N
N

N

HAL

open science

OMChroma: Compositional Control of Sound Synthesis

Carlos Agon, Jean Bresson, Marco Stroppa

» To cite this version:

Carlos Agon, Jean Bresson, Marco Stroppa. OMChroma: Compositional Control of Sound Synthesis.
Computer Music Journal, 2011, 35 (2), pp.67-83. 10.1162/COMJ_a_ 00057 . hal-00683465

HAL Id: hal-00683465
https://hal.science/hal-00683465
Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00683465
https://hal.archives-ouvertes.fr

OMChroma: Compositional Control of Sound Synthesis

Carlos Agon!, Jean Bresson', and Marco Stroppa?
ISTMS Lab: IRCAM / CNRS / UPMC, Paris, France.
2Universi’fy of Music and the Performing Arts, Stuttgart, Germany

This is the authors’ pre-print version of the article published in Computer Music Journal, 35:2 (2011).
The published article is available at https://www.mitpressjournals.org/doi/10.1162/COM]_a_00057

OMChroma is a framework for sound synthe-
sis integrated into the computer-aided compo-
sition environment OpenMusic [1, 3]. It is a
generalization of Chroma, a system developed by
Marco Stroppa in the early 1980s. Chroma was
initiated at the Centro di Sonologia Computazionale
of the University of Padua. At that time, it
mainly consisted of PLay First- (PLF-) routines
written in Fortran for the Music V synthesis lan-
guage [13]. The project was then generalized
and written in LeLisp and Csound at the Mas-
sachusetts Institute of Technology between 1984
and 1986. Finally, starting in 1989, it was ported
to Common Lisp and later integrated into OM at
the Institut de Recherche et de Coordination Acous-
tigue/Musique (IRCAM) with the help of Ramén
Gonzalez-Arroyo, Jan Vandenheede, and espe-
cially Serge Lemouton. Since then it has been
extensively used for all of Marco Stroppa’s pieces
with electronics.

The main purpose of OMChroma is to devise
appropriately expressive concepts to deal with
the large amounts of data required by sound syn-
thesis. For this reason, the layers of control and
digital signal processing (DSP) are separated and
connected by means of abstract structures inter-
nally interpreted for a given software synthesizer.
Sound synthesis processes are considered from
the standpoint of banks of functionally identical
DSP units (e.g., oscillators, fonction d’onde forman-
tigue [FOF] synthesis, distortion modules, sam-
plers, filters, envelope generators). OMChroma
handles the control of these banks through a gen-
eral structure similar to a bi-dimensional matrix,
where rows and columns set up vectors of values
for identified parameters of the DSP units. As

OM provides a powerful framework for compo-
sition, the implementation of Chroma in this envi-
ronment allows efficient extension of computer-
aided compositional tasks to the layer of micro-
structural composition needed in software syn-
thesis.

After a general introduction to the concepts
and motivations of OMChroma, we will describe
how its control structures can be used and dy-
namically defined in OM, and introduce higher-
level structures for handling temporal and spec-
tral data.

Introduction to the OMChroma
Concepts

Although OMChroma is not bound to any spe-
cific synthesizer, current work mainly focuses on
the control of Csound (Boulanger 2000) for histor-
ical reasons, but also for the computational and
expres- sive power, widespread usage around the
world, and the amount of knowledge and exam-
ples available with this language.

Control Strategies for Sound Synthesis

Let us introduce the OMChroma concepts with a
simple example. Suppose that a composer’s idea
is to generate a harmonic sound containing five
partials with different amplitudes. To be carried
out, this idea has to be implemented into a “syn-
thesis process,” defined as a set of DSP units and
their control data. Three possible implementa-
tions are discussed herein — see also [29].

In Csound, as in earlier “Music N” languages
[18], a synthesis process is divided into two parts:
an orchestra, including one or several numbered
instruments, and a score, containing a sequence
of instructions (or statements) activating the in-
struments at different times and with different
parameters. The communication between the in-
struments and the score is made via p-fields: the
symbol pn in an instrument represents the param-
eter instantiated by the nth value of a correspond-
ing score statement.

Implementation Using a Bank
in the Audio Table

Our first implementation uses two table look-up
oscillators (poscil), one for the amplitude enve-
lope and one for the audio. The audio table is
made of five harmonics with different relative
amplitudes, declared via the Csound GEN10 ta-
ble generator. The instrument and score are as
follows:

INSTRUMENT:

instr 1
; amplitude envelope
env poscil p4, 1/p3, p6
; sine tone (freq = p5)
out poscil env, p5, 1

endin

SCORE:
;33 TABLES DECLARATION
; 1: wave table
f1 0 32769 10 1 0.3 0.6 0.2 0.45
; 2: amp envelope
f2 0 4097 7 © 500 1 1000 0.5 1000 0.5 1597 0

;35 SCORE STATEMENT:

;33 ACTIVATING THE INSTRUMENT
; pl=inst p2=onset p3=dur

; p4=gain p5=freq

; pb=amp env. (table num)

il @ 10 0.5 110.0 2

This is an efficient implementation (two os-
cillators generate everything), but also quite a
limited one. Sounds with a different number of
harmonics may be generated by changing the au-
dio oscillator’s wave table (f1), but all of these
harmonics will have the same duration and am-
plitude envelope, determined in the score state-
ment.

Implementation Using a Bank in the Orchestra

Instead of hard-wiring the components inside of
a table, we can implement this process using five
sine-tone generators. The instrument then turns
into a bank of oscillators whose individual input
parameters have to be determined in the score:

INSTRUMENT:
instr 1

envl poscil p4, 1/p3, pl4

partl poscil envl, p5, 1

[...]

env5 poscil pl2, 1/p3, pl4

part5 poscil env/5, pl3, 1

out partl + part2 + part3 + part4 + part5
endin

SCORE:
;33 TABLES DECLARATION
; 1: wave table
f1 0 32769 10 1
; 2: amp envelope
f2 0 46097 7 © 500 1 10600 0.5 1000 0.5 1597 O

;33 SCORE STATEMENTS:
; pl=inst p2=onset p3=duration
; p4=gainl pS5=freql p6=gain2 p7=freq2
. pl2=gain5 pl3=freq5
; pl4=amp envelope (table num)
i1 0 10 1 110 0.3 220 0.6 330 0.2 440 0.45 550 2

This implementation, though less efficient, al-
lows us to generate non-harmonic sounds by
freely modifying the input frequencies. Its main
drawback is that the maximum number of par-
tials is fixed in the instrument. Moreover, if more
partials were needed, the instrument and score
would also become very cumbersome to read and
edit. Although separate amplitude envelopes or
additional control parameters might be added, all
of them would still have the same onset and du-
ration because they are activated by a common
score statement.

Implementation Using a Bank in the Score

Finally, if the instrument contains a single DSP
unit, the bank can be entirely created in the score:
each sine tone corresponds to one score state-
ment.

INSTRUMENT:
instr 1
env poscil p4, 1/p3, p6
out poscil env, p5, 1
endin

SCORE:
;53 TABLES DECLARATION
; 1: wave table
f1 0 32769 10 1
; 2: amp envelope
f2 0 4097 7 © 500 1 1000 0.5 1000 0.5 1597 0

;33 SCORE STATEMENTS:
; pl=inst p2=onset p3=dur p4=gain p5=freq
; pb=amp envelope (table num)

il 0 10 1 1160.0 2

il 0.2 10 0.3 220.0 2

il 0.1 10 0.6 330.0 2

il 1.05 10 0.2 440.0 2

il 1.0 10 0.45 550.0 2

Although this implementation is the least ef-
ficient, because multiple instances of the instru-
ment are required, it is the most adaptable: the
dynamic allocation of the different instances of
the instrument makes it possible to set an inde-
pendent frequency, amplitude, envelope, dura-
tion, and onset time for each individual partial
and for any number of partials.

To summarize, even if the three implementa-
tions produce the exact same signal, they not only
present various levels of efficiency and flexibility,
but also differ in opportunities for experimenta-
tion and expansion. The same signal could also
be produced by carefully setting the parameters
of other synthesis techniques. Each implemen-
tation, however, is unique in regard to how the
original idea can be developed, that is, its sound
potential.

The Sound Potential

Despite their possible sonic equivalence, the im-
plementations described here are very different
if examined from a compositional standpoint. If
they were to be developed, the three processes
could not be modified in the same way. As is
clear when comparing the scores, they are not
driven by the same conception nor controlled by
the same data structures. We say that they do not
belong to the same “epistemological paradigm.”
The idea of “sound potential” [8, 29] is based
on such conceptual distinctions regarding sounds
created in compositional contexts.

A sound potential represents the potentially
infinite collection of all the sounds generated by a
given set of processes, and recognized as belong-
ing to the same compositional idea. This compo-
sitional idea may be “static,” producing different
sounds that are considered as a sort of “varia-
tion.” A bell sound with different spectral centers
of gravity, durations, or “inharmonic” properties
is an example. On the other hand, the composi-
tional idea may be “evolutive,” that is, embedded
into a development that changes the nature of the
sound over time. A “sound potential” is therefore
quite different from a “sound object” in the tradi-
tion of Pierre Schaeffer [23]. The latter is, to put it
simply, a phenomenological description of an ex-
isting recorded or processed sound, whereas the
former is a specific morphological concept defin-
ing a set of cognitively consistent sounds.

AsMcAdams shows [15], recognizing a sound
implies a preliminary perceptual process, but is,
fundamentally, a higher conceptual task. From
this perspective, a sound potential shares some
of the structural features of Stroppa’s “musi-

cal information organisms”: time-evolving mor-
phologies partially inspired by the work of E. E.
Smith [16] and E. Rosch [22, 21] — see also [28].
The task of sound recognition, of course, depends
on the musical context. For example, recogni-
tion depends on how and in which order a set
of sounds is used, as well as on the familiarity
of the listener with the material. This is, there-
fore, at the same time a compositional, aesthetic,
and technical issue: Each sound potential em-
beds a certain knowledge about sonic processes;
that is, a certain way a composer thought about
and implemented the sonic processes. Techni-
cally, this knowledge is expressed by some rules
and constraints about how single sounds are to
be produced and developed in order to satisfy the
constraints of recognition, even if the final crite-
ria of discrimination are more compositional than
merely perceptual. It is essential that an environ-
ment dedicated to the control of sound synthesis
provides powerful and expressive tools to imple-
ment this kind of behavior.

Generalized Control Representation in
OMChroma: The Matrix

The control of sound synthesis processes in OM-
Chroma is an extension of the third case discussed
earlier, where the control structure, the score, gen-
erates banks of parameters for a DSP unit. The
Csound score, in this case, contains as many state-
ments as there are elements in the bank, and looks
like a matrix, where columns correspond to the
different parameters (p-fields) and rows to differ-
ent instances of the instrument (see Table 1).

The control structures in OMChroma are also
matrices. They correspond to particular synthesis
units and contain (1) a fixed number of rows (as
many as there are parameters, or p-fields, in the
Csound instruments), and (2) a variable number
of columns corresponding to the score statements
(also called components in the matrix). In other
words, OMChroma “turns” the Csound rows into
columns and vice-versa (see Table 2). Each row,
therefore, indicates the variation of a parameter
across the whole bank: When the matrix is read
(or interpreted) vertically, column by column, the
score lines can be reconstructed.

Note that in Table 1, some data vary in ev-
ery row, while other do not. In the OMChroma
matrices (see Table 2) the values can be specified
without necessarily repeating those that do not
change (e.g., rows Duration and Amp. Env.) As
visible in Table 2, the row’s contents can also be
set using functional descriptions (see rows Onset
and Frequency).

Instr. Num Onset Duration | Amplitude | Frequency | Amp. Env.
(N ®2) ®3) ®9 ®5 | Num. (pé)
i1l 0 10.0 1.0 110.0 2
il 0.2 10.0 0.3 220.0 2
il 0.1 10.0 0.6 330.0 2
i1l 1.05 10.0 0.2 440.0 2
i1l 1.0 10.0 0.45 550.0 2

TasLE 1: Matrix Representation of a Csound Score.

Component Num.

1|2|3|4l5(n)

Onset (p2) [random onset between 0.0 and 1.2]
Duration (p3) 10.0
Amplitude (p4) 1.0 | 0.3 | 0.6 | 0.2 ‘ 0.45

Frequency (p5)

[nth harmonic of 110.0]

Amp. Env. Num. (pé)

2

TasLE 2: Reversed Matrix in OMChroma with Higher-Level Specification Rules.

It is useful to emphasize here that OM-
Chroma’s typical use of Csound scores is different
from the meaning of a score in the usual musi-
cal sense, and, perhaps, also different from Max
Mathews'’s original vision of Music N scores. In
OMChroma, the scope of a Csound score (i.e.,
the different “lines” corresponding to the matrix
lines) is very low level. The high-level musical
concept of a score, whose scope is a composition,
is handled at the level of OpenMusic. There is
then a high-level score (a composition specified
as an OpenMusic program) that includes many
low-level, usually very long, Csound scores. It
is also often the case that OMChroma generates
several relatively short sounds, which are then ei-
ther mixed in an appropriate environment or di-
rectly performed in a concert. As a consequence,
a Csound score generated by OMChroma typi-
cally specifies the components of a single sound
event, rather than the sound events of a whole
composition.

Virtual Synthesizer

Although the current examples and actual imple-
mentation mainly focus on Csound, OMChroma
aims at representing and controlling the param-
eters of sonic processes independent of a given
syn- thesizer, synthesis engine, or computer plat-
form. This is achieved by creating abstraction
barriers between the control layer and the data
needed by each synthesizer. The matrix corre-

sponds to this abstraction level: The control layer
lies in the domain of compositional techniques (it
is the “composer” of the system), and the transla-
tion of the internal data for a specific synthesizer
can be seen as the “interpreter.”

A special effort was made to provide a consis-
tent taxonomy of control parameters. By adopt-
ing a common naming convention across differ-
ent synthesis techniques, users could gain expe-
rience in handling these parameters and develop
an “inner ear” for the control of sound synthesis.
This semantic consistency makes it possible to
easily interpret and trans- late the data of a given
matrix, so as to drive another instrument (pro-
vided it has semantically equivalent inputs) with-
out changing the control structures and strategies.
This led the authors to introduce the idea of a
“virtual synthesizer” in the conceptual design of
OMChroma.

Visual Programming Framework

OM is a computer-aided composition environ-
ment where processes can be expressed in the
form of visual programs (patches) made of func-
tional boxes and connections. It is a complete
functional and object-oriented visual program-
ming language based on CLOS [9]. Musical data
are represented by objects generated via factory
boxes, boxes that create and initialize instances
of classes (e.g., notes, sequences, rhythms), and

FIXED SLOTS

numcols user-fun

SELF

CLASS-DEPENDENT SLOTS

actinn-timel &;els ?'l'lrs amps freqs aenv

Ficure 1: Example of an OMChroma class factory: ADD-1.

(300 350 480 590)
[7]

(00.30.40.4)

7
(0.4 0.2 0.2 0.01)

=

ADD-1: additive
synthesis

ADD-2/ADD-3:
alternative patches
extending ADD-1

FOG-1:

granular

synthesis
""" FM-1/FM-1:

? frequency
o modulation

NN R

RAN-1: SNARE-1:

amplitude snare drum

modulation simulation

b | Bt
CELEEEL CECECEC]
i)
L e ee
SMPL-n:
BUZZ-n: samplers
spectrum
oscillators

WSHP-1:
waveshaping

FOF-n:
FOF synthesis

PLUCK:
Karplus-Strong

3 SUB-1:
m subtractive pluck synthesis

e ccco Synthesis

Ficure 2: The main basic OMChroma classes.

whose inputs and outputs (represented by small
round inlets and outlets) are connected to the in-
ternal slots (or attributes) of these classes. Facto-
ries are generally associated with an editor, which
permits the inspection and modification of the
last-created instance. The contents of this editor
can be displayed in the box itself and made visible
in the patch.

OMChroma Classes

An abstract class named class-array was added
to the OM kernel in order to represent matrix
structures [2]. This class is mainly intended to be
sub-classed: In OMChroma, the class-array sub-
classes are associated with specific synthesis in-
struments, and their additional slots correspond
to the different parameters of these instruments.
The rows of the matrices are, therefore, deter-
mined by the different slots of the class (the syn-
thesis parameters), and the number of columns
is given by a global slot of the class-array. A ref-

erence to the original DSP unit (the Csound in-
strument code) is internalized in the class (as a
static or “class allocation” slot), and will be used
to synthesize sounds from instances of this class.

Figure 1 shows a factory box for the class
ADD-1, a subclass of class-array. ADD-1 is the
simplest OMChroma class; it corresponds to the
process (or sound potential) discussed in the pre-
vious section.

All of the OMChroma classes (including
ADD-1) have four fixed global input and output
slots (see Figure 1). From the left, the first one
(SELF) represents the instance produced by the
factory box, as is the case with all the OM fac-
tory boxes. The second one (numcols) represents
the number of columns (or components) in the
matrix. The third and fourth ones (respectively
labeled action-time and user-fun) will be discussed
later. The other inputs and outputs visible in the
box correspond to the different rows of the ma-
trix (the parameters of the synthesis instrument).
They are class-dependent slots, although some

control data for the f/
different matrix lines
e & & @ [
(0.81.02.02.5) *
number of m
ypatch
columns - L‘m ™
7] (- e_© § © ¢ ©

VAVAVAVA

rows

v o W R =

& & & & & & & ©

96000

synt h esize

%
7] 7]

7]

]]]

FiGure 3: Sound synthesis in OMChroma.

will be found in every class, such as onsets (entry
delays or e-dels) or durations (durs).

Following this model, alarge library of classes
is available in OMChroma. As shown in Fig-
ure 2, these classes correspond to various syn-
thesis techniques (more complex sine generators,
Karplus-Strong synthesis, frequency modulation,
snare simulators, FOFs, samplers, granular syn-
thesis, etc.).

Dynamic Class Definition

In addition to the default synthesis classes, new
classes can be dynamically created in OM from
any working Csound orchestra. The instruments
in this orchestra are detected and parsed, and
their different parameters (p-fields) are matched
to the slots of a new class.

Visual, object-oriented programming features
in OM allow users to complete or refine the class
definition: Class slots can be renamed, set to
particular types (such as a number or a func-
tion), and assigned default values. A predefined
OM class called cs-table is used to define and
declare Csound tables using break-point func-
tions. Inheritance also enables specifying partic-
ular (and possibly multiple) super-classes for the
new class [2]. The original Csound code attached
to the class can also be edited afterward, provided
that the number of p-fields remains equal to the
number of slots.

Sound Synthesis

The synthesize function implements the concept
of virtual synthesizer by converting matrix in-
stances into sounds. In Figure 3 the contents of
the ADD-1 factory box is visible and filled with
control data. The matrix is connected to the syn-
thesize box, which internally generates the corre-
sponding Csound instrument and score files. A
new sound file is then synthesized via Csound
and loaded in the sound box at the bottom of the
figure.

Synthesize accepts additional parameters, such
as a sampling rate, output file name, etc. (see Fig-
ure 3), and also global variables, tables, or macros
to be declared and used in the synthesis process.
It is capable of synthesizing various matrices si-
multaneously (supplied as a list), and possibly of
different types (several instruments will be gath-
ered in a Csound orchestra and controlled indi-
vidually in the score).

Symbolic Control and Matrix
Instantiation

The instantiation of an OMChroma class is per-
formed by providing values for the different rows
of the matrix. The number of required values
(the number of components or columns in the
matrix) is determined by the slot numcols. Sev-
eral types of data can be used to set these values

Amypatch

3| ¥
o 1
comp. num factor
1]
1
L]
sin
(r—l
L
-
-
(7]
I
L]
[+]

output

Ficure 4: Contents of the patch box “mypatch” from Figure 3. This visual program corresponds to the Lisp expression
(lambda (i x) (/ (sin (*ix)) (* i x))), where i is the component number and x is a factor (whose value in Figure 3 is 1.2).

(see Figure 3): lists of numbers (if shorter than the
number of components, the values are repeated, if
longer, the unused values are ignored); single val-
ues applied to all of the components; break-point
function (BPF) objects, sampled according to the
number of components as an envelope applied
to the whole matrix line (first and last values are
preserved and the intermediate values are inter-
polated and equally distributed across the com-
ponents); and functions (Lisp functions or OM
“lambda” boxes with one argument) evaluated
at each successive component. Figure 4 shows
the contents of the lambda box “mypatch” from
Figure 4 (a small lambda icon is visible at the top-
left corner of the box), which is connected with
and specifies the contents of row #4 in the ma-
trix. This box defines a lambda function with one
argument that corresponds to the single “free” in-
put of the box and is bound to the indices of the
successive components.

All input data and functions can be the prod-
uct of other functions or programs. Specific types
of data (for instance, cs-tables for the amplitude
envelopes) can be declared for the class’s slots
and are converted accordingly. Finally, all the
slots of a given class are not necessarily visible in
the factory box, reducing the number of (possi-
bly) unnecessary parameters to handle. The box
in Figure 3, for example, shows only four of the
five available parameters of ADD-1: Row #5 is
therefore automatically filled with a default value
for the slot aenv (amplitude envelope).

External Controls and Cross-Parametric
Relations

Another particularity of the class-array is the
possibility of interconnecting input parameters
among each other: A list can be connected to a
given matrix input slot, whose first element is a
function followed by its arguments, which may
be either values or strings designating other slots.

Additional rows, called controls, can also be
created to represent external control values that
do not belong to the actual parameters needed by
the instrument.

Figure 5 shows an example of both a control
row and a cross-parametric relation. One of the
slots (freq) is set with the list (mypatch, “control-
1,” “durs”). Here, control-1 is a control slot, and
durs is a regular slot of the class. The values for
freq will be computed by applying the function
defined in my-patch to the values of control-1 and
durs for each component. The contents of mypatch
is open and visible on the right of the figure.

Data Processing and Delayed Parsing:
The “user-fun”

Once a matrix is instantiated, its internal data
can still be accessed and modified thanks to a
graphical editor. This manual access, however, is
very unwieldy for large structures. More impor-
tantly, access can be performed in a program via a
set of dedicated functions (get-comp: get compo-
nent i; comp-field: read/write a component’s given
field; new-comp, remove-comp: create or remove a
component; etc.).

e ©

* ’ d urs”

M ™M™ Amypatch
j s T v
/\ [.| ‘,'_l- il_l o
e e init-data
©
[M l
d T & © & L‘L [deviation
numecols urs freqs %
trol-1 [
e & o .]) centro
©e
<= durs ?
©
<= freqs 0

\'\,
W\/W;\/,_,\/ <= control-1
\—\

L]
11t

output

FiGure 5: Cross-parametric relations: the frequency (freq) of each component is computed as a function of its duration (durs)

and of an additional deviation specified in control-1.

These functions are applied only after the ma-
trix has been instantiated. In particular, they can
step in during the synthesize process and behave
as delayed processing tools to modify the initial
matrix. To do so, they must be attached to the
matrix via the global slot user-fun (see Figure 1).
The “user-fun” is a global function called on ev-
ery component just before the matrix is converted
into actual synthesis parameters. It can access
the current matrix data and adjust, filter, com-
pute, modify, remove, or add components. The
added or modified components do not appear
in the visible matrix, but only in the final score.
This system permits rule-based control of sound
synthesis (see, for instance, the PLF-routines in
Music V, or the “user-routines” for the control of
CHANT [19]).

As always in OM, this function can be writ-
ten either textually (in Lisp) or graphically (in a
visual program). Here is an example of a simple
function that tests the frequency of each compo-
nent and removes it if it is above the Nyquist
frequency:

; discards component c if freq[c] > SR/2
(defmethod fqg-sr? ((c component))
(let ((sr2 (/ *curr-sample-rate* 2)))
(if (> (comp-field c ’’freq’’) sr2)
(remove-comp c)

[9D))

Higher-Level Control Processes

In this section we present various ways to embed
the aforementioned structures in more advanced
control procedures and higher-level time struc-
tures.

Clusters and “Sub-Components”

Psychoacoustic research and practical experience
have shown the importance of slight deviations in
the synthesis parameters, such as jitter, beatings,
and vibrato, to obtain sounds that are percep-
tually more natural, fused, and musically better
— see Risset’s ex. 430 [17] (three successive ap-
proximations of a bell-sound), [14], or [31]. Of
course, these deviations could be included in the
Csound orchestra file, but their scope and flex-
ibility would remain limited. The strategy em-
phasized in OMChroma is, again, to enrich and
extend the scores.

For instance, it is possible to consider each
individual component of a matrix as a “micro-
cluster,” that is, as sets of “sub-components” cen-
tered around it and extending its musical seman-
tics.

Figure 6 shows a graphically defined function
connected as a “user-fun” that generates micro-
clusters: Each component is completed with a
more or less dense set of sub-components ran-
domly spread around its frequency. Two control
slots have been added to the matrix: npart deter-
mines the number of additional sub-components
and ston the mistuning (or stonatura in Italian).
Their values describe the cluster-related param-
eters (i.e., density and spread), which can vary
across the different components of the matrix.
Depending on these values, resulting sounds
will be enriched with additional spectral compo-
nents generating more or less regular beatings, or
larger-scale “chords” perceived as perturbations
of the initial frequency contents.

Aadd-subcomponents

& ¥ o 1

matrix comp-num
%

'i ':' Get component values
-
get-comp [rpat | [on | [rea |
I [3 [3

I |

L] 6 &

[e
H H L EE

2
Compute a list of mp-field comp-field comp-field

freq

(234.26 237.8 480.86
262.81 267.89 407.57)
amp

° 3
sub-components |—| H . . (0.08346 0.09 0.093
© ° © c 0.15 0.18 0.15)
. < * durs = controls
- add-subcomponens Pase T |
¥ B H e-dels =
Return a list with LISP ‘ (0.75 0.825 0.638
the main component <°0% oo O Afreq-dev 0.0 0.83 1.042) SEe T iR
and the sub-components ‘ 5
mm a2l
& ¥ o Z v i (9) 25 | PP [ston
L]]]] []]]
output
1 (] 3 2
| NPART component FREQ E‘ STON
N]] I ’
L ‘ e
; alemum e T T T T = = 0 0 0
clone —F ?;T
forloop © "x" "
. 4
) synthesize
ITERATE ' FREQUENCY i
NPART TIMES 2’ DEvATION —
L o & o o
_ e
e & &
-
L
comp-field © © ©

NEW COMPONENT ¢

collect

& "%

eachTime

FiGure 6: Generating clusters for each component using the user-fun and control slots.

The Csound score listed here demonstrates
the evolution of the density and spread of the sub-
components for the successive clusters (a similar
process is applied to the entry delays, durations,
and amplitudes).

; component 1: ® sub-components
il 0.75 2.25 0.09346 234.26 500
; component 2: 3 sub-components
il 0.825 2.174 0.09 237.8 500
il 0.901 2.098 0.09 244.52 500
il 0.977 2.022 0.09 241.09 500
il 0.872 2.427 0.88 252.83 500
; component 3: 2 sub-components
il 0.638 2.361 0.093 480.86 500
il 0.704 2.295 0.093 591.3 500
il 0.694 2.605 0.83 767.78 500
; component 4: O sub-components
il 0.0 1.0 0.19 262.81 500

; component 5: 1 sub-component
il .83 2.8 0.19 267.89 500

il 0.8 2.8 0.15 417.19 500

; component 6: 12 sub-components
il 1.042 2.8 0.15 407.57 500

il 1.045 2.8 0.16 450.27 500

il 1.048 2.8 0.10 455.13 500

il 1.042 2.6 0.16 410.30 500

The non-deterministic aspect in this delayed
processing also implements a sort of interpre-
tation scheme: Each time the matrix is synthe-
sized, the score is slightly different, and therefore
never produces an identical sound, though it cor-
responds to the same “sound idea.”

Matrices as Events

The notion of event is crucial in the compositional
approach to sound synthesis. What “event”
means for a composer, or how large, efficient,
and expressive it should be, is a constantly dis-
cussed issue, and therefore requires high levels
of flexibility from musical environments (see for
instance [10] or [6] for related discussions). An
“event” can generally be defined as a composer’s
“conceptual primitive,” that is, a structure imple-
menting a compositional thought that does not
require further decomposition. This is still, how-
ever, a highly variable notion dependent on the
composer’s aesthetics and formal strategies.

frequencies, entry-delays, amplitudes

[(440 480 783.2 800 520) | [(1.0 0.8 0.6 0.4 0.4) |

ACTION-TIME

}

(0 0.10.12 0.18 0.2)

number of

columns => E

[]
|
7]

ADD-| I ZaN

[[
LISP

synthesize
[

list
©

)
12t

S

FiGURE 7: Synthesizing a list of timed matrices.

Being the interface between the symbolic
world and the “real” synthesizer, the OMChroma
matrix embeds this notion of primitive event.
Even if any attempts to categorize a “composi-
tional primitive” are bound to be very schematic,
being aware of this notion may help find the best
strategy when Figure 7. Synthesizing a list of
timed matrices. formalizing a sound process.
OMChroma was designed so as not to impose
any particular approach to the composer’s choice:
The matrices can be considered either as container
objects, including an internal temporal organiza-
tion (where each internal component, or micro-
cluster, is regarded as an event), or as primitive
events of their own, integrated into larger tempo-
ral organizations.

So far, they encompass a temporal dimension
via two common slots: The entry delays (e-dels)
and the durations (durs). Another general slot,
action-time (see Figure 1), represents a global time
delay applied to all components. When synthe-
sizing a list of matrices it is, therefore, possible
to consider them as timed events whose onset is
determined by their action-time. Figure 7 illus-
trates this situation, with two matrices and two
different action-times: Each matrix generates an
“event” in the resulting sound. In this example,
the events are clearly separated (t1 = 0 sec, t2 =
1.5 sec), but they could also overlap, be linked in
more intricate ways, and be computed from any
program or external temporal structure. (Figure 7

10

also illustrates the possibility to perform synthe-
sis with classes, other than ADD-1 and FM-1, that
are instantiated with similar control data.)

From our experience, several compositional
approaches can be identified with respect to
events: (1) a part of a sound (where the perceived
sounds are actually mixes of several eventsthis
technique was extensively used in the composi-
tion of Stroppa’s Traiettoria (1982-1986) [26]; (2) a
sound of its own with no obvious internal tem-
poral or rhythmical structure; (3) a “phrase” (or
sound process) that is perceived as a stream of
sound sources; (4) a “section,” where the sound
process has a complete formal structure, often re-
sulting from some kind of algorithmic approach;
and (5) a “template”: any of the previous cases
condensed into a synthetic form and expanded
by a user-fun.

Two advanced approaches to handle temporal
structures from events are discussed in the next
sections.

Magquettes as Temporal Structures

The OM maquette extends the notion of visual pro-
gram to the temporal dimension, and provides a
way of integrating synthesis events within a time
structure. A maquette contains musical objects
and programs represented by boxes, connected
by temporal and functional relations. An exten-
sion, introduced in [5], allows the system to per-

0 O AMagquette - internal eval ... 000 AMagquette
3 ¥ 0 ¥
ulll a
-]
L | -
self]
: vy AN
© AE_E TAVATRTAA
Ba =
synthesize] " J\/’\/WW/\J
®]
: | = VYT
o]
1 =
s { [_
[]
J 4,:5 BN N N N PN
tempout =
< ‘|||||||||||||\||||||‘|||||||||||||||||||
Y 1 2 a

Ficure 8: Using the maquette as a temporal structure and context for the synthesis process.

form sound synthesis processes in this temporal
framework, where each box in the maquette is
a program generating synthesis parameters (see
Figure 8). Any of these parameters may depend
on internal processes, on properties of their con-
taining box (size, position, etc.), or on external
data coming from other boxes.

While each matrix is assigned an onset de-
pending on its position, a global process (here,
the synthesize function in the left-hand part of the
figure) computes a sound from the values and
overall temporal configuration of the boxes. The
maquette editor allows users to visualize and con-
trol global structure; it is the external representa-
tion of this program unfolded in time.

Chroma Models

As an alternative to maquettes, and containing
temporal information at a higher level than the
matrix, OMChroma provides Chroma models.
Chroma models are abstract data structures used
as reservoirs of forms and parameters for sound
synthesis. They are made of a time structure (a
list of time segments) and a sequence of Vertical
Pitch Structures (VPS).

VPS are polymorphic structures devised by
Stroppa for his earlier works [27]. They rep-
resent spectral material as absolute, relative, or
pivot-based symbolic pitches or frequencies, and
are meant to bridge the gap between a symbolic
melody- or harmony-oriented approach to com-
position and numeric, spectral materials.

These concepts have been implemented in
OMChroma [7] as, respectively, the cr-model ob-
ject and a set of other classes corresponding to the
main categories of VPS.

11

When building a cr-model, the first step is to
specify a collection of time markers and some
frequency information, which can originate from
either programs or sound analysis procedures
(sonograms, formant or transient detection, par-
tial tracking, etc.). Analysis data are stored as
SDIF files [25], and loaded as SDIFFile objects in
OM (see the box labeled “sndanalysis.trc.sdif” at
the upper-left of Figure 9). The cr-model inter-
nally segments these data using the time markers
and converts the successive segments into a list
of VPS.

The editor windows (see the right side of Fig-
ure 9) display the contents of the cr-models (a list
of pitches with frequency on the vertical axis) di-
vided in time segments (on the horizontal axis).
The values in the upper-right part indicate the
time and frequencies corresponding to the cur-
rent mouse position in the window, and the left-
most vertical frame displays the energy distribu-
tion of the different pitches of one selected seg-
ment of the sequence.

The data collected in the first cr-model in Fig-
ure 9 could be represented as follows:

intervals
(sec.) pitch list / amplitudes in the VPS
146.49 221.11 330.77 371.27 441.73 ...
[0.0-1.0]
0.0900 0.0572 0.0346 0.0756 0.0263 ...
146.86 221.43 330.64 372.35 443.71 ...
[1.0-3.0]
0.0904 0.0742 0.0141 0.0412 0.1533 ...
115.41 184.58 231.60 276.23 373.85 ...
[3.0-6.0]
0.0666 0.0332 0.0230 0.0265 0.0875 ...
123.10 219.81 243.37 292.85 370.93 ...
[6.0-9.0]
0.0947 0.0461 0.0231 0.0396 0.0920 ...

frequency structure : CR-MODEL
a sound analysis (123311141) + = 1183
- . 5
Selection: 0 f = 483.3 Hz
[] 8000
ﬂ time]
= 4 structure : 000 _}
: %RX anarbitrary |,
T_‘ '_l process n
5000]
4000 |
3000
2000 E—
1000 - —
p
° CR-MODEL
t=2.358
Selection: 0 f = 2960 hz
Ly _——
b
7000
&000 |
000
4000 —
3000 :
] =—m
===l

Ficure 9: CR-MODEL: Representation of abstract sound models in OMChroma.

Because the frequency and time structures are
independent, a cr-model can be constructed from
any arbitrary combination of them. The purpose
of a model, even when derived from sound anal-
ysis data, is not to reconstitute realistic reproduc-
tions of an original sound, but rather to explore
the data’s sound potential. The compositional
aim is to provide structured characteristics that
both grasp the organic liveliness of “real” sounds
and are abstract enough to be applied to any kind
of synthesis process.

The cr-models can be transformed in order to
yield personalized structures more or less related
to the original ones. In Figure 9, the model-data
function box gets the data from the first cr-model
(the VPS list). Its second input applies one or
more auxiliary functions to each VPS collected.
Some predefined functions are available, such
as filters, transpositions, frequency shifting, and
stretching. User-defined functions can also be
programmed in order to specify particular be-
haviors. Time structures may be modified as
well, and independently of the frequency domain
(permutation, compression, stretching, or trans-
formations based on symbolic rhythms, etc.).

The transformed data used to instantiate the
second cr-model in Figure 9 are partially reported
in the following listing. As can be read in this
listing, the time structure has been compressed

12

(times have been divided in half) and the fre-
quency content has been stretched. The stretch-
ing function used in this example (stretch-vps) is
a predefined function inspired by [14] that gener-
ates different kinds of distorted spectra by stretch-
ing or compressing the frequencies according to
their relative intervals, without modifying the
value of the lowest one in the list (the fundamen-
tal frequency).

i 1
intervals — itch list / amplitudes of the VPS
(sec.)
146.49 281.32 532.64 639.64 842.46 ...
[0.0-0.5]
0.0900 0.0572 0.0346 0.0756 0.0263 ...
(0.5-1.5] 146.86 281.55 443.11 531.51 641.65 ...
T 0.0904 0.0742 0.0141 0.0412 0.1533 ...
[1.5-3.0] 115.41 242.94 348.08 460.25 743.54 ...
T 0.0666 0.0332 0.0230 0.0265 0.0875 ...
(3.0-4.5] 123.10 308.56 362.60 486.19 767.14 ...
o 0.0947 0.0461 0.0231 0.0396 6.0920 ...

At some point, the model data must be con-
verted into matrices: For each segment of the time
structure, expand-model (see Figure 10) translates
the VPS into an instance of a given synthesis class.
The resulting matrix list can then be synthesized
via the synthesize box.

€]
€]
€]
o

expand-model

—e

1]
3

synthesize

[T

I_|

amp = interpolated ue
profile depending %
on the segment
index

N

[FTT7 aut
slet
| X ¥
€ © © T FREQ
©
Ollﬂ;.:
interpol-value E
©
e DURS

M'EJ DEILD.&T% freq = VPS

1]
frequencies
L

get-vps-fregs
$
©

[

o

durs = segment
durations x 2

ot

AMP

Ficure 10: Converting a cr-model to a list of matrices (via cr-control) and synthesis of a sound. The cr-control visible on
the right implements a set of rules converting the VPS data from the cr-model to the different slots of a matrix class.

The crucial task here is to specify the match-
ing rules that generate the right parameters from
the model data. Some rules are straightforward
(e.g., sending frequencies and amplitudes to the
corresponding slots), some rules may be more or
less directly derived from the existing data, and
other rules might need more advanced process-
ing (psychoacoustic, mathematical, or any other
personal rules). The cr-control object represents
a set of matching rules that can be connected to
expand-model to manage the transfer of data from
a cr-model to OMChroma matrices.

Figure 10 shows rules defined in the cr-
control editor (right-hand part of the figure). The
MODEL DATA box in this editor represents the
data for every segment in the model, and the
three out- put arrow boxes (labeled FREQ, AMP,
and DURS) correspond to the different slots of a
matrix. In this example, the frequencies (FREQ)
are directly extracted from the cr-model’s VPS list,
while the amplitudes (AMP) are computed by an
interpolation process independent from the VPS
contents. The duration list of the matrices (DURS)
are those of the cr-model’s time structure multi-
plied by 2, which will make the resulting succes-
sive events overlap while keeping their original
onsets.

Rules of arbitrary complexity can be defined
between the original model, the different slots
of a class, and any sort of compositional pro-
cesses. Because of the common naming conven-
tion adopted, and because the cr-model data are
very abstract, they can be converted to instances

13

of practically any class. It is generally possible to
connect the contents of a cr-model to any matrix
owning slots with common names while using
the same cr-control matching rules (the type of the
matrix is given by the third input of the expand-
model box; for example, in Figure 10, the type is
ADD-1).

Conclusion

OMChroma provides a complete framework to
integrate sound synthesis and advanced compo-
sitional processes at various stages of sound con-
ception. Due to the complexity of both the pro-
cesses and the data involved, several strategies
have been adopted: modularity in the design and
usage of the synthesis processes (the synthesis
class library and definition tools), high-level sym-
bolic instantiation of these classes through pro-
gramming and/or definition of behavioral rules,
connections to sound analysis and synthesis in
the compositional environment, and large-scale
temporal modeling (the maquette or the cr-model).

OMChroma shares some features with sys-
tems dedicated to sound synthesis that were
designed in the 1980s and 1990s, such as
Formes [20], Common Music/Common Lisp Mu-
sic [30], or Patchwork/PWGL [12, 11]. Like those
systems, OMChroma’s primary goal is not com-
puting sound in real time during a concert, but
providing an integrated environment where the
composer can elaborate powerful and expressive
control structures.

OMChroma’s use of an external synthesis en-
gine, and the modular design of the interface
between the control layer and this synthesis en-
gine, make writing extensions to other engines
quite straight- forward to envisage. The un-
derlying synthesis engine(s) can also be main-
tained, rewritten, and further developed inde-
pendently of OMChroma. In addition, the in-
tegration of OMChroma into a computer-aided
composition environment mainly dedicated to in-
strumental music provides symbolic and algo-
rithmic richness. The gap between this instru-
mental approach and a synthesis-oriented ap-
proach is bridged, although each environment
can also be used separately.

There are, of course, many other ways of
thinking about sound from a compositional
standpoint, which may be more or less well
suited to the OMChroma conceptual framework.
This system proved to be useful to composers
with different aesthetic approaches, however, as
shown by the recent interest from young com-
posers such as Tolga Tuiztin (Metathesis, for two
double basses and electronics, 2006), Marta Gen-
tilucci (Radix Ipsius, for ensemble and electronics,
2008; exp.doc...et juv., for saxophone and electron-
ics, 2010), and Sebastien Gaxie (Le Bonheur, elec-
tronic music for a film by A. Medvedkine [USSR,
1934], 2010).

Future work on this project will mainly con-
cern the implementation of a more “continuous,”
“phrase-based” conception of time, as opposed
to the current “event-driven” approach and data
representation. In particular, the integration of
the CHANT synthesizer [19] in this environment
shall emphasize interesting issues about how this
continuous conception can be tackled in OM-
Chroma. Current research has also focused on
sound spatialization and the introduction of spa-
tial rendering in the OMChroma framework [24].

References

[1] Agon, C.1998. OpenMusic : un langage de pro-
grammation visuelle pour la composition musi-
cale. PhD Thesis, Université Pierre et Marie
Curie, Paris.

[2] Agon, C., M. Stroppa, and G. Assayag. 2000.
“High Level Musical Control of Sound Syn-
thesis in OpenMusic.” In Proceedings of the
International Computer Music Conference, pp.

332-335.

[3] Assayag, G., et al. 1999. “Computer As-

sisted Composition at IRCAM: From Patch-

14

(4]

[6]

[10]

[11]

[12]

[13]

[14]

Work to OpenMusic.” Computer Music Jour-
nal 23(3):59-72.

Boulanger, R., ed. 2000. The Csound Book: Per-
spectives in Software Synthesis, Sound Design,
Signal Processing, and Programming. Cam-
bridge, Massachusetts: MIT Press.

Bresson, J., and C. Agon. 2006. “Temporal
Control over Sound Synthesis Processes.” In
Proceedings of the Sound and Music Computing
conference, pp. 67-76.

Bresson,]., and C. Agon. 2007. “Musi-
cal Representation of Sound in Computer-
Aided Composition: A Visual Programming
Framework.” Journal of New Music Research
36(4):251-266.

Bresson, J., M. Stroppa, and C. Agon. 2007.
“Generation and Representation of Data and
Events for the Control of Sound Synthesis.”
In Proceedings of the Sound and Music Comput-
ing conference, pp. 178-184.

Cohen-Lévinas, D. 1993. “Entretien avec
Marco Stroppa.” In Les Cahiers de I'IRCAM,
3: La composition assistée par ordinateur. Paris:
IRCAMCentre Georges-Pompidou, pp. 99—
117.

Gabriel, R. P, J. L. White, and D. G. Bobrow.
1991. “CLOS: Integrating Object-Oriented
and Functional Programming.” Communica-
tions of the ACM 34(9):29-38.

Honing, H. 1993. “Issues in the Representa-
tion of Time and Structure in Music.” Con-
temporary Music Review 9:221-238.

Laurson, M., M. Kuuskankare, and V. No-
rilo. 2009. “An Overview of PWGL, a Vi-
sual Programming Environment for Music.”
Computer Music Journal 33(1):19-31.

Laurson, M., V. Norilo, and M. Ku-
uskankare. 2005. “PWGLSynth: A Visual
Synthesis Language for Virtual Instrument
Design and Control.” Computer Music Jour-
nal 29(3):29-41.

Mathews, M., et al. 1969. The Technology of
Computer Music. Cambridge, Massachusetts:
MIT Press.

McAdams, S. 1982. “Spectral Fusion and the
Creation of Auditory Images.” In M. Clynes,
ed. Music, Mind and Brain: the Neuropsychol-
ogy of Music. New York: Plenun Press, pp.
279-298.

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

McAdams, S. 1993. “Recognition of Au-
ditory Sound Sources and Events.” In S.
McAdams and E. Bigand, eds. Thinking in
Sound: The Cognitive Psychology of Human
Audition. Oxford: Oxford University Press,
pp. 146-198.

Nickerson, R. S., D. N. Perkins, and E. E.
Smith. 1985. The Teaching of Thinking. Hills-
dale, New Jersey: Lawrence Erlbaum Asso-
ciates.

Risset, J.-C. 1969. An Introductory Catalog of
Computer Synthesized Sounds. Murray Hill,
New Jersey: Bell Laboratories. Reprinted in
the booklet of: Various Artists, 1995. The His-
torical CD of Digital Sound Synthesis, Com-
puter Music Currents 13. Mainz: Wergo
WER 20332.

Roads, C. 1996. The Computer Music Tutorial.
Cambridge, Massachusetts: MIT Press.

Rodet, X., and P. Cointe. 1984. “Formes:
Composition and Scheduling of Processes.”
Computer Music Journal 8(3):32-48.

Rodet, X., Y. Potard, and J.-B. Barriére. 1984.
“The CHANT Project: From the Synthesis of
the Singing Voice to Synthesis in General.”
Computer Music Journal 8(3):15-31.

Rosch, E., et al. 1976. “Basic Objects in Nat-
ural Categories.” Cognitive Psychology 8:382—
439.

Rosch, E., and C. B. Mervis. 1975. “Fam-
ily Resemblances: Studies in the Internal
Structure of Categories.” Cognitive Psychol-
ogy 7(4):573-605.

Schaeffer, P. 1966. Traité des objets musicaux.
Paris: Seuil.

15

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Schumacher, M., and]. Bresson. 2010. “Spa-
tial Sound Synthesis in Computer-Aided
Composition.” Organised Sound 15(3):271-
289.

Schwartz, D., and M. Wright. 2000. “Exten-
sions and Applications of the SDIF Sound
Description Interchange Format.” In Proceed-
ings of the International Computer Music Con-
ference, pp. 481-484.

Stroppa, M. 19821986. Traiettoria, for piano
and computer-generated sounds. Milan: Ri-
cordi Edition.

Stroppa, M. 1988. “Structure, Categoriza-
tion, Generation, and Selection of Vertical
Pitch Structures: A Musical Application
in Computer-Assisted = Composition.”
IRCAM Tech Report. Available on-line:
http://articles.ircam.fr/textes/Stroppa88a/
index.pdf

Stroppa, M. 1989. “Musical Information Or-
ganisms: An Approach to Composition.”
Contemporary Music Revue 4:131-163.

Stroppa, M. 2000. “High-Level Musical Con-
trol Paradigms for Digital Signal Process-
ing.” In Proceedings of the International Con-
ference on Digital Audio Effects — DAFx00.

Taube, H. 1991. “Common Music: A Mu-
sic Composition Language in Common
Lisp and CLOS.” Computer Music Journal
15(2):21-32.

Tenney, J. 1969. “Computer Music Experi-
ences, 19611964.” Electronic Music Reports
#1. Utrecht: Institute of Sonology.

