N
N

N

HAL

open science

Interacting with Symbol, Sound and Feature Spaces in
Orchidée, a Computer-Aided Orchestration Environment

Grégoire Carpentier, Jean Bresson

» To cite this version:

Grégoire Carpentier, Jean Bresson. Interacting with Symbol, Sound and Feature Spaces in Orchidée,
a Computer-Aided Orchestration Environment. Computer Music Journal, 2010, 34 (1), pp.10-27.

10.1162/comj.2010.34.1.10 . hal-00683471

HAL Id: hal-00683471
https://hal.science/hal-00683471
Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00683471
https://hal.archives-ouvertes.fr

Interacting with Symbol, Sound, and Feature Spaces in
Orchidée, a Computer-Aided Orchestration Environment

Grégoire Carpentier and Jean Bresson
IRCAM - Music Representation Group
Paris, France.

This is the author’s pre-print version of the article published in Computer Music Journal, 34:1 (2010).
The published article is available at http://www.mitpressjournals.org/doi/10.1162/com;j.2010.34.1.10

Until recently, orchestration has remained a
relatively unexplored domain of computer music.
The problem of musical orchestration could be
stated as the art of combining timbres and
pitches to create particular sound textures. More
generally, though, orchestration comes into play
as soon as timbral issues are addressed in
instrumental music, and it brings forward the
problem of linking the sonic space (i.e., the
realm of timbres) with the symbol space of
the formal compositional processes (consisting
of notes, for example). Since the beginning
of the 20th century, composing with “sounds”
rather than “notes” has become a widespread
practice [9], hence emphasizing the relevance of
this problem in contemporary music creation.
However, contrary to other techniques of musical
composition, orchestration requires difficult-to-
formalize and difficult-to-verbalize knowledge
to assemble data from these symbol and sound
spaces. Hence, for years, computer music
systems stayed away from the complexity of this
problem, and orchestration was never much more
than an empirical activity.

Since its early years, computer music research
has evolved in two main directions. On
one hand, the goal was to provide composers
with the ability to manipulate symbolic musical
objects (e.g., notes, chords, rhythms, and
melodies). On the other hand, researchers
concentrated their efforts on sound processing,
analysis, and synthesis, leading to a deeper
comprehension of many aspects of sound and
its perception. In the signal-processing field, the

growing interest in automatic feature extraction
[19] and the relationship between empirical
features and perceptual dimensions [16] paved
the way towards a symbolic organization of
sound. It also encouraged the emergence of
music information retrieval, a field that aims
to extract information from audio signals for
the purposes of automatic classification and
latent structure discovery. In the meantime,
recent advances in the field of computer-aided
composition introduced significant openings to
integrate generation of electronic sound material
into symbolic musical practices [5], making
sound synthesis understandable as an interactive,
modular, and formalized process.

Though very promising, these trends did not
yet converge to a “unified theory”, and complex
connections between audio and symbolic data
remain an open issue. The computer music
community still misses a unified comprehensive
framework that could bring together various
levels of sound and music representations,
integrating orchestration processes among the
pioneering fields of new music research.

In this article, we present an orchestration
system called Orcmipfe, and we focus on
how user interaction may be of great help in
making symbol and sound worlds communicate
together. We introduce a general orchestration
scheme in which each step is either supervised
by an interaction process or driven by search
procedures that jointly optimize objectives in
symbol and audio spaces. All core computation
procedures embedded into the OrcHIDEE orches-

tration kernel communicate with computer music
environments through a simple client/server
architecture. We introduce innovative interfaces
in OpenMusic [3], Max/MSP [22], and MATLAB,
both for the specification of the orchestration
problem and for the exploration of its potential
solutions. These interfaces allow a fine
comprehension of the links between symbolic
and audio data through feedback loops and
preferences-inference mechanisms.

This article is organized as follows. We first
report previous research in the computer mu-
sic community aimed at designing orchestration
tools. We discuss their inner limitations and
show how consequently they miss various
aspects of orchestration complexity. We then
suggest a multiple-viewpoint analysis of this
complexity as a network of relations among
sound, symbol, and feature spaces. From there,
the orchestration problem is turned into a generic
scenario for which the ORrcHIDEE client/server
framework offers a solution. Each main step
of this scenario (problem specification, search
process, and exploration of solution space) is then
separately detailed, and examples of graphical
user interfaces (GUISs) are provided.

Related Work

Though computer-aided orchestration is quite
a new topic in the computer music field, at
least three attempts have been made in past
research for designing orchestration tools. They
all share the same paradigm: The goal is always
to discover sound combinations that “imitate”
a target sound in the most convincing manner.
Sound combinations are searched within an
instrument sample database assumed to be large
enough to encompass the sound potential of the
orchestra. As we will see, our approach follows
this trend, but it invokes innovative methods at
each step of the orchestration process.

These state-of-the-art systems rely on the
assumption that the target timbre — as well
as that of each database item — can be
characterized by some averaged spectrum or
spectral envelope computed on the signal with
appropriate spectral-processing techniques. Rose
and Hetrik [24] introduced an explorative and
educational tool based on a singular value
decomposition (SVD) and other basic linear
algebra methods. Their algorithm approximates
the target spectrum with a weighted sum of
spectra picked from a palette of instrumental
sound samples. To cope with orchestral

constraints, the authors also suggested the CHI
procedure, which first computes the set of all
feasible combinations, and then ranks them
on a distance-to-target criterion. Alternative
approaches suggested by Psenicka [21] and
Hummel [12] rely on iterative matching pursuit
algorithms. Such methods first compute the
target’s spectrum and then find in a sound
database the items whose spectrum best matches
the target. The matched spectrum is then
subtracted from the target, and the algorithm
iterates until the residual spectrum falls under
a given energy level.

Though all these methods require relatively
low computation times, they miss the complexity
of orchestration at various levels. First,
they implicitly circumvent the combinatorial
complexity of orchestration. The search for
sound combinations in large databases is an NP-
hard constrained optimization problem in regard
to which iterative matching pursuit methods
behave like greedy algorithms. Sounds are added
one by one in combination until an optimization
criterion cannot be further im- proved. Now,
the lack of a backtracking mechanism with
iterative methods most often results in local
optima with uncertain quality [11]. The SVD
approach suggested by Rose and Hetrick [24]
avoids these matters but is likely to output non-
playable solutions, i.e., ones that are inconsistent
with constraints of orchestral instrumentation.
As for their alternate CHI method, it performs
an exhaustive search on the set of feasible
solutions; hence, it is only practicable on small-
size problems.

Secondly, these state-of-the-art methods fail in
considering timbre perception as a multidimen-
sional phenomenon [16, 13]. The optimization
process is always driven by a single objective
function, thus limiting the applications to rare
situations in which the average spectrum holds
the whole perceptual timbre information. Third,
these methods offer poor control of symbolic
features in orchestration proposals. The search is
driven by the optimization of a spectral criterion,
no matter the values musical variables (such
as pitches) may take. It is therefore generally
difficult to take advantage of the resulting
solutions in real compositional processes. Last
but not least, all of these orchestration tools
are basic procedures rather than advanced
compositional environments. They can take as
input argument only a concrete, prerecorded,
target sound, yet this does not correspond to the
real practice of orchestration. In most cases, the
target timbre is nowhere but in the composer’s

Easy to observe

Difficult to predict Difficult

and describe Difficult to verbalize to obtain
A A
Symbolic Space »| Sound Space |<+- Subjective - - Soiifjr(?:fit)

\ Interpretation similarity 9

N judgement

AN
Timbre rgodel Analysis Analysis
AN
AN
AN
\‘ L
Constraints Feature Space % ------ooooo

Objective

similarity

measures

Ficure 1: Sound space, symbol space, feature space: a network of complex relations.

mind, and it strongly relates with symbolic
musical material that the state-of-the-art methods
are unlikely to consider.

Why Orchestration Is a Complex
Problem

Apart from purely combinatorial issues (the
number of sound combinations potentially
playable by an orchestra is virtually infinite),
we believe the inner complexity of orchestration
lies in the complex network of relations between
sound and symbolic data. The historical
orchestration treatises [4, 23, 14, 20, 1] have
tried to “transcribe” some of these relations
as a collection of “tricks” of which composers
should be aware. However, they all refer to
the aesthetics of a given time, and they hardly
provide convincing scientific reasons that explain
why some timbral arrangements sound “better”
than others.

Sound Space, Symbol Space, Feature
Space

Figure 1 helps in clarifying the complex relations
between sound and symbolic materials. From
a symbolic viewpoint, an orchestra is a discrete
system that can be at each time easily described
by a “score segment” — a set of discrete variables:
instruments, notes, dynamics, playing styles, etc.
Variable domains are implicitly restricted by a set
of constraints reflecting the physical limitations
of the instrumental playing.

When it comes to playing music, the current
score segment is “projected” onto the sound

space. Unlike the symbol space, the latter
is difficult to observe, at least scientifically
speaking. Music deals with sound perception,
but verbalizing or formalizing this perception is
quite a difficult task. It is well known in the
music community that no suitable vocabulary is
available for precise description of timbre. In
addition, the sound space is hardly predictable:
composers are limited in their faculties to imagine
how timbre combinations sound, particularly
when there is no prior experience to refer to and as
the number of instruments under consideration
increases. Besides the combinatorial issues of
instrumental mixtures, unpredictability and non-
objectivity in sound spaces are the main causes of
orchestration’s inner complexity.

However, if we are not able to precisely
characterize objects in sound spaces, we still
can compare them. Many psychoacoustic
experiments involving the building of timbre
spaces rely on this pairwise sound-comparison
principle [16]. Introducing a “reference sound”
in Figure 1 is the first step to an organization
of the sound space, as sounds may then be
arranged according to their similarity with the
reference. This is why all current orchestration
systems use a target sound as the main input:
A landmark is needed to measure distances
in the sound space. However, instead of
dealing with subjective similarities at the sound
level, these systems prefer a spectral-based
representation for computing distances. As
previously noted, this approach implicitly makes
the assumption that the average spectrum holds
all timbral information and that timbre similarity
and spectral distance are equivalent, which is not
straightforward.

§ A / Flatterzunge clarinet
©
| &0 O
H I O
X 1
[1
-4 N
1
Sl |
o]
a ! *
2
1
1

[0 Dominated solutions

€ Pareto solutions

. Ideal point

Ordinario flute

[

'

Amplitude modulation distance

Target (Flatterzunge flute)

FiGure 2: Bi-criteria timbre similarity. Axes represent distances to the target (here, a flutter-tongue or Flatterzunge flute
sound) timbre along two criteria: spectral peaks distance and amplitude modulation distance.

Perceptual features may help here. These
fea- tures are automatically extracted from audio
signals [19] and can easily be correlated with
perceptual dimensions. For instance, the spectral
centroid correlates with perceptual brightness,
and attack time correlates with percussive aspects
of sound [16]. Objects in the sound space may
then be compared to a given reference sound
on the basis of their objective feature values
(reflecting different perceptual dimensions). But
objectivity is not without cost: Feature space can
have a high dimensionality, and the choice of an
appropriate distance is still a complex problem.
It has been shown [6] that merging feature
distances into a single dissimilarity value is
impossible without prior information on listening
preferences. We show in the next section how
a multicriterion approach is an elegant way
to cope both with the multidimensionality of
timbre perception and the unpredictability of
each dimension’s relative importance.

Theoretical Formalization

From now on, we will assume the existence of a
sound database reflecting the sound possibilities
of the orchestra. (The instruments must have
been recorded at various pitches, playing styles,
and dynamics.) A computer-aided orchestration
system will then suggest combinations of sounds
in this database according to a given problem
specification. We will also assume that each
sound s of the database is associated with a
set of audio features (d1(s), ..., dx(s)) that reflects
various aspects of its timbre. Examples of such
features are spectral centroid, log-attack time,
main resolved partials, mel spectrum, noisiness,
etc.; see [25] for a detailed review. We will call the

combination of both the sound database and the
feature database instrumental knowledge.

Now imagine a timbre model that can predict
the perceptual features associated with any
state S (i.e., any combination of sounds in
the instrumental knowledge) of the orchestra
in the symbol space. Such models have been
introduced in [26] and [25]. Given a sound
target T, timbre models also estimate the vector of
perceptual dissimilarities (DI(S), ..., DL(S)) along
each perceptual dimension between S and T.
Hence, finding the state S5* that sounds as close as
possible to the target timbre is left to the following
multicriterion minimization problem [8]:

5 = {argmin DI(S) k=1, K} (1)
S

In multicriterion optimization, S* is called
the ideal point. It is a configuration that
simultaneously optimizes all criteria. In most
real-life cases, S does not exist, and solving
Equation 1 then consists of finding a set of tradeoff
states that realize different compromises among
the conflicting objectives. Such solutions are
called Pareto solutions (or efficient solutions, or
optimal solutions). A solution S is optimal if and
only if there is no other solution in the search
space that achieves better values than S on every
criterion D{. Figure 2 illustrates these concepts.
Here, solutions are simple sounds rather than
sound combinations to make the Pareto approach
easier to understand. Axes are distances to the
target (here, a flutter-tongue [Flatterzunge] flute
sound) along two criteria: spectral peaks distance
and amplitude modulation distance. Hence,
the target timbre is the origin. The flutter-
tongue clarinet is the closest solution regarding
amplitude modulation, whereas the normal flute

achieves the lowest spectral peaks distance.
Unfortunately, there is no solution S* in the search
space that combines those two properties.

The multicriterion approach is an appropriate
paradigm when the relative weight of each
desired criterion cannot be known in advance.
Orchestration (and more generally, timbral
similarity) falls into this category of problems.
Depending on targets and composers, some
regions of the Pareto solution set will be preferred
to others, according to specific and personal
preferences of perceptual objectives. We will call
them listening preferences in the remainder of this
article.

In [6], we suggested an appropriate genetic
algorithm (Goldberg 1989) for efficiently solving
Equation 1. Eventual global symbolic constraints
on musical variables are also tackled with an
innovative local search procedure. As the present
article mainly deals with interfaces and user
interaction, we will not go into details on these
methods. We will simply refer to them to as
main search procedures. Interested readers may
consult [7].

General Framework Architecture

Introducing feature-based timbre models “be-
tween” sound and symbol spaces let us address
the inner unpredictability and non-objectivity of
the sound space by a multicriterion combinatorial
optimization problem. Without oversimplifying
the complexity of orchestration, we thus turned
our problem into a general theoretical framework
for which various efficient methods were
introduced. However, major difficulties remain
at two levels at least.

First arises the issue of a general specification
of an orchestration. Remember that the goal is
to find a combination of sound samples whose
features best match a set of target features
according to a multidimensional perceptual
distance. The concept of target can therefore
have various different meanings. It can be
considered as a concrete sound (e.g., a natural
or instrumental recording) from which target
features may be extracted. More generally, it can
also be a more or less abstract idea of a resulting
sound mixture to be created, which does not exist
before it is actually produced with the orchestra.
Hence, the question of defining a sound target
as the initial base of the orchestration process
is actually linked to the much more general
problem of the musical conception of sounds in
the composers’ mind. In this case, when no target

sound is available, we provide a set of synthesis
tools that allow for its generation in the context
of a computer-aided composition environment.
(We introduce these tools in later sections of this
article.)

Second, a multicriterion problem leads to a
set of efficient solutions rather than a unique
optimum. Depending on the problem and on the
number of objectives, this optimal set might be
very large. Hence, helping users in the discovery
of configurations satisfying their personal needs
is another major issue.

In these two representative steps, our belief
is that user interaction has a key role to play.
Figure 3 formalizes the interactions in our system
through a client/server architecture. Interfaces
and user interaction are on the client side, and
the OrcHIDEE server (i.e., the orchestration kernel)
handles the core computational procedures. The
clientserver communication is established using
simple OSC messages [27].

The double-line boxes denote user interfaces
(OrcHIDEE clients). Once the server is running,
one or several of such client applications or
interfaces can send their data and information
(target specification, search constraints, and
preferences). They can also run search
procedures and queries about their results or
about the state of the server. This architecture
therefore opens a wide range of possibilities and
approaches on the clients’ sides, for instance in
the definition and synthesis of sound targets, or
in the visualization and navigation in the solution
space, which both represent key interaction areas
in the framework we propose.

Orchestration Scenario

At the start of the orchestration process, the
user specifies the initial problem data: the
composition of the orchestra, some specific
constraints relative to the orchestra or to the
expected solutions, and above all the sound
target. ORCHIDEE receives this target as a sound
file that contains either a preexisting sound (as in
previous researchers’ orchestration software) or a
newly synthesized one from a client interface, and
analyzes it to extract and return target features.
The target feature set should be considered as
a “sound abstraction” or a “sound class”: there
might be many sounds corresponding to the
feature values, and the sound used to specify the
target is one of them. The goal then is to discover
other instances of this sound class made out of
instrumental samples.

CLIENT SIDE | SERVER SIDE (Orchidée)
____________ T———— S T -
|
» Symbolic ¢ |
Parameters |
|
v ! c
' S
. | -
Synthesis g
Toolkit | 2
| [
(1]
| 5
|
A\
! §
| Feature %
Extraction g
|
Sound | S —
|
Orchestra / |
Constraints |
|
|
____________ T--——ft-——-———————-———————-
| \i
”n
| 7]
| Q
Q
— I ' <
Listening o1 Main Search Instrumental a
t
Preferences | Procedures Knowledge §
| ©
Q
: - @
____________ 4 ___
|]
| c
| y 2
| e
[]
| Solutions n
Navigation / g Query S
Edition | 5
S —-
Interface | =
| ©
I
o
' -
']
|

FiGure 3: Generic orchestration scenario in the ORCHIDEE client/server framework. Double-lined boxes denote user interfaces.

In the next section, we present a target spec-
ification interface developed in the OpenMusic
computer-aided composition environment that
acts as an ORrcHIDEE client and allows the user
to generate and progressively refine the target
sound from symbolic parameters. During the
various steps of target generation, the features
extracted by the server can be queried by the
client application and integrated as symbol data
in the specification process.

In addition to the generation of target features,
the problem can also be specified by orchestral
composition and instrumental constraints. It has
been shown in previous work [6, 7] that constraint
programming is an appropriate framework for
modeling the current compositional context. Our
OpenMusic-based client provides programmatic
tools and GUIs to specify these additional
problem-specification data.

Target features and context constraints are
therefore the inputs to the orchestration problem,

which is addressed in OrRcHIDEE as a constrained
multicriterion combinatorial optimization task
(see the previous discussion). The main search
procedures then combine genetic search and
local search to explore various optimal regions
of the search space. The search is split
into two collaborative processes. On one
hand, a multicriterion genetic algorithm tries to
approximate in a reasonable time the efficient
solutions (i.e., the Pareto set) of Equation 1. These
solutions display different tradeoffs between the
optimization criteria corresponding to possible
user listening preferences. On the other hand, a
local search algorithm tries to find configurations
that fit the musical requirements expressed as
symbolic constraints.

When the search process terminates, the
server stores and eventually returns a set of
sound combinations that all match the target
timbre. Subsequently, we present another client
interface that allows the user to interact with this

set of solutions and to investigate it according
to different criteria. According to the user’s
actions in this interface, relevant regions of the
search space (i.e., regions that contain sound
combinations that meet the users aesthetic needs)
canbeidentified and provided to the server. From
there, the main procedures might be redrawn to
intensify the search in particular regions, now
taking into account the user’s implicit listening
preferences.

In the following sections, we introduce the
OrcHiDEE clients used for the specification of the
problem and for the exploration of its solution
space, and we further explore details of the
interaction schemes involved in the orchestration
process.

Problem Specification and

Sound Target Definition

The first OrcHIDEE client was created in
the OpenMusic computer-aided composition
environment, including a set of tools and
interfaces dedicated to the specification of the
orchestration target and constraints. Although
the use of a visual programming language like
OpenMusic may suggest some kind of automated
process, an important proposal conveyed in
this environment is the strong user interaction
and control over the creation and execution
of com- positional processes. Hence, the use
of OpenMusic as a client of our orchestration
server allows us to integrate formalized aspects
carried out by means of programming tools, as
well as an interactive orientation of the overall
process through editors and bidirectional com-
munications between OpenMusic and ORCHIDEE.
Moreover, the problem data are not strictly fixed
by the initial specification: a progressive fine-
tuning of the target information and of the
orchestration constraints generally takes place
after each step of the orchestration search process.

Sound Target

As stated earlier, the definition of an orchestration
target is closely related to the problem of
the musical representation of sound, which
has already been addressed from various
perspectives in computer music literature and
software. The first and perhaps most
intuitive approaches are based on graphical
representations, and they generally assume
a bi-dimensional time/frequency referential on

which sound textures and events are “drawn”.
In this approach, there is a correspondence
between the graphical representation and the
perceptual dimensions of sound. However,
the sounds resulting from the related systems
are quite restrictive in comparison to the realm
of sounds that can be created by a computer
and, even more so, to the realm of sounds
that can be imagined by a composer. An
opposite approach would represent the sound
in a compositional context as a process being
created by the composer. With several underlying
conceptual distinctions, this approach principally
corresponds to the programming and visual
programming languages and environments such
as Music-N/Csound [15], SuperCollider [17],
and Max/MSP [22]. Sound creation in these
environments can be extended to a more musical
level, because the sound is formalized as a part
(or as the object) of a compositional process
[5]. However, this task is neither easy nor very
intuitive and can easily lead composers to waste
time and energy on building the target even
before thinking about how to orchestrate it.

The target definition interface we created in
OpenMusic takes advantage of both previously
mentioned approaches. It uses different tools
previously developed for the control of sound
synthesis in this environment, principally of the
OMChroma system [2], which provides powerful
high-level structures for the design of pitch
structures and the synthesis of complex sounds.

The Soundlarget is an OpenMusic object
dediated to the specification of the orchestration
target. It provides a convenient interface
that hides most of the complex underlying
sound processing and programming issues while
maintaining the potential of a programmable
system. As with most of the OpenMusic
objects, the SoundTurget can be built and
edited by programming means or by using a
dedicated graphical interface. The SoundTarget
editor gathers symbolic, spectral, temporal,
and functional representations of the different
components of a target (see Figure 4).

Initially, a SoundIarget object is built from a
chord containing the primary structural pitches
of the target. This chord is edited in the upper-
left part of the editor window. Each note is
associated to a spectrum, ie., a single partial
that can be extended either with a given number
of harmonics or by user-defined partials. Some
additional items are visible in the “Selected Note”
frame of the target editor in Figure 4, which
allows for the algorithmic processing of the
spectral components (e.g., filtering, stretching,

f = 3540. Hz

>

3000

2000

1002

O

1000. 00 200000 300000 4000. 00

100 200 300 400 500 600 700 300 909

Additive

L

Nb Harmonics El
Add. Partials 3 ﬂ
3200
Stretch
Band Filter o] 2000

80

25

ChordSeq... |5

1089

Constrain search doma... |7

Analyse Target Data

Ficure 4: The OpenMusic SoundTarget editor.

shifting, and setting of the relative amplitudes).
This additional processing permits creating a
wide variety of timbre structures whose richness
and complexity result from pre-formalized
processes and experiments. Predefined functions
are provided for this purpose. As we will
show, user-defined functions can also be plugged
in at this stage. The spectra of the chord
components are then brought together into a
global spectrum (“Full Spectrum”, in the upper-
right part of the window) to which a spectral
envelope filter and a temporal envelope can
be applied (bottom-left part of the window).
Finally, a concrete sound is synthesized from
the resulting target data, using one of several
available synthesis techniques (additive, FM, etc.)
This sound is our orchestration target; it is sent
with additional spectral or symbolic information
to the orchestration server for complementary
analysis and extraction of perceptual features.

The strength of the SoundTarget object also lies
in its easy integration into the OpenMusic visual
programs. Indeed, its essential components (i.e.,
the initial chord, the spectral components of
the chord’s notes, and the filtering envelopes
and parameters) can be created by upstream
processes or derived from existing OpenMusic
objects. In other words, the target creation can
be integrated into a larger-scale compositional
framework. Figure 5 shows a SoundTarget being
created from a patch. Before sending target data
to the Orchide e server, the SoundTarget object

may still be edited and refined manually through
its editor.

The functional components of the SoundTarget
editor (i.e., the functions plugged in and
related to the spectral unfolding of the chord
pitches) can also be set algorithmically and
parameterized when building the sound target.
In this case, these spectral-processing modules
can consist of any convenient function to
process the underlying pitch structure. They
can come from a predefined library provided
with the orchestration tool, or they can be
previously composed/programmed by the user
in the computer-aided composition environment
(either as Lisp functions or as visual programs).
In Figure 6, a SoundTarget is now created with
additional spectral processing functions designed
as visual programs. Notice that it is also possible
to build the SoundTarget directly from a sound file
previously created or imported in OpenMusic,
thus allowing one to specify the orchestration
target as a pure “concrete” sound. In this case,
or if the target creation and synthesis interfaces
are not needed anymore, the SoundTarget editor
can be set to a more compact visualization mode,
as shown in Figure 7.

The sound-target information submitted by
the client is considered at different levels by
the OrcHIDEE server. In any case, perceptual
features are extracted from the sound file for
use as optimization criteria in the orchestration
search procedures. If provided, symbolic data

v

>

3008

5 W M W
5 F predenn:u-mter predenn:u-mter predenn:u-mter & 2006
- R € © € © € ©
e 4 W A
L‘ :|;| moke-Spoc-emy make-pec-eny make-spec-n 1600
cecdoe
PP © v ue © v ue
freg-mod
r r ¢ © © r e & © P ¢ © ©
! e) NG
Initial Chord LIsR
nitial Chor 4 list -|w
= o) :
& o Formant filters
= —— I

SOUNDTARGET
object

180 200 390 400 509 630 700 BBD 908

Additive >

]

Ficure 5: Building a SoundTarget object in an OpenMusic visual program. The initial chord is derived from an algorithmic
process, and the different filters are derived from a library of predefined formant filters. Double-clicking the SoundTarget box

opens the editor, a part of which is visible at the right of the figure

o

SOUNDTARGET

SOUNDTARGET

Selected Note (Spectral Edit)

functions M O OM M
Sar ¢ & oo (] 0
§ 5
i ¥ set-amplitudes —_— @
filter-vps-freas r
=+ default values 1] f CEoG
- 1
(((:filter (400 7000)))) LIS user-defined

I
4—0“

Nb Harmonics
Add. Partials

predefined processing

processing function

Band Filter

RAMP

SET-AMPLITUDES

g s e |

Ficure 6: Creating a SoundTarget from symbolic data and functions for the spectral processing of this data. A band-pass
filter is specified with default frequencies, as well as another predefined function and a third user-defined function (the “ramp”
editor is open at the right) that randomly modifies the amplitude of the spectral components.

can be used as a filter to limit the possible pitches
that may appear in the orchestration proposals
(the “Search Domain” chord seen in Figures
4 and 7). If no chord is specified, ORCHIDEE
automatically computes a set of pitches from the

target spectrum. Because it belongs to the symbol
space, it can be returned to the target specification
environment and progressively refined during
the overall process (see the bottom-right part of
the SoundTarget editor window).

TARGET

ANALYSIS PARAMS

(o0 |

f0 min (Hz)
nb partials

mode

SOUNDTARGET

SEARCH DOMAIN

@ Initial Chord

O Manual

q

Constrain search doma... | 5

@ Auto
(let Orchidee compute

the search domain)

Analyse Target Data

Ficure 7: Compact visualization of the SoundTarget editor.

Before going further, it should be noted that
the tools introduced in this section only allow
for the synthesis of a static timbre target, that is,
without any temporal evolution. This restriction
is not imposed by the system architecture
depicted in Figure 3, but by the nature of
ORcHIDEE's timbre features itself. Though efforts
are currently being made to exploit temporal
aspects of timbre in automatic orchestration,
OrcHiDEE still describes sounds with features
averaged over time. Hence, it is only suitable
for orchestrating single time slices.

Orchestra and Constraints

Another essential element of the orchestration
problem is the composition of the orchestra. The
preliminary specification of this orchestra allows
the research domain of the process to fit with a
real musical situation, but also to considerably
reduce the complexity of the downstream search
algorithms. Basically, an orchestra is a list of
“characters” (or players), where each character
can play one or several instruments.

Figure 8 shows an example of an Orchestra,
another object created in OpenMusic and
provided with its orchestra editor. In this
example the orchestra is composed of four
contrabass players, one clarinet/flute player, one
cello player, and three violin players. The
instruments are chosen from a predefined list of
possible instruments. At the upper-right part of
the orchestra editor, the command “load from
DB” allows the user to query OrcHIDEE about the
contents of the sound-sample database to set this
list of instruments accordingly. The function box
labeled “submit-orchestra” formats the orchestra
information as a simple message and allows it to
communicate to the ORCHIDEE server.

10

In addition to the instruments of the orchestra,
extra requirements can be stated corresponding
to practical musical constraints or dedicated to
driving the search algorithms toward particular
sets of solutions. Example of such constraints
can be for instance “at least two violins must play
the same note”, “there must be fewer than two
G-sharps in the solution”, and so on. The patch
in Figure 9 is a complete orchestration process
implemented as an OpenMusic visual program,
integrating additional constraints into the search
procedure (top right).

Exploration of the Solution Space

The orchestration search procedures in Orchide
e tackle two distinct problems at the same
time: a multicriterion optimization problem on
perceptual feature distances, and a constraint
satisfaction problem on musical variables. Each
of these problems can have many solutions,
especially with a large number of perceptual
features. Hence, appropriate methods are needed
to help the user in the fast discovery of musically
relevant orchestration proposals. Here again,
user interaction is the core feature.

Multiple Space Exploration

As with the target specification procedure,
we believe that simultaneous access to the
heterogeneous spaces of orchestration has to
be encouraged for exploring the solution set.
To enhance an intuitive understanding of the
complex relations between symbol, feature,
and sound spaces, we put forward a set of
interconnected exploration modules as depicted
in Figure 10.

Each orchestration solution is characterized
by a set of musical variables (e.g.,, note,

OM - ORCHIDEE Client

200

ORCHESTRA object:
edit/build an orchestra

]

Submit ORCHESTRA
composition to

submit-orchestra orchidee server
[

=> ((("Cb") 4) (("BbCI" "FI") 1) (("Ve"} 1) (("Vn") 3))

my ORCHESTRA
Orchestra Editor i
£ ﬂ 7 i3
| Get Orchidee _

Add character instruments i
[Contrabass B (e B =
= | Additional instruments for this player...
['Bb Clarinet = I =
[Flute - -
+ | Additional instruments for this player...
[Violoncello MO =
+ | Additional instruments for this player...
['Violin B (2 & =
+ | Additional instruments for this player...

Ficure 8: Interface for the specification of an orchestra in OpenMusic. The orchestra object on the left can be edited using the
editor visible on the right of the figure. The box submit-orchestra translates it into a message to be sent to ORCHIDEE.

Score
Transformation

A\

Timbre
Trajectories

/

Symbolic Space

—

A 7’
N ,
N ’
Sound Space

Feature Space

Criteria Space

Y

Implicit
Listening
Preferences

Ficure 10: Navigating in orchestration proposals via interconnected exploration modules (symbol space, feature space, criteria
space). The boxes outside the large rectangle concern transformations of the corresponding spaces, as described in the text.

dynamics, playing styles) in the symbol space,
as well as a set of perceptual descriptors
in the feature space and a set of objective
functions values in the criteria space. The usual
representation for the optimal solutions of a
multicriterion problem is the criteria space. As
far as orchestration is concerned, it describes
perceptual distances to the target along different
timbral dimensions. It differs from the feature
space, as multidimensional features (e.g., the
spectral envelope) may be merged into a single
scalar value, i.e., a single objective function to
optimize.

11

Figure 11 displays an example of coupling
different views for navigation in the solution set.
This interface is an OrcHIDEE client in MATLAB
that allows the visualization of orchestration
proposals in different spaces. Symbol, feature,
and criteria spaces communicate with each other
to propagate user actions. When selecting a
solution or a group of solutions in a given
space, the corresponding solution or group is
highlighted in the other two. Hence, an intuitive
and empirical understanding of the relations
between the heterogeneous orchestration spaces
is possible. Any orchestration solution selected

X))
Options

Symbolic Features

Current Solution
Options Explore

m-oﬂl—ﬂif—lt.nu

mf.

Play |
alélé) Criteria Space alalé Audio Features
Options Options
»DEEs| k| RAOE ¢ 08 =0 o
0.16 e i Current group’s
0.24
Current group’s crietria 014 / spectral envelopes
0.22 0.12 : i
o {
0.2 £ 0.1 i | | Target spectral
vy mot envelope
. L. H
0.18 H i 1
01 0.06 -Hag 1
i) 0.04 1 F’.' ek)
0.0 : i j 'RTE
0.04 0.02} /= - H \\‘,‘ P k .,
0 0.02) - SEEELE e
Spread 0 Controld S00 1000 1500 2000 2500 3000
MPs Freqs

Ficure 11: An example of multiple viewpoint navigation interface in MATLAB.

from any space can be simulated (i.e., projected
in the sound space) thanks to the instrumental-
knowledge sound samples.

In the upper-left corner in Figure 11, the
orchestration-efficient solutions are plotted on
a hierarchical cluster tree in the symbol space.
Symbolic clustering is a convenient way to
represent regions of the solution set as more or
less abstract schemas. Solutions are gathered in a
same cluster when they share common symbolic
characteristics that we call a “schema”. The
higher the node in the tree, the more abstract
the schema. The number of edges between
two solutions in the tree reflects the symbolic
dissimilarity between them.

All solutions enclosed within the “Selected
Subtree” rectangle in Figure 11 share the
following schema explicated in the right column
of the symbol space module: B-flat clarinet (BbCl)
plays a quartertone above A-sharp5, bassoon
(Bn) plays F-sharp4, etc. Pitches played by
violin 1 (Vn) and cello (Vc) differ within the
group, and violin 2 is always silent. = The
selected solution cluster is “propagated” into the
criteria space (lower-left module) that reflects the
relative distances of each solution to the target
timbre (located at the origin), as well as into

12

the feature space in the lower-right window.
(Spectral envelopes are observed here; note that
each orchestration in the group has roughly the
same envelope.) In the upper-right corner, a
representative solution (i.e., the cluster center) of
the selected group is shown as a set of sound-file
names and can be simulated in the sound space
upon user request by simply playing a mixdown
of the corresponding sound files.

Transformations in the Symbol Space

As shown in Figure 10, each of the three
enclosed modules in the navigation interface
can also be the starting point of a specific
transformation process. From the symbol space,
orchestration proposals can be edited either
manually or automatically by updating the
constraint structure. Figure 12 is an example
of a mixing-console-like editing interface in
Max/MSP that allows a fine-tuning of the
symbolic parameters as well as the balance
between each component in the orchestration.
Modifications in the symbol space can also
be performed by adding constraints. Figure 13
shows how an orchestration proposal is gradually
transformed into another through the addition

8066

Bass-Clarinet

o

-~

Current SDB : [System:/SoundDB/Sol-v2-Repitch/

[Presets -]
[write J[Read_]

[Bb-Clarinet
C-Trumpet
C-Trumpet-cup
C-Trumpet-harmon
C-Trumpet-straight

Key Control]XI Auto stop |
]

dio On/0ff [Record on /ot

Open Record File

rombone

iola

C-Trumpet-wawa

A Trombone-harmon
rombone-straight
rombone-wawa

<|=[= HEIEE
HEHE
Z 0
H < <
2 a
g H
5

Yiola-sordina
Yiola-sordina-piombo

Yiolin

Yiolin-sordina

Yioloncello

Violin-sordina-piombo

Violoncello-sordina

Yioloncello-sordina-piombo

Ficure 12: A Max/MSP interface for the manual edition of symbolic parameters.

famille at-least 1 DoubleReeds
famille at-least 1 Brass
famille at-least 2 WoodWinds
dynamique at-most 0 ff

Ficure 13: Changing an orchestration played by strings into an orchestration played by woodwinds and brass by changing

the constraint structure on the variables of the symbol space.

of extra constraints. The initial solution is an
imitation of a sung vowel played by string
instruments. Using the constraint-satisfaction
local search engine embedded in OrcHIDEE (and
recording the trace of the algorithm resolution),
we gradually turned the initial chord into another

13

orchestration played by brass and woodwinds
only. The whole passage is displayed on a score
in Figure 14. Note that, owing to the local search
approach, there is only one single instrument
change for each bar, therefore ensuring the
continuity in the overall timbral evolution.

rp rp

o 8
o 8

)
g

ey
ey

=}

ord-hi-reg ord-hi-reg ord-hi-reg ord-hi-reg ord-hi-reg

T Bh B B
e I
e
e

SHE G B S B B

B | o op)23 23 w
Bn
Hn ¢)
Hn
Tp %
)
o o fo =3 o |y
ord-closed ord—closed ord—closed ord-closed D) — = = —
Wah Wah Wah Wah o fo fo fo fo
P mf mf mf mf ord-cosod
Ton |i5—€ P)2 23 123 »
B Thn a3
} o
Vo & ¢ ’
5 5 > 5 Vo
nonvib | 4c nonvib | 4c nonvib | 4c. nonvib | 4¢ nonvib | 4¢ “; a;
w o p 4 W
b4 b1 ac
= 1 ¢ 1 y w
a
v art-harm | 4c art-harm | 4c art-harm | 4c. art-harm | 4c. Va
mf mf mj mj J
)
£)
Ve I? € Ve
= = i = = ¥ =
5 fo 5 =
y;;}vm l4c r;;;wb l4c "":'}V'b' 4o norbl 4 norviol 4o nonvib | 4c nonvib | dc: nonvib | 4c nonvib | 4c
) P mf mf mf
o |ib=e cb L
o O

nonvib | 1c:
4

Ficure 14: Score of the timbre evolution generated in the symbol space by changing the constraint structure (Figure 13).
Starting from a chord played by strings (first bar), the sound slightly moves towards the wind choir. Only one instrument

changes at each bar.

Trajectories in the Feature Space

Timbre trajectories can also be computed from the
feature space. The goal here is to find a sequence
of orchestrations of which the perceptual features
evolve along a predetermined path. This
principle was used by composer Jonathan Harvey
with whom we collaborated for the writing of
his recent piece Speakings, for orchestra and
electronics [18]. From a pre-recorded sound, we
generated various orchestration solutions with
different constraint sets and thus obtained a wide
range of values along the different dimensions of
the feature space. We then used a local search
algorithm to find a “path” in the overall solution
set in such a way that all the overall loudness,
brightness, and the spectral similarity with the
most prominent target peaks increase over the
evolution. The whole orchestration process is
fully detailed in [6].

Learning Listening Preferences from
User Choices

Last, transformation processes can also be
initiated from the criteria space. Assume that
a first drawing of the orchestration algorithm
returns the Pareto approximation set plotted
on Figure 15. Each configuration is Pareto-
optimal: There is no con- figuration in the
search space explored so far that dominates
any solution of the approximation set on both
criteria. Solution 1 in Figure 15 improves upon

14

solution 3 on the first criterion but is worse on
the second. Now imagine that we ask a user
to pick the configuration within this set that is
considered closest to the target. It is obvious that
choosing solutions in the upper-left side means
that objective (a) is prominent, whereas solutions
in the lower-right side indicate that objective (b)
is more important.

The multicriterion search procedure in Or-
cHIDEE embeds a preference-modeling mecha-
nism that allows redrawing the algorithm toward
a specific direction of the search space. If,
for instance, solutions 1, 2, or 3 are picked
by the composer as the best, the algorithm
will concentrate on region A (or, respectively,
B or C) in the next run. Roughly speaking,
this is achieved by favoring configurations that
dominate the intermediary best solution in
the selection step. This choosing/redrawing
process can be repeated as many times as
necessary to converge on perceptually relevant
configurations. Directions of optimization can
obviously change over time, depending on the
output of each drawing. This is the interactive
loop depicted in Figure 3.

Conclusion

A formalized approach to the complexity
of musical orchestration has been presented.
Although the problem of orchestration could
be stated as the art of combining instrumental

objective (b)

S 1 S

objective (a) dominance region

objective (b) dominance region

objective (a)

Ficure 15: Guessing listening preferences from user’s choices.

timbres together, a complexity analysis raises the
global issue of linking the symbol space of the
formal compositional process to the sound space.
We have shown in this article that user interaction
can be of great help in making symbol and sound
worlds communicate.

To this end, we presented an orchestration
system based on a client/server architecture that
allows this interaction to take place at each
different step of the orchestration process. On
the server side, the orchestration kernel em-
beds advanced sound analysis and constrained
multicriterion techniques that jointly optimize
objectives in symbol and audio spaces. Original
features such as the modeling of user preferences
or the possibility to investigate different regions
of the search space are combined with user
interfaces on the client side, providing composers
with an orchestration tool that overcomes most
of the limitations of the few currently existing
systems.

Successful practical results and enthusiastic
feedback from composers provide evidence that
a significant step has been made in music
research. In particular, our collaboration with
(among others) composer Jonathan Harvey on
his latest piece Speakings (performed 19 August
2008 by the BBC Scottish Orchestra, under
the direction of Ilan Volkov, in Royal Albert
Hall, London) was extremely convincing and
encouraging. The orchestral texture at the
beginning of the third part of the piece was
completely conceived with OrcHIDEE [18]. The
orchestrated passage suggested by the system
was “pasted” into the final score with only minor
revisions, though a few changes were necessary
to cope with voice leading or practical playing
issues. It should be noted that the composer

15

also took into consideration most of the dynamics
indications (and their frequent variations) of the
OrcHIDEE-generated score. Mr. Harvey even left
a note to the director at the beginning of the
passage: “Great care to respect the dynamics.”
ORrcHIDEE's innovative techniques were therefore
very helpful in finding the finest balance in the
dynamics of the instruments.

The OrcHIDEE client developed in OpenMusic
is currently being enhanced with new features
for the manipulation and exploration of solution
spaces. Eventually, the library OM-ORCHIDEE
will allow one to easily use and experiment
with orchestration processes, fully integrated in
more general compositional frameworks. In the
future, the client/server OrcHIDEE architecture
will allow for the modular development of other
specific client interfaces for tackling more and
more complex compositional needs.

Acknowledgements

The authors would like to thank Yan Maresz,
Damien Tardieu and Hugues Vinet for their daily
support in the development of Orchidée. We
also would like to mention Georges Bloch, who
kindly proofread this article. This work has been
partly supported by the French National Research
Agency (ANR) in the framework of the Sample
Orchestrator project.

References

[1] Adler, S. 1989. The Study of Orchestration.
New York: Norton.

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

Agon, C., Bresson, J., Stroppa, M. 2011.
“OMChroma: Compositional Control of
Sound Synthesis.” Computer Music Journal,
35(2):67-83.

Assayag, G., Rueda, C., Laurson, M., Agon,
C., Delerue, O. 1999. “Computer-Assisted
Composition at IRCAM: From PatchWork
to OpenMusic.” Computer Music Journal,
23(3):59-72.

Berlioz, H. 1843. Traité d’'instrumentation et
d’orchestration. Paris: Henri Lemoine.

Bresson, J., Agon, C. 2007. “Musical
Representation of Sound in Computer-
Aided Composition: A Visual Programming
Framework.” Journal of New Music Research,
36(4):251-266.

Carpentier, G. 2008. Approche computation-
nelle de lorchestration musicale, optimisation
multicrite’re sous contraintes de combinaisons
instrumentales dans de grandes banques de sons.
PhD Thesis, Université Pierre et Marie Curie,
Paris.

Carpentier, G., Assayag, G., Saint-James,
E. 2010. “Solving the Musical Orchestration
Problem using Multicriterion Constrained
Optimization with a Genetic Local Search
Approach.” Journal of Heuristics, 16(5):681-
714.

Ehrgott, M. 2005. Multicriteria Optimization,
2nd ed. Vienna: Springer.

Erickson, R., 1975. Sound Structure in Music.
Berkeley: University of California Press.

Goldberg, D. E. 1989. Genetic Algorithms in
Search, Optimization and Machine Learning.
Upper Saddle River, New Jersey: Addison-
Wesley.

Hoos, H., and T. Stiitzle. 2005. Stochastic Local
Search: Foundations and Applications. San
Francisco, California: Morgan Kaufmann.

Hummel, T. 2005. “Simulation of Human
Voice Timbre by Orchestration of Acoustic
Music Instruments.” Proceedings of the 2005
International Computer Music Conference.

Jensen, K. 1999. Timbre Models of Musical
Sounds. PhD Thesis, University of Copen-
hagen.

Koechlin, C. 1943. Traité de I’orchestration.
Paris: Max Eschig.

16

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Mathews, M. 1969. The Technology of
Computer Music. Cambridge, Massachusetts:
MIT Press.

McAdams, S., Winsberg, S.,Donnadieu, S.,
De Soete, G., Krimphoff, J. 1995. “Perceptual
Scaling of Synthesized Musical Timbres:
Common Dimensions, Specificities, and La-
tent Subject Classes.” Psychological Research,
58:177-192.

McCartney, J. 1996. “Rethinking the Com-
puter Music Language: SuperCollider.”
Computer Music Journal, 26(4):61-68.

Nouno, G., Cont, A., Carpentier, G., Harvey,
J. 2009. “Making an Orchestra Speak.”
Proceedings of the Sound and Music Computing
Conference — SMC’09.

Peeters, G. 2004. A Large Set of Audio
Features for Sound Description (Similarity and
Classification). Technical Report, IRCAM.

Piston, W. 1955. Orchestration. New York:
Norton.

Psenicka, D. 2003. “SPORCH: An Algorithm
for Orchestration Based on Spectral Anal-
yses of Recorded Sounds.” Proceedings of the
2003 International Computer Music Conference.

Puckette, M. 1991. “Combining Event and
Signal Processing in the MAX Graphical Pro-
gramming Environment.” Computer Music
Journal, 15(3):68-77.

Rimski-Korsakov, N. A. 1912. Principles
of Orchestration. New York: Maximilian
Steinberg.

Rose, E, Hetrick, J. 2009. “Enhancing Or-
chestration Technique via Spectrally Based
Linear Algebra Methods.” Computer Music
Journal, 33(1):32—41.

Tardieu, D. 2008. Modeles d’instruments pour
I'aide a 'orchestration. PhD Thesis, Université
Pierre et Marie Curie, Paris.

Tardieu, D., Rodet, X. 2007. “An Instrument
Timbre Model For Computer Aided Orches-
tration.” Proceedings of the 2007 Workshop on
Applications of Signal Processing to Audio and
Acoustics. New York: Institute of Electrical
and Electronics Engineers, pp. 347-350.

Wright, M. 2005. “Open Sound Control: An
Enabling Technology for Musical Network-
ing.” Organised Sound, 10(3):193-200.

