the particular case of Archimedean copula

families (that is copulas de�ned as C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) where the generator ϕ is a

convex function satisfying the conditions of Theorem 4.3.4 in Nelsen (2006)), there exists

a one-to-one correspondance between the generator ϕ and the function K, through the
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relationship

K(v) = v − ϕ(v)

ϕ′(v)
. (3.6)

The basic idea of goodness-of-�t procedures based onK consists of comparing a parametric

estimator, (based on an estimator ϕθ̂ depending on the parametric model and on θ̂, the

association parameter estimated from the data) to a nonparametric one. Wang and Wells

(2000b) used an estimator based on the nonparametric estimator of Dabrowska (1988).

The nonparametric estimator that we propose to use is de�ned as

K̂(v) =

∫
1ŜF (t,u)≤vdF̂ (t, u). (3.7)

In Proposition 3.3, we show that the process n1/2(K̂(v)−K(v)) converges towards a

Gaussian process. This kind of result is essential to legitimate goodness-of-�t techniques

that will be fully discussed in section 4.2. Nevertheless, we do not focus on the estimation

of the asymptotic covariance process. In practice, since its computation seems rather

delicate, it is preferable to rely on bootstrap procedure (see section 4.2).

Proposition 3.3 Assume that:

1. The distribution function K(v) admits a continuous bounded derivative k(v).

2. Given SF (t, u) = v, there exists a version of the conditional distribution of (Y, Z)

and a countable family P of partitions E on I (where I denotes the support of

(T, U)) into a �nite number of Borel sets satisfying infE∈P maxE∈E diam(E) = 0,

such that, for all E ∈ E , the mapping v → µv(E) = k(v)P ((T, U) ∈ E|S(T, U) = v)

is continuous.

Then, there exists a zero-mean Gaussian process such that,

n1/2
(
K̂(·)−K(·)

)
=⇒ −

∫ ∫
1SF (t,u)>·dW (t, u)−

∫ ∫
W (t, u)dµ·(t, u).

Proof. From Theorem 3.1, one can deduce n1/2(ŜF (t, u) − SF (t, u)) =⇒ W (t, u),

where W is a Gaussian process with mean zero. Consequently, Theorem 1 in Wang and

Wells (2000b) applies.

4 Simulations and real data example

In this section, we investigate the �nite sample size behaviour of our procedure. This

investigation is done through simulation studies and illustrated on a real data example.
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The data that we consider has been initially studied by Frees et al. (1996), and was

studied by Carriere (2000), Youn and Shemyakin (1999), Youn and Shemyakin (2001) and

Luciano et al. (2008). We refer to Frees et al. (1996) for a more detailed description of

this dataset, containing lifetimes of two members of a couple who subscribed an insurance

contract. The dataset concerns 14947 contracts from a large Canadian insurer, observed

between Decembre 29th, 1988 and Decembre 31th, 19931. After elimination of same-

sex contracts and of couples with more than one policies (for which we only keep one

policy), 11454 contracts remain. In addition to bivariate censoring, observations are

subject to left truncation. Nevertheless, we do not consider left-truncation in the approach

that we develop in the present paper. Neglecting left-truncation will lead to a slight

over-estimation of the lifetimes, which, from the prospective of an insurer who wishes to

evaluate his liabilities in the case of a pension contract, represents a cautious approach.

In section 4.1, we discuss the problem of estimating Kendall's τ coe�cient, illustrating

the theoretical results of Corollary 3.2. In section 4.2, we study the practical implemen-

tation of a goodness-of-�t procedure for copula models, based on the process K̂ de�ned

in (3.7).

4.1 Nonparametric estimation of Kendall's τ coe�cient

Real data example. Using τ̂ de�ned in equation (3.3), we �nd an estimated value

of Kendall's τ coe�cient which is τ̂ = 0.6696, which is roughly of the same order as

the values obtained by other authors on the same data-set (for example, for a speci�c

generation, Luciano et al. (2008) obtained an estimation which is 0.6039). We used the

nonparametric bootstrap procedure described in section 3.2 to approximate the law of τ̂ .

Through B = 1000 bootstrap replications, we obtain an estimation of the distribution of

τ̂ which is represented in Figure 4.1 below.

1The author wishes to thank the Society of Actuaries, through the courtesy of Edward J. Frees and

Emiliano Valdez, for allowing use of the data in this paper
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Figure 1: Histogram of the distribution of τ̂ using the bootstrap procedure.

We can observe on Figure 4.1 that the distribution of τ̂ obtained using the bootstrap

procedure does not seem to be Gaussian. Therefore, it legitimates to rely rather on

this bootstrap procedure than on normal approximation to investigate uncertainty in

estimating τ.

Simulation study. To illustrate the convergence of τ̂ , we present some results of a

simulation study. The random lifetimes (T, U) are simulated from a Clayton copula model

(see Table 2 in section 4.2 for a precise de�nition) with association parameter θ = 2 (which

corresponds to a value τ = 0.5), with marginals following a Weibull distribution. Weibull

distribution is parametrized through a shape parameter α and a scale parameter β, and

admits a density

f(t) =
α

β

(
t

β

)α−1

exp

(
− tα

βα

)
,

for t ≥ 0. We consider the case α = 10 and β = 1.7. The censoring variables C are

simulated according to an exponential distribution with parameter λ (with mean λ−1).

Di�erent values of λ are considered in order to change the average proportion of doubly

uncensored observations. Random variables εi are simulated according to an exponential

distribution with parameter µ = 50.

For each considered value of the parameter λ, we generate n−samples for di�erent

14



values of n. We repeat N = 1000 times the simulation scheme in order to estimate the

bias E[τ̂ − τ ], the variance V ar(τ̂), and the mean-squared error E[(τ̂ − τ)2]. Results are

presented in Table 1 below.

Model Criterion n=1000 n=2000

α = 10 MSE = 0.004537 0.002548

β = 1.1 Bias = 0.06686 0.05020

(35% of uncensored) Variance = 6.6984e-5 2.8133e-5

α = 10 MSE = 0.006949 0.004482

β = 1.7 Bias = 0.08275 0.06650

(20% of uncensored) Variance = 1.020e-4 5.9425e-5

Table 1: Estimation of the mean-squared error and related quantities for the estimation

of Kendall's τ coe�cient.

4.2 Goodness-of-�t for semiparametric copula models

A goodness-of-�t procedure based on K̂. Consider a parametric family of Archimedean

survival copulas FC = {Cθ : θ ∈ Θ}.We will denote ϕθ the Archimedean generator of cop-

ula Cθ. We describe how to extend the procedure proposed by Genest and Rivest (1993)

to test

H0 : C ∈ FC ,

against

H1 : C /∈ FC .

The principle of the test consists of computing an estimator θ̂ (assuming that H0 holds)

from the data, and then use ϕθ̂ and (3.6) to compute a parametric estimatorKθ̂ of function

K. Next, considering some distance d between curves, the test statistic is Tn = d(K̂, K̂θ̂),

where K̂ is de�ned in (3.7). H0 is rejected when Tn > sα, where sα is a critical value

that ensures that the procedure achieves level α. In the following, we will consider the

particular case d(K̂,Kθ) = [
∫ 1

0

(
K̂(v)−Kθ(v)

)2
dv]1/2.

To estimate θ̂, one can either rely on a semiparametric maximum likelihood procedure,

as it is done in Shih and Louis (1995), or take θ̂ = argminθ∈Θ d(K̂,Kθ), which has been

done in Luciano et al. (2008) and seems more natural in our framework. Therefore, we will

use this second approach, and our test statistic may be rewritten as Tn = minθ∈Θ d(K̂,Kθ).
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To compute the critical values, a bootstrap procedure is required. In our framework, Wang

and Wells (2000b) proposed a bootstrap methodology, which has been shown to fail to be

consistent by Genest et al. (2006). Therefore, we prefer to adapt the consistent resampling

plan de�ned in Genest et al. (2006) to the presence of censoring. This results on using

the bootstrap procedure de�ned in section 3.2, but replacing Step 1 by

1'. Simulate independent variables (T b
i , U

b
i )1≤i≤n under the distribution de�ned by Cθ̂

and with marginal distributions de�ned by the Kaplan-Meier estimators (univariate)

of T and U,

which corresponds to an approximation of the law of (T, U) under H0. Alternatively, in

a full parametric modelling of the distribution of (T, U), parametric distributions may

be used instead of the nonparametric Kaplan-Meier estimators. Based on B bootstrap

replications of Tn, the critical value sα can be determined in order to ensure a level α of

the procedure.

Real data example. We consider three copula models that have been used by

Luciano et al. (2008) to study the mortality of a particular generation in the data-set

(in the present paper, we do not distinguish between generations). These models are

Clayton, Frank copula models, and a copula called Nelsen 4.2.20 (corresponding to the

copula de�ned in formula 4.2.20 in Nelsen (2006)). De�nition of these three Archimedean

families in recalled in Table 2 below. Estimators θ̂ are computed by minimization of the

distance d(K̂,Kθ).

Model ϕθ(t) Cθ(u, v) θ̂

Clayton θ−1(t−θ − 1) (u−θ + v−θ + 1)−1/θ 4.8991

Frank − log
(

exp(−θt)−1
exp(−θ)−1

)
−θ−1 log

(
1 + (exp(−θu)−1)(exp(−θv)−1)

(exp(−θ)−1)

)
11.4115

4.2.20 exp(t−θ)− e log
(
exp(u−θ) + exp(v−θ)− e

)−1/θ
1.338

Table 2: Expression of the di�erent copula families considered. The column θ̂ presents

the estimated association parameter on the data-set, minimizing distance d.

The graphical comparison between K̂ and Kθ̂ is presented in Figure 2 below. Table 3

presents the results of the test procedure described above, comparing the value of the test

statistic Tn to the quantiles of the distribution of Tn under the null hypothesis (computed

using our bootstrap procedure).

The model with the smallest value of the test-statistic is Nelsen's 4.2.20 copula model.

Frank's copula model achieves a value of the test-statistic which is quite close from Nelsen's
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Model Test statistic 95% quantile 97.5 % quantile 99 % quantile p-value

Clayton 0.06229 0.16638 0.17600 0.19362 0.533

Frank 0.05434 0.04330 0.04667 0.05203 0.008

Nelsen 4.2.20 0.05181 0.12243 0.12245 0.12246 0.492

Table 3: Goodness-of-�t procedure for a the three survival copula models considered

(Clayton, Frank, Nelsen 4.2.20).
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Figure 2: Graphical comparison between K̂ andKθ̂ for the three copula models considered.

4.2.20 case. However, in this last model, the corresponding p−value is small, while it is
not the case for the two other models. Graphically, it seems that all the models that we

consider have di�culties to capture the behaviour of function K̂ for values of v between

0.2 and 0.4.

5 Conclusion

The estimator that we considered in this paper is designed for applications in which the

censoring times for both individuals only di�ers through an observed random variable. In

the example that we consider, this observed variable represents the age di�erence. We
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only considered the case of two random lifetimes (T, U), but the procedure can easily be

generalized to more lifetimes. The main di�culty of this extension comes from the fact

that the procedure requires to put mass only at fully observed observations. To obtain

a su�cient number of such observations when the number of lifetimes is high, one would

need to have a large value of the sample size n. In this paper, we focused on applying

our results to the study of copula models. Other applications of this technique could be

considered, as regression models (see Lopez and Saint Pierre (2011) for related problems),

or to the evaluation of various dependence measures, see Fan et al. (2000) or Hougaard

(2000).

6 Appendix

6.1 Proof of Theorem 3.1

Let (t0, u0) denote some point in R2 such that SF (t0, u0) > 0.

First case: ϕ(t, u) = 0 for t ≥ t0 or u ≥ u0. One can write∫
ϕ(t, u)d(F̂ − F ∗)(t, u) =

1

n

n∑
i=1

δiγi[ŜG(Bi−)− SG(Bi−)]ϕ(Yi, Zi)

SG(Bi−)2
+R1n(ϕ),

with

|R1n(ϕ)| ≤ sup
a≤a0

|ŜG(a)− SG(a)|2

SG(a)ŜG(a)2
×

(
1

n

n∑
i=1

δiγiΦ(Yi, Zi)

)
, (6.1)

where a0 is some point inR such that SG(a0) > 0. It follows from the uniform n1/2−consistency
of ŜG (see Gill (1983)) that the right-hand side in (6.1), which does not depend on ϕ, is

OP (n
−1/2). Moreover, let us observe that the functions

fn(Yi, Zi, εi, δi, γi) = δiγiŜG(Bi−)ϕ(Yi, Zi)[SG(Bi−)]−2,

f(Yi, Zi, εi, δi, γi) = δiγiSG(Bi−)ϕ(Yi, Zi)[SG(Bi−)]−2,

are two elements of the Donsker class H de�ned in Assumption 3. Moreover, using

the uniform convergence rate of ŜG, one obtains that ∥fn − f∥∞ → 0. Therefore, the

asymptotic equicontinuity of Donsker classes (see Lemma 19.24 in van der Vaart (1998))

ensures that∫
ϕ(t, u)d(F̂ − F ∗)(t, u) =

∫
[ŜG(a−)− SG(a−)]ϕ(t, u)dP(T,U,C,ε)(t, u, c, e)

SG(a−)
+R2n(ϕ),

(6.2)
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where supϕ∈F |R2n(ϕ)| = oP (n
−1/2). Next, the representation (3.1) follows from Stute

(1996) or Gijbels and Veraverbeke (1991), since

ŜG(a)− SG(a) =
1

n

n∑
i=1

{
ηiSG(Bi ∨ a)

H(Bi)
−
∫

1Bi≥uSG(u ∨ y)dFA(u)

H(u)FA(u)

}

+

{
(1− ηi)1Bi>y

FA(Bi)
− SG(y)

}
+R(y),

where supy≤y0 |R(y)| = oP (n
−1/2), where y0 is some point such that P(B > y0) > 0 (by

assuming that ϕ is zero for large values of t or u, we ensure that, in (6.2), only terms with

b smaller than such a y0 appear). To deduce equation (3.2), it su�ces to observe that∫
ϕ(t, u)d[F̂−F ](t, u) = 1

n

n∑
i=1

δiγiϕ(Yi, Zi)

SG(Bi−)
−E [ϕ(T, U)]+

1

n

n∑
i=1

ψϕ(Yi, Zi, εi)+oP (n
−1/2).

Each of these two i.i.d. sums have zero mean, and the Central Limit Theorem applies.

General case: the general case follows from a combination of the �rst case and of

Lemma 6.1, in order to make (t0, u0) tend to in�nity. Point 1 in Lemma 6.1 is easily

checked by observing that the terms in the i.i.d. sum in the right-hand side of decompo-

sition (3.1) have �nite variance. To show that points 2-4 hold, de�ne I(t0,u0) = {(t, u) :
t ≤ t0, u ≤ u0}, and observe that

n1/2

∣∣∣∣∫ ϕ(t, u)1(t,u)/∈I(t0,u0)d[F − F ∗](t, u)

∣∣∣∣ ≤ sup
a
n1/2

∣∣∣∣∣ ŜG(a)− SG(a)

C(a)1/2+υ

∣∣∣∣∣× sup
a

∣∣∣∣∣SG(a)

ŜG(a)

∣∣∣∣∣
× 1

n

n∑
i=1

δiγiC1/2+υ(Bi−)1Yi≥t0,Zi≥u0Φ(Yi, Zi)

SG(Bi−)2
.

De�ningMn = supa n
1/2|[ŜG(a)−SG(a)][C(a)−1/2−υ]|× supa |SG(a)ŜG(a)

−1|, we getMn =

OP (1) from Theorem 2.1 in Gill (1983), since
∫
C(a)−1−2υdC(a) <∞ (see condition (2.1)

in Gill (1983)). Moreover, de�ning

Γn(t0, u0) = n−1

n∑
i=1

δiγiC1/2+υ(Bi−)1Yi≥t0,Zi≥u0Φ(Yi, Zi)SG(Bi−)−2,

we see that conditions 4 and 5 in Lemma 6.1 hold, thanks to Assumption 3.

6.2 A technical Lemma

Lemma 6.1 Let I(t0,u0) = {t ≤ t0, u ≤ u0}, and let I denote the support of (Y, Z), and

(t1, u1) the upper bound of the support. Let F be a class of functions. Let Pn(t, u, ϕ) be a
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process on I(t0,u0) ×F . De�ne, for any (t, u) ∈ I, Rn(t, u, ϕ) = Pn(t1, u1, ϕ)− Pn(t, u, ϕ).

Assume that for all (t0, u0) such that I(t0,u0) is strictly included in the interior part of I,

(Pn(t, u, ϕ))(t,u)∈I(t0,u0),ϕ∈F =⇒ (W (Vϕ(t)))t∈I(t0,u0),ϕ∈F ,

where W (Vϕ(t)) is a Gaussian process with covariance function Vϕ, and =⇒ denotes the

weak convergence.

Assume that the following conditions hold,

1. lim(t0,u0)→(t1,u1) Vϕ(t0, u0) = Vϕ(t1, u1), with supϕ∈F |Vϕ(t1, u1)| <∞,

2. |Rn(t
′, u′, ϕ)| ≤Mn × Γn(t0, u0), for all τ

′ ∈ I − I(t0,u0),

3. Mn = OP (1),

4. Γn(t0, u0) → Γ(t0, u0) in probability,

5. lim(t0,u0)→(t1,u1) Γ(t0, u0) = 0.

Then Pn(t1, u1, ϕ) =⇒ N (0, Vϕ(t1, u1)).

Proof. From Theorem 13.5 in Billingsley (1999) and from condition 1, it su�ces to

show that, for all ε > 0,

lim
(t0,u0)→(t1,u1)

lim sup
n→∞

P

(
sup

(t,u)∈I−I(t0,u0),ϕ∈F
|Rn(t, u, ϕ)| > ε

)
= 0. (6.3)

Using condition 2 in the Lemma, the probability in equation (6.3) is bounded, for all

M > 0, by

P(|Γn(t, u)− Γ(t, u)| > ε/M − Γ(t, u)) + P(Mn > M). (6.4)

Moreover, from condition 4,

lim sup
n→∞

P(|Γn(t, u)− Γ(t, u)| > ε/M − Γ(t, u)) = 1ε/M−Γ(t,u)≥0.

Since Γ(t, u) → 0 (condition 5), we can deduce that

lim
(t,u)→τH

lim sup
n→∞

P(|Γn(t, u)− Γ(t, u)| > ε/M − Γ(t, u)) = 0.

Hence,

lim
(t,u)→(t1,u1)

lim sup
n→∞

P

(
sup

(t′,u′)>(t,u),ϕ∈F
|Rn(t

′, u′, ϕ)| > ε

)
≤ lim sup

n→∞
P(Mn > M).
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As a consequence,

lim
(t,u)→(t1,u1)

lim sup
n→∞

P

(
sup

(t′,u′)>(t,u),ϕ∈F
|Rn(t

′, u′, ϕ)| > ε

)
≤ lim

M→∞
lim sup
n→∞

P (Mn > M) = 0,

using the fact that Mn = OP (1) (condition 3).
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