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Abstract

The tone hole geometry of a clarinet is optimized numerically. The
instrument is modeled as a network of one dimensional transmission
line elements. For each (non-fork) fingering, we first calculate the
resonance frequencies of the input impedance peaks, and compare them
with the frequencies of a mathematically even chromatic scale (equal
temperament). A least square algorithm is then used to minimize
the differences and to derive the geometry of the instrument. Various
situations are studied, with and without dedicated register hole and/or
enlargement of the bore. With a dedicated register hole, the differences
can remain less than 10 musical cents throughout the whole usual range
of a clarinet. The positions, diameters and lengths of the chimneys
vary regularly over the whole length of the instrument, in contrast
with usual clarinets. Nevertheless, we recover one usual feature of
instruments, namely that gradually larger tone holes occur when the
distance to the reed increases. A fully chromatic prototype instrument
has been built to check these calculations, and tested experimentally
with an artificial blowing machine, providing good agreement with the
numerical predictions.
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1 Introduction

Woodwind instruments of the orchestra have often attained their geometri-
cal shapes through a slow gradual process, which in many cases has taken
centuries. Guided by trial and error, skilled craftsmen have managed to de-
velop the instruments as we know them today. In this article we study the
clarinet. Most of its evolutionary process (addition of new holes and keys,
etc.) was made of the succession of many small steps, each implying a lim-
ited departure from a previous configuration – for clarinets the only radical
change was the introduction of the “Boehm system” of French instruments
by Klosé in the middle of the 19th century. A typical wind instrument has
a large number of design parameters (positions and size of the holes and
the chimneys, bore, etc.), while many of them contribute at the same time
to the production of each note. Indeed, changing one of them in order to
correct a certain note may have an unexpected, and often adverse, effect on
other notes in terms of pitch, tone quality, stability, etc. In a posthumous
paper, Benade [1] attempted to analyze the evolutionary path since the 18th
century.

Trying new configurations by the traditional method requires a large
amount of work. It therefore seems likely that the modifications tested by
the instrument makers have been limited to relatively small changes, affect-
ing only a few parameters at the same time. In other words, in terms of
optimization, existing instrument designs probably represent local extrema
of some optimization function, in the sense that a small change in the set of
tone hole positions, radii etc. inevitably worsens the instrument. Neverthe-
less there might exist better geometrical shapes that are more distant in the
parameter space, and therefore not accessible through small improvements
of an existing design. An additional reason to believe in this scenario is
given by the observation of the rather irregular tone hole pattern of many
woodwinds, with alternating small and large holes, short and long chimneys,
closed holes (opened for one note only) etc. It seems that no particular phys-
ical principle could explain why such an irregularity is desirable; there are
actually reasons to believe that it is not, in particular if homogeneity of the
production of sound over the different notes is required.

Nowadays, with mathematical models of the instrument and computer
optimization algorithms, it is possible to test a number of configurations that
would be inaccessible by the traditional method. It is therefore interesting to
explore which results can be obtained by automatic optimization, to compare
them with existing instruments, and to investigate if a strong irregularity
spontaneously emerges from the optimization. The idea is not necessarily
to create some completely new or exotic instrument, even if this possibility
is not excluded in the long run. It is rather to investigate whether allowing
large “leaps” from usual designs leads to a completely different geometry
of the instruments, to try and reach more “logical” configuration of the
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acoustical resonator, and eventually test them acoustically. In particular,
an open question (not answered in this work) is whether or not the use of
fork fingering, often used in clarinets, is an acoustical necessity, or just the
result of the complicated past history of the instrument.

The purpose of this work is therefore to develop algorithms for designing,
and possibly improving, woodwind instruments, in the case of the clarinet.
It is to see if it is possible to conceive a “logical clarinet”, with a perfectly
regular fingering chart, and where the relations between the acoustical func-
tions of the resonator and its geometry are more easy to grasp than in the
traditional instrument. Of course, the instrument should produce correct
pitch for all notes. Fortunately this problem is not too complicated to ad-
dress in terms of calculated acoustical impedances: for simplicity it can be
assumed that playing frequencies can be derived from resonance frequencies
with a simple length correction in order to account for reed flow and dynam-
ics [2]. A more difficult issue is to design an instrument with balanced timbre
over its entire range. While the precise relation between tone quality and
cutoff frequency of the tone hole lattice [3] is still not perfectly understood,
experience seems to show that a regular cutoff frequency is useful (see [4],
page 485). Here, we study the possibility of designing an instrument with
a much more regular tone hole lattice in terms of tone hole diameters and
positions, able to produce a complete chromatic scale over the full range of
the traditional instrument.

Of course, whether such instruments will prove to be musically useful
is not obvious a priori. Nevertheless, if this is the case, it is clear that in-
teresting perspectives for making simpler and cheaper instruments could be
envisaged. Our study is limited to the purely acoustical aspects of instru-
ment design; we have not studied the problem of mechanical keys that are
necessary for an instrumentalist to really play the instrument. This is in-
deed an important question, but this task is beyond the scope of the present
work.

Numerous authors have discussed possible improvements of clarinets,
in particular Benade [5], but without using numerical optimization. Brass
instruments have indeed been studied by optimization [6, 7, 8], but in this
case the free parameters relate to the bore of the instrument and not to the
geometry of lateral holes.

This article is organized as follows. Section 2 provides the basic math-
ematical model used to characterize the acoustical properties of the instru-
ment – mostly a calculation of the resonance frequencies of the resonator.
Section 3 describes the optimization procedure and the minimization algo-
rithm. Section 4 briefly discusses the computer implementation. Section 5
presents various numerical results obtained by retaining various optimiza-
tion criteria; five different “clarinets” are obtained and their properties are
compared. These results are used in section 6 to design an experimental pro-
totype, and to measure its sound production with the help of an automatic
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blowing machine. Finally, section 7 draws a few conclusions.

2 Mathematical model

2.1 Transmission line model

The instrument is modeled with a classical one-dimensional transmission
line model for planar waves [9], taking visco-thermal losses into account
throughout the main bore, as well as in the tone holes. It is assumed that
the distance between tone holes is sufficiently large to make higher mode
interactions negligible. This assumption is valid if the distance is at least
larger than the bore diameter (see e.g. Ref. [10]). Accordingly, the instru-
ment is modeled as a succession of transfer matrices representing either a
cylindrical piece of tubing, or a tone hole; each tone hole is formally repre-
sented by a lumped element.

2b

2a

2d

Figure 1: Elementary cell with tone hole.

The transfer matrix of a cylindrical piece of tubing of length L and
characteristic impedance Zc is given by

H =

[

cosh(ΓL) Zc sinh(ΓL)
(1/Zc) sinh(ΓL) cosh(ΓL)

]

(1)

where Γ is the complex propagation constant. The model is rather accurate
for the characteristic wavelengths propagating inside a typical wind instru-
ment. The first higher order mode is usually far below cutoff; for a cylinder
of 15mm diameter it is a helical mode with a cutoff frequency of 13.5kHz.
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2.2 Visco-thermal boundary layer effects

The following expressions for the characteristic impedance Zc and the wave
number Γ are used (see e.g. [11])

Zc = Z0

[(

1 +
0.369

rv

)

− j

(

0.369

rv
+

1.149

r2v

)]

(2)

Γ = k

(

1.045

rv
+

1.080

r2v
+ j

(

1 +
1.045

rv

))

(3)

In this equation, Z0 is equal to

Z0 =
ρc

πa2
(4)

where ρ is the mass density of the gas, c the speed of sound and a the radius
of the tube. The dimensionless number rv is is defined as ratio between the
tube radius and the thickness of the boundary layer

rv = a
√

ρω/η (5)

where η is the coefficient of viscosity.

2.3 Tone holes

Each tone hole is modeled as a T-junction (Fig. 2). The series impedances
Za/2 are purely inertial, but the total shunt impedance Zst also has a re-
sistive part due to visco-thermal damping and radiation losses. For the
acoustic masses ma and ms, we use expressions obtained from [12, 13]

ma = ρta/(πa
2) (6)

ms = ρts/(πb
2) (7)

where

ts = b(0.82 − 0.193δ − 1.09δ2 + 1.27δ3 − 0.71δ4) (8)

ta = b(−0.37 + 0.078δ)δ2 (9)

δ = b/a; (10)

The input impedance Zh of a tone hole of cross section area Sh = πb2

depends on whether it is open or closed. For an open tone hole, Zh is
calculated by considering the tone hole as a transmission line terminated by
a radiation impedance zL. A simple expression for the radiation impedance
of a hole in the side of a cylinder [14] is not known but, since ka is small, it
seems reasonable to assume that the tone hole acts as an infinitely flanged
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Za/2 Za/2

Zst

Zst = Zs − Za/4 + Zh

Za = jωma

Zs = jωms

Zh : Input impedance
of tone hole.

Figure 2: T-circuit equivalent for a tone hole.

pipe; a more detailed model for flanged termination is probably unnecessary
for our purposes. At low frequencies, this leads to the simple formula

zL =
ρc

Sh

[

1

2
(ka)2 + j0.82ka.

]

(11)

Accordingly, a tone hole of length h, terminated by an impedance zL, is
represented by the input impedance

Zh =
ρc

Sh

zL + j ρc
Sh

tan(kh)
ρc
Sh

+ jzL tan(kh)
(12)

Exterior hole interaction [15] is not taken into account; assuming that this
effect remains negligible is reasonable, especially at low frequencies. The
input impedance of a closed tone hole is calculated in the same way, but
with zL → ∞. In the limit kh ≪ 1, which is an acceptable approximation
of the impedance for short chimneys, the closed hole expression reduces to
a shunt stiffness ρc2/(jωShh).

2.4 Termination of the instrument

An ordinary clarinet is terminated by a bell. The main purpose of the bell is
to equilibrate the timbre of the lowest notes of the instrument with that of
the other notes. In this project, we replace the bell by a continuation of the
cylindrical main bore with two vent-holes, as shown in Fig. 3. The length
of the extension and the diameters of the vent-holes are chosen in order
to obtain a theoretical lattice cutoff frequency of 1.420 kHz, approximately
equal to the average cutoff frequency of a clarinet [3].

2.5 Calculation of playing frequencies

The frequency of a blown note depends on the input impedance spectrum,
the reed dynamics (in contact with the lips) and the blowing pressure. In
practice, since the playing frequency is much smaller than the resonance
frequency of the reed, the dominant factor is the input impedance.
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Figure 3: Instead of a bell, the main tubing is extended and fitted with two
vent-holes. For a =7.5 mm, A =12.5 mm, b =4.0 mm, and d =18.2 mm the
cutoff frequency fc =1.420 kHz.

We use a simplified description where the mouthpiece and the reed are
replaced (for a given stiffness, blowing pressure, air flow correction, etc.) by
an effective volume correction added to the instrument.

Temperature gradients along the air column have some effect for an
instrument blown by a human player, but this small effect is ignored.

The playing frequency at soft playing levels is to a first approxima-
tion equal to a resonance frequency of the air column inside the clarinet-
mouthpiece combination, given by the solution of the equation

Im[Zin(ω)] = 0, (13)

where Zin is the input impedance of the whole instrument at the tip of the
reed, including the volume correction of the mouthpiece and the reed.

Apart from the resonance frequencies of the resonator, of course other
properties of the input impedance spectrummay influence sound production.
In particular, the heights and widths of the impedance peaks are relevant to
the stability of played notes. The importance of aligning the harmonics of
the playing frequency with subsequent zeros of Eq. 13 has been emphasized
by Benade [4]. According to a theoretical evaluation ([16]), an inharmonicity
of 20 cents between the two first peaks may cause a variation in the playing
frequency of about 10 cents between piano and fortissimo levels. Moreover,
transients during the attack of the notes may be affected by other properties
of the impedance spectrum. Nevertheless, since less deviation of intonation
can be tolerated during the quasi permanent regime of sounds, we have
chosen to include only the resonance frequencies of the input impedance in
our optimization.

7



3 Optimization procedure

3.1 Cost function and minimization algorithm

The principle of clarinet design optimization is to determine a set of ge-
ometrical variables that minimize a cost function characterizing, for each
fingering, the distance between the solutions of Eq. (13) and the frequencies
of a tempered scale. Since the number of design variables is large, and since
the cost function depends non-linearly on them, a numerical treatment of
the problem with an efficient minimization algorithm is necessary. We have
chosen gradient based algorithms for their convenience; they do not guaran-
tee to reach the absolute extremum in general, but are efficient to find local
optima.

To start the algorithm, a reasonable initial guess for tone hole positions
and dimensions is necessary, as a “seed” for the calculation. This seed was
obtained by starting from the lowest note, which gives the total length of
the instrument, and then successively computing by iteration the position
for each tone hole in order to obtain the desired resonance frequencies. If the
radius and chimney length of each hole are fixed to some typical value, and
if the influence of closed tone holes above the first open one is ignored, the
process amounts to solving a series of scalar equations for the hole positions.

The cost function was calculated by taking into account the frequencies
fk
q of the impedance resonances obtained from Eq. (13), where k refers to
the note (k = 1, 2, .., Nnotes) and q refers to the resonance (q = 1 corresponds
to the first impedance resonance, q = 2 to the second, etc.). For the lower
register, the cost function includes two elements: the square of the distance
between the first impedance resonance and the frequency f̃k of a tempered
scale, as well as the square of the distance between the second resonance
and 3f̃k, both with equal weights. In this way, a good impedance peak
cooperation can be expected, resulting in good pitch stability. For the second
register, only the first resonances fk

2
were taken into account and compared

to the corresponding equal scale values f̃k. In practice, we introduce a vector
R with 2N1 components associated with the lower register (where N1 = 19,
the number of notes of this register):

R2k−1 = (f̃k − fk
1
)/f̃k

R2k = (3f̃k − fk
2
)/(3f̃k)

(14)

as well as N2 = 14 additional components associated with the second reg-
ister. We then choose the square of the norm of the vector R with 52
components as our target function for optimization: F ≡ R ·R.

The problem is expected to be non-convex, leading to many extrema
that are in general only local, and therefore dependent on the seed of the
calculation. Nevertheless, the hope is that the crude initial model of the
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clarinet used to create this seed should be sufficiently reasonable to make a
sensible instrument emerge from the optimization.

It is probably impossible to attain F = 0 (simultaneous perfect position
of resonances for all considered notes). What is obtained is a compromise,
which can then be adjusted if necessary by weighting the terms of the cost
function differently. For instance, the even components of R correspond-
ing to the second resonance of the first register may be considered as less
important than the odd components.

3.2 Design variables

The free parameters of the model are the total tube length and the positions,
radii and chimney lengths of the tone holes, which amounts to more than
50 free parameters. The resonator is perfectly cylindrical; nevertheless, a
localized cylindrical enlargement/constriction between the mouthpiece and
the uppermost tone hole can also be introduced into the calculation, since
this is known to improve harmonicity [17]. We also put constraints on
the tone hole diameters and chimney lengths, in order to avoid unpractical
solutions or solutions that would be too different from usual instruments.
Some constraints are straightforward (such as dimensions being positive, and
the hole radii necessarily being smaller than the radius of the main bore), but
others are required by manufacturing, or by the fact that the mathematical
model would otherwise not be valid. In practice, those constraints were
often left for manual a posteriori check.

All variables do not affect the distances of Eqs. (14) in the same way.
For instance, it is obvious that the holes of the bottom notes have little
influence on the tuning of the upper resonances. On the other hand, the
uppermost tone holes generally have an appreciable influence on all of the
lower notes, due to the shunt reactance introduced by closed tone holes.

As a simple first approximation, the effect of an open tone hole of length
h can be represented by a shunt acoustic mass Mh = ρ(h + 1.6b)/πb2Sh,
which suggests that h and b do not need to be simultaneously considered
as design variables. In practice, however, it appears necessary to include
also the chimney lengths as design variables in order to obtain acceptable
positions of the resonances.

4 Computer implementation

The core of the algorithm is the calculation of a function giving the input
impedance of a series of open and closed tone holes, separated by cylindrical
sections. It is used by a routine that evaluates R and the cost function,
using a global root finder in the search for the zeros of Im(Zin). The global
root search is essentially done by analyzing the spectrum and selecting out
the impedance maxima of interest before Eq. (13) is solved.
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Figure 4: Fingering chart for a chromatic instrument where the G#4 hole
also serves as the register hole.

One of its input of the optimization code is a fingering-matrix (such as
that shown in Fig. 4). This makes optimization with arbitrary fingerings
possible, for instance even if fork fingering was considered. The algorithms
are implemented in Matlab, and the routine lsqnonlin from the optimiza-
tion toolbox is used for the optimization procedure.

5 Various designs

A first series of numerical experiments was made in order to get a better idea
of a suitable configuration in general; five different configurations, denoted
a–e, were investigated. They all represent strictly chromatic instruments,
meaning that they include neither fork fingerings nor “disordered” opening
of tone holes. The frequency range was D3–F5, corresponding to the first
register (chalumeau) and the first 10 notes of the second register – for case
(e), it was even slightly more, as we discuss below. The clarinets differ in
the function of the register hole, which can be either a dedicated register
hole, or a dual register hole/tone hole. In addition, the effect of a cylindrical
constriction or enlargement between the mouthpiece and the first tone hole
was investigated – this was the only deviation from an otherwise cylindrical
bore.

A cylindrical instrument such as the clarinet overblows the twelfth. For
a chromatic instrument, this requires 18 tone holes to cover the range of the
first register. The notes of the second register are obtained by opening the
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register hole and repeating the fingering from the first register. A fingering
chart for the instruments with a dual register hole can be seen in Fig. 4.

Initially, the bore radius a = 14.75 mm was selected to match available
clarinet mouthpieces; a was therefore not considered as a variable in the
optimization. The dimension d of the instrument termination (Fig. 3) was
then calculated from a and the chosen values b = 4.0 mm and A− a = 5.0
mm so as to give a cutoff frequency of 1.42 kHz. The constraints imposed on
the hole dimensions were rather loose with respect to the values of existing
instruments. A lower bound on the hole radius was set to 2.0 mm, except
for the tone hole acting as the register hole, for which it was set to 1.0 mm.
An upper bound of 6.0 mm was set for all holes.

For chimney lengths, a lower bound was set to 2.5 mm, with no upper
bound. If one includes a dedicated register hole, 20 cylindrical sections pre-
cede, separate, or succeed the 19 tone holes. Each tone hole is characterized
by two parameters, which now makes a total of 58 design variables.

To achieve convergence, it proved necessary to perform the optimization
process in three successive steps. Starting from the crude initial solution
described in section 3, the optimization process was run by calculating a
single-register design optimizing only the 18 notes of the first register (in-
cluding their second resonances). This solution is then used as the starting
point for the final optimization run, which takes into account the second
register also. Experience shows that the final optimization run is more sen-
sitive to the initial solution than for the single-register case. A “bad” initial
solution might in practice ruin convergence altogether, or lead to a local
minimum that is clearly not acceptable.

5.1 No specific register hole – case (a)

Our first optimization was the design of a clarinet with an uppermost tone
hole that has the dual function of a register hole and an ordinary tone hole,
as common with existing instruments. The role of the register hole is to
shift and reduce the height of the peak of the fundamental resonance, while
the second resonance is not too affected; this facilitates the emission of the
second register. These conditions tend to lead to register holes that are
significantly smaller than tone holes, so that some compromise is necessary
for a hole having a dual function.

Fig. 5 shows the obtained tone hole pattern and the position of the
acoustical resonances with respect to equal temperament. The position of
the first tone hole/register hole is 155 mm from the reed end, which is about
one third of the distance to the F3 hole; this is near the optimal position
of a register hole for the bottom notes of the second register. The hole
radius is 1.09 mm, which is in fact slightly larger than the constraint, and
considerably smaller than all the other tone holes. This explains the large
distance between the first and the second holes compared to the rest of the
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tone hole lattice. The first resonances of the notes in the first register are
well in tune. Around the crossover from the first to the second register,
resonance tuning problems occur.

5.2 Adding a cylindrical enlargement to the bore – case (b)

Introducing a cylindrical enlargement is known to correct the tuning of the
twelfths [17]. Our optimization code is compatible with the introduction of
a cylindrical constriction or enlargement anywhere between the mouthpiece
and the uppermost tone hole. As mentioned above, the latter is represented
by a section of the resonator having the same volume as a typical mouth-
piece (for a 14.75 mm bore this corresponds to 73 mm.). Optimizing this
constriction/enlargement introduces new parameters: its position, length
and diameter. An upper bound on the diameter was set to 25.0 mm.

The optimization provided a 4.4 mm long enlargement with a diameter
of 25 mm, inserted immediately after the mouthpiece. The diameter was
therefore equal to its maximal bound, introducing a rather large discontinu-
ity; under these conditions, higher order duct modes should be taken into
account, introducing added mass [18]. As a simple approximation, it can be
considered as a simple length correction, found to be 1.5 mm.

Fig. 6 shows the positions of the holes as well as the obtained positions of
the resonances with respect to equal temperament. A comparison with Fig. 5
shows that the addition of the bore enlargement has already introduced a
significant improvement.

5.3 Specific register hole with cylindrical bore – case (c)

The use of a separate register hole removes one important acoustic com-
promise concerning its size. But it is well known that a compromise is
still necessary concerning its position, since a register hole should be ideally
placed at a pressure node of each note, which is of course impossible to ob-
tain simultaneously for all of them. The role of the optimization is precisely
to find this compromise. We note, nevertheless, that it does not take into
account the height of the resonance peaks; the position of the register hole
is only determined by the positions of the second resonances (and, of course,
by constraints as well).

Fig. 7 shows the results. Compared to configuration (a) with a dual reg-
ister hole, a more even tone hole progression is achieved, while at the same
time the frequency differences are reduced. The position of the register hole
is roughly at one third of the position to the tone holes of the bottom notes,
making it optimal for the first notes of the second register. Its diameter
reaches the minimum radius 1.00 mm allowed by the constraint. The con-
straint concerning hole no. 2 (the first tone hole) also determines its radius
of 2.00 mm; all the other holes have a size that remains between the bounds.

12



0 100 200 300 400 400 400

Hole positions from reed end

position (mm)

0 5 10 15 20
0

2

4

6
Hole radii

hole #

ho
le

 r
ad

iu
s 

(m
m

)

0 5 10 15 20
2

4

6

8
Chimney lengths

hole #

le
ng

th
 (

m
m

)

0 5 10 15 20 25 30
−40

−20

0

20

note #

de
vi

at
io

n 
in

 c
en

ts

 

 

fundamental, RMS=3.5 cent
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Figure 5: Design (a), corresponding to a clarinet with no dedicated register
hole. The upper part of the figure shows the positions of the 18 tone holes;
the two last holes on the right correspond to the acoustical lattice replacing
the bell, and have not been optimized (see § 2.4). The two intermediate
figures give more detail on the geometry of these tone holes. The lowest
part of the figure shows the difference between the position of the impedance
resonances and those of a perfect chromatic scale with equal temperament.
Notes 1–19 are the first (lower) register notes, notes 20–29 are second register
notes calculated from the second resonance of the impedance. One notices
the particular position of the first hole, which is unusually separated from
all the others; this is a consequence of its dual acoustical role (register and
tone hole).
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Figure 6: Design (b), corresponding to a clarinet with a bore enlargement
but no dedicated register hole. The different parts of the figure are defined
as explained in the caption of Fig. 5. The enlargement has a length of 4.4
mm and a diameter of 25 mm., put immediately after the mouthpiece. One
notices one unusually long first hole (about 50 mm.), which seems a rather
impractical value.
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Figure 7: Design (c) with a specific register hole, but no bore enlargement.
The different parts of the figure are defined as explained in the caption of
Fig. 5. Here, the length of the register hole, about 15 mm, is comparable
to that of real clarinets.

The constraint of 2.50 mm for the length of the chimneys is active for some
of the holes, but the variation for the rest of the holes is rather smooth.

5.4 Combining specific register hole and cylindrical enlarge-
ment – case (d)

Adding a bore enlargement to the design with a separate register hole im-
proves intonation further. As in design (b), we put an upper limit of 25mm
on the maximum bore diameter, and the enlargement is put directly after
the mouthpiece. Optimization reached this maximum and provided a length
of 1.9 mm. Fig. 8 shows the results. The fundamental register is now in
tune within 0.5 cents RMS; only the highest note is out of tune by more
than 5 cents, which is still a very small shift.

5.5 Complete second register – case (e)

Finally, we studied a 5th case, clarinet (e). Among candidates (a)-(d), clar-
inet (c) seems to provide the best compromise in terms of intonation and
geometrical regularity; we then decided to extend the study of this design
by exploring the possibility of tuning resonances of all notes of the second
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Figure 8: Design (d) with both a specific register hole and a bore enlarge-
ment just after the mouthpiece. The different parts of the figure are defined
as explained in the caption of Fig. 5.
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Figure 9: Design (e) of an instrument where the same number of resonances
would be aligned for both registers, including the upper notes of the second
register. The different parts of the figure are defined as explained in the
caption of Fig 5. The register hole in this case turns out to be rather long,
namely 56 mm.

register – including the highest notes, which are normally played with the
third register of standard instruments. In this case, two registers cover three
full octaves D3–D6, where the second resonance is used throughout the sec-
ond register. Since the frequencies of the highest notes are approaching the
resonance of the reed (around 2 kHz), it is likely that the assumption of
blown notes having frequencies equal to impedance resonances is less accu-
rate in the highest part of the second register [19]. Nevertheless, it is known
that real clarinets provide a rather large pitch flexibility in the high register;
small errors in this range should not be too problematic. The position of
the register hole was subject to an imposed constraint of a maximal distance
of 100 mm from the mouthpiece end. For this design, a bore diameter a =
14.25 mm was chosen (instead of 14.75 for the other designs) to better cor-
respond to the experiments described in the next section. Fig. 9 shows the
results for this design, and Fig. 10 shows the computed impedance spectra
associated with it.

For this design, we have also studied the acoustical regularity of the
lattice of tone holes [3]. Local cutoff frequencies of Π-shaped sections can
be considered as a criterion of acoustical regularity: if these frequencies
remain constant over the various holes, the instrument should behave as a
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Figure 10: Computed input impedance spectra for the 37 notes of design (e).
The impedance is made dimensionless by dividing it by the characteristic
impedance Z0 defined in § 2.2. The impedance peaks are similar to those of
a real clarinet but, for the second register, the second peak remains smaller
than the first one, because of the long register hole.
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Figure 11: The local cutoff frequencies for a set of two holes are shown with
stars (*). A star located at n + 1/2 corresponds to the cutoff frequency of
the set of two holes (n, n+1). The star located at 18.5 is calculated for the
hole 18 and the first vent-hole.
The circles and crosses represent the global cutoff frequencies obtained in §
6 from the measurement of the input impedance, for the notes of the first
register from D3 to G#4. Circles correspond to well defined values, crosses
to more uncertain values.

periodic lattice with the corresponding cutoff frequency, and should therefore
provide a better homogeneity of sound production. The computed local
cutoff frequencies of the Π-shaped sections for 18 tone holes are shown by
the stars in Fig. 11. The relative variations of the cutoff frequency are
about 10%, while standard clarinets have a variation of the order of 40%.
Therefore the computed clarinet has a satisfactory acoustical regularity of
its acoustical lattice. As for a real clarinet, the mean value of the local
cutoff frequencies lies around 1700 Hz. This is significantly higher than the
global cutoff frequencies measured from the input impedance curve for the
notes of the first register, which is around 1450 Hz as shown in Fig. 11. This
discrepancy illustrates the difficulty of measuring global cutoff frequencies
for a regular lattice.

5.6 Comparison of the various designs

We first compare designs (a) to (d), since design (e) was optimized with a
different cost function. There is a strong degree of correlation between the
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Figure 12: Distances between adjacent tone holes for instruments (a)–(d).

hole radii for all four instruments. The dip in the radius progression between
holes 10 and 14 is a common feature, as is the tendency for the holes to be-
come progressively larger when their distance with the mouthpiece increases.
There is, however, a significant difference in radius regularity between the
instruments. The designs (a) and (c) without the tuning enlargement are
more regular than (b) and (d), especially (b). Similar observations can be
made regarding the lengths of the chimneys, but one notices that the con-
straint on these lengths is effective for several of the holes for (a) and (c),
but not so for (b) and (d). The situation concerning the positions of tone
holes is slightly different.

Fig. 12 shows the distances between adjacent tone holes of the four de-
signs. Here, (a) and (b) are similar, as are (c) and (d): the designs with a
separate register hole are more regular than the ones with a dual register
hole, but the introduction of a tuning enlargement does not seem to have
any adverse effect on the regularity of hole positions. Design (b) and (c)
are roughly comparable in terms of intonation, but the latter has a much
smoother tone hole pattern. The conclusion is that, if the bore enlargement
improves the tuning of an otherwise cylindrical instrument, the price to pay
is a less regular tone hole pattern.

The long register hole of (b) and (e) are significantly different from those
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of a regular clarinet. At low sound levels, with a linear behavior, the main
effect of a register hole is reactive (the ratio of the boundary layer thickness
to the radius remains small). Therefore the main parameter is the shunt
acoustic mass, proportional to the ratio length/cross-section area. In order
to have a small perturbation, it is necessary to have a large acoustic mass,
therefore either a long chimney or a small radius. For practical reasons, a
very small radius is not suitable, so that a long chimney is required. This
seems to be what is happening here, since the optimization leads to the
minimum allowed value of the radius (1 mm). The obtained length of the
height of the register hole is unusually large; when the hole is open, a problem
is the insufficient reduction of the heights of the first impedance peaks .

Concerning design (e), we note that the results provide more regularity
in the geometry of its hole than the others. In optimization, it is well-known
that under-determined problems may easily lead to irregular solutions. In-
deed, in this case, it seems that putting more constraints on the optimization
(by including the position of the resonance of the upper notes of the second
register) leads to more satisfactory results.

To summarize, the best method to obtain intonation, as well as regular-
ity, seems to be the introduction of a separate register hole. If a separate
register hole is used, an enlargement is not necessary in order to achieve an
instrument that is in tune within 8 cents for a 29 notes range. Design (c)
seems to be a good compromise, with most resonances falling very close to
the target (differences of less than 5 cents). In addition, this design is not
very different from a standard clarinet, even if it is significantly more regular
and requires no cross fingering. But this optimization does not correspond
to a fundamental limit: if, for instance, more deviations from a cylindrical
bore were permitted, it would probably become possible to adjust resonance
frequencies even more accurately.

6 Experimental prototype

We chose to build configuration (e) obtained in the previous section, since it
offers more regularity in its design. In order to keep the fabrication process
as simple as possible, stock polyurethane tubes were used, and no attempt
was made to build keys. These tubes come in a limited set of dimensions, of
which the one that is closest to a real clarinet has a nominal inner diameter
of 14.25 mm. This corresponds to the diameter chosen in the optimization of
design (e). The tube did not show a perfectly circular cross section, but had
a diameter varying between 14.10 mm and 14.45 mm, a non-negligible vari-
ation. Ref. [17] shows that the corresponding length correction is bounded
by the following equation (Eq. 31 of that reference):

|∆ℓ| < (1− α)ℓ′ = 0.05ℓ′
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where α = Smin/Smax ≃ 0.95 and ℓ′ is the length of the enlargement. The
tube was modeled as a cylinder with the same cross section area, which
corresponds to a diameter of 14.27 mm. The chimney lengths were adjusted
by creating a flat external surface at the position of each tone hole, which
is drilled perpendicularly to the main axis of the tube. The edges of the
holes are kept sharp, a feature that may potentially introduce nonlinear
flow effects at high playing levels. Fig. 13 shows the prototype.

Figure 13: The prototype.

The prototype was blown with an artificial mouth (see Fig. 14), with
a standard mouthpiece and a “Plasticover” reed. A preliminary calibra-
tion of this device was necessary to measure the equivalent volume of the
mouthpiece/reed ensemble. This volume is used to calculate the length of
upstream cylindrical tube that was removed from the results of optimization
in order to build the prototype. The measurement was made experimentally
by fitting the mouthpiece to a cylindrical piece of tubing terminated by an
orifice in a large baffle, and deriving a length correction from the measured
oscillation frequency. To check consistency, the experiment was repeated
with different tube lengths and blowing pressures. The blowing pressure
was varied from the oscillation threshold to the saturation limit at which
the reed closes against the mouthpiece and blocks the oscillation. Fig. 15
shows the results, ranging from 12.2 to 13.2 cm3, to be compared to the
geometrical volume of the mouthpiece (11.4 ± 0.3 cm3). Since the variation
of the equivalent volume are larger with low blowing pressures, in order to
minimize nonlinear effects, a working pressure of 4 kPa (about 40 cm of
water) was chosen, with Veq = 12.5 cm3. This volume corresponds to a tube
length correction of about 73 mm.

The prototype was then studied. The tone holes were successively closed
with tape on which rigid plastic pads were placed, in order to replace the
pads and keys. Figure 16 shows the results obtained with a blowing pressure
of 4.0 kPa, and three series of measurements. From one series to the next,
the instrument is removed from the artificial mouthpiece. Care was taken to
try and obtain as much reproducibility as possible, but it is clear that this
reproducibility was not perfect, which probably explains the dispersion of
the results. For the first series, the average of sound frequencies is 12 cents
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Figure 14: The prototype instrument attached to the artificial mouth.
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Figure 15: Equivalent volume computed from played frequency for different
tube lengths and blowing pressures; 1 kPa corresponds to a water column
of 10 cm.
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Figure 16: The experimental clarinet: measured intonation errors with a
blowing pressure of 4.0 kPa in the artificial mouthpiece (three realizations).
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Figure 17: The experimental clarinet: measured intonation errors with a
blowing pressure of 5.5 kPa (two realizations).
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too low, with a mean square deviation of 4; for the second, the average is
14 cents too low, with a mean square deviation of 2.7; for the third, the
average is 13 cents too low, with a mean square deviation of 2.9. Fig. 17
shows similar results with a blowing pressure of 5.5 kPa. The first series
of measurements give an average 11 cents too low, with a mean square
deviation of 3.6, the second, an average also 11 cents too low with a mean
square deviation of 2.8. As can be seen, there is a significant dispersion
of the results. The reason for this dispersion is that, from one run of the
experiment to the next, adjustments of the experimental parameters turned
out to be necessary. The general offset of the pitch, approximately 10 cents
flat, is easy to correct by adjusting the length of the instrument, as routinely
done by instrumentists. This offset being ignored, the remaining errors are
less than 5 cents, which is better than what is usually obtained with real
clarinets.
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Figure 18: Measured intonation errors (in cents) when the experimental
clarinet was played by a musician. Each note was played three times, at
different intensities. Different symbol sizes are used for the three intensities:
△ Piano; � Mezzoforte; O Forte - color online

For the second register, stable sounds were difficult to obtain with the
artificial mouth. A musician was therefore asked to play the prototype. At-
tacking each note, she played the notes of the two registers successively, but
also observed that the second register was less stable than with an usual
clarinet. For each register, she played the higher notes by closing the holes
with the fingers, and the lower notes by closing the 8 upper holes with mod-
eling clay. In a preliminary experiment, the general intonation was too low
(roughly 30 cents, with a rather unsatisfactory balance between the two
registers); this is not so surprising since the mouthpiece used by the instru-
mentalist was not the same as that of the artificial mouth. The experiment
was then slightly modified by reducing the volume of the mouthpiece by an
equivalent length of 1 mm, using modelling clay; the results are shown on
Fig. 18. Intonation is slightly higher than that obtained with the artificial
mouth, but the agreement remains rather satisfactory, as well as repro-
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Figure 19: Measured input impedance spectrum of the experimental clarinet.
This figure shows good agreement with the computed results of Fig. 10.

ducibility. The pressure in the mouth was measured to be between 4 and 5
kPa, as for the artificial mouth. Between the two registers, a discontinuity
of 20 cents can be observed. This can be due to the playing technique of the
instrumentalist. It seems likely that between the two registers, she probably
changed the excitation parameters, such as the reed opening and the mouth
pressure. Moreover, no listening reference was given before she played the
note; the player just optimized easy playing. Usually, measurements of the
intonation of a clarinet is made in less severe conditions, where the musician
plays all notes in succession so that he can keep a reference in mind and
automatically apply pitch corrections. Generally speaking, it turned out
that all notes could be played without any special training, which is rather
satisfactory.

7 Conclusion

Computer optimization of the geometry of a clarinet seems to offer interest-
ing possibilities, even if it should be remembered that the numerical results
do not necessarily correspond to an absolute optimum for the chosen cri-
terion: they may be only local optima. The regularity of the obtained
geometries seems to indicate that, indeed, the design of real instruments
is more the result of a complicated history than that of pure logics. For
the moment, our study remains limited in term of the number of acoustical
properties taken into account in the optimization function, since only the
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positions of the acoustical resonances have been included. It would be in-
teresting to also include the corresponding value of the impedance peaks,
which might lead to significantly different optimization results. Even if the
results seem to be satisfactory in terms of the peak values of the acous-
tic impedance, the relative heights of the peaks is important; for instance,
the differential reduction of the heights of the first and second resonance
determines the stability of emission for the second register.

Generally speaking, there should be no special difficulty in including
more components in the optimization function, but our purpose in the
present work was to explore the new possibilities offered by optimization
within the simplest possible scheme; experience will show in what direc-
tion the optimization process should be improved. Moreover, it remains
very likely that even a very elaborate mathematical optimization model will
probably never capture all the real musical possibilities of instruments. At
some point, it will be indispensable to build playable instruments with keys
and collect the evaluation of performing clarinettists; mathematical opti-
mization can nevertheless be very useful as a preselection tool between the
enormous number of geometrical possibilities, even if its use should be fol-
lowed by a final adjustment with real musical testing by performers. We
hope to be able to continue our program in this direction.
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