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Abstract 36 

The Bay of Biscay (North-East Atlantic) has long been subjected to intense direct and indirect 37 

human activities that lead to the excessive degradation and sometimes overexploitation of 38 

natural resources. Fisheries management is gradually moving away from single-species 39 

assessments to more holistic, multi-species approaches that better respond to the reality of 40 

ecosystem processes. Quantitative modelling methods such as Ecopath with Ecosim can be 41 

useful tools for planning, implementing and evaluating ecosystem-based fisheries 42 

management strategies. The aim of this study was therefore to model the energy fluxes within 43 

the food web of this highly pressured ecosystem and to extract practical information required 44 

in the diagnosis of ecosystem state/health. A well-described model comprising 30 living and 45 

two non-living compartments was successfully constructed with data of local origin, for the 46 

Bay of Biscay continental shelf. The same level of aggregation was applied to primary 47 

producers, mid-trophic-levels and top-predators boxes. The model was even more general as 48 
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it encompassed the entire continuum of marine habitats, from benthic to pelagic domains. 49 

Output values for most ecosystem attributes indicated a relatively mature and stable 50 

ecosystem, with a large proportion of its energy flow originating from detritus. Ecological 51 

network analysis also provided evidence that bottom-up processes play a significant role in 52 

the population dynamics of upper-trophic-levels and in the global structuring of this marine 53 

ecosystem. Finally, a novel metric based on ecosystem production depicted an ecosystem not 54 

far from being overexploited. This finding being not entirely consistent over indicators, 55 

further analyses based on dynamic simulations are required. 56 

 57 

Key words 58 
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1. Introduction 62 

Impacts of fisheries on target species have been abundantly described and reviewed, e.g. 63 

modifications of abundance, spawning potential, growth and maturation, age and size 64 

structure, sex ratio, genetics (Hall, 1999). However, the effect of fishing is not restricted to 65 

commercially exploited species but extends to entire ecosystems. In most cases, by targeting 66 

and reducing the abundance of high-value consumers, fisheries profoundly modify trophic 67 

networks and the flow of biomass (and energy) across the ecosystem, leading sometimes to 68 

trophic cascades (Heithaus et al., 2008) and ultimately to regime shifts (Daskalov et al., 69 

2007). In addition, fishing practices can durably and substantially damage the living and non-70 

living environment of target and associated resources, e.g. poorly-selective fishing activities 71 

generate by-catch and discards and sometimes cause local anoxia (Diaz et al., 2008), benthic 72 

trawls and dredges cause physical changes to the seabed (Hall-Spencer et al., 2002), and lost 73 

fishing gear that preserves its catching abilities leads to temporary “ghost fishing” (Baeta et 74 

al., 2009). Consequently, in the last two decades, a consensus has emerged on the need to 75 

move from single species- to ecosystem-based fisheries management (EBFM). The goal is “to 76 

rebuild and sustain populations, species, biological communities and marine ecosystems at 77 

high levels of productivity and biological diversity so as not to jeopardize a wide range of 78 

goods and services from marine ecosystems while providing food, revenues and recreation for 79 

humans” (Browman et al., 2004). 80 

Although the importance of an ecosystem approach is widely accepted, it remains difficult to 81 

put these principles into practice (Tallis et al., 2010). In data-rich situations, multi-82 

species/ecosystem models are valuable tools that bring coherence to a large amount of data 83 

from a variety of sources (see Plagànyi (2007) for an exhaustive review). They can be useful 84 

to provide initially a holistic understanding of the structure and functioning of a particular 85 

aquatic system and then supply concrete elements for managing this exploited ecosystem. For 86 
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example, they have been used to explore marine protected area (MPA) zoning options or to 87 

assist the implementation of EBFM through the identification of critical biological indicators 88 

and their corresponding threshold values (Tudela et al., 2005; Coll et al., 2008). Among 89 

ecosystem models, Ecopath with Ecosim (EwE) is a well-known and freely-available software 90 

package which attempts to represent all trophic groups, in a mass-balanced way (Polovina, 91 

1984; Christensen and Pauly, 1992). The ecosystem is considered as a unit of biological 92 

organization, made up of all the organisms in a given area, interacting with the physical 93 

environment, so that a flow of energy leads to characteristic trophic structure and material 94 

cycles within the system (Odum, 1969). Through the development of new components and 95 

modules, EwE has become increasingly powerful in providing information on how a system is 96 

likely to respond to potential changes in fisheries management practices and, to a lesser 97 

extent, to environmental disturbances (Coll et al., 2007; Shannon et al., 2009). Some of the 98 

fundamental strengths of the approach are the achievement of a good trade-off in model 99 

structure between simplicity and complexity (i.e. parsimony principle; Fulton et al. (2003)) 100 

and the use of a common and rigorous analytical framework that make comparisons between 101 

various systems possible (Plagànyi and Butterworth, 2004). 102 

At the western edge of the Eurasian continent, the Bay of Biscay, opening to the Eastern 103 

North Atlantic Ocean, supports a large number of anthropogenic activities including tourism 104 

and shellfish farming along the coasts and intensive fisheries for human consumption over the 105 

shelf and along the slopes (Lorance et al., 2009). Fishing activities in the Bay of Biscay 106 

involve several European countries and are characterised by the wide variety of fishing 107 

vessels, gears and techniques, the large number of landed species (more than a hundred) and 108 

the numerous habitats explored (Léauté, 1998). The major commercially exploited stocks are 109 

crustaceans, cephalopods and both pelagic and demersal fish, some of them showing signs of 110 

intensive exploitation (ICES, 2005b). For instance, since 2002, European anchovy recruitment 111 
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has experienced a severe decline that raises growing concerns from the scientific community 112 

and EU member states as to what would be the direct and indirect effects of alternative 113 

harvest strategies of forage fish on other ecosystem components (ICES, 2010). 114 

In this context of intense multi-species exploitation, a mass-balanced model of the Bay of 115 

Biscay continental shelf food web would be of great interest to stakeholders and decision 116 

makers to support the implementation of sustainable fisheries policies and the development of 117 

ecosystem-based management in the area. Models already exist for different parts of the Bay 118 

of Biscay continental shelf with special hydro-morphological characteristics, i.e. the “Grande 119 

Vasière” (Le Loc'h, 2004), the Cantabrian Sea (Sanchez and Olaso, 2004). At a broader 120 

spatial scale, including the totality of the two ICES sub-divisions VIIIa and b, two models 121 

were constructed for the year 1970 and 1998 by Ainsworth et al. (2001). Little help was 122 

provided by local researchers for those two previous models and as a consequence, most 123 

biomass data in their initial input matrix were lacking or obtained from similar systems 124 

(Sylvie Guénette, pers. comm.). Ainsworth et al. (2001) paid particular attention to fish 125 

species that were divided, according to a length criterion, into 22 distinct functional groups. 126 

These models recently served as a strong basis for a Master’s thesis (Jimeno, 2010), in which 127 

the “2007” situation was modelled. Previous models of the Bay of Biscay were lacking of 128 

sufficient spatial coverage and amount of local data to be useful. The construction of a new 129 

model was made possible by the two successive phases of the French coastal environmental 130 

research program (PNEC 1999-2003 and 2004-2007) that both included a specific worksite on 131 

the Bay of Biscay and that thus greatly contributed to fill the gaps that existed in the data 132 

concerning this area. In the present work, a particular effort was made to combine local 133 

information of the same quality, reliability and detail, on both the benthic and pelagic 134 

communities, from primary producers to top-predators to better understand the structure, 135 

organization and functioning of the Bay of Biscay continental shelf food web. Then, the 136 
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keystone compartments according to the original definition provided by Power et al. (1996), 137 

i.e. components whose effect is large, and disproportionately large relative to their abundance, 138 

were determined. Finally, the ecosystem exploitation status was assessed using a set of 139 

metrics, some being based on ecosystem production. 140 

 141 

2. Material and Methods 142 

2.1 Study area 143 

The Bay of Biscay is a large gulf of the Atlantic Ocean located off the western coast of France 144 

and the northern coast of Spain, between 48.5 and 43.5 °N and 8 and 3 °W (Fig. 1). The 145 

principal rivers in decreasing order of drainage area are: the Loire, Garonne-Dordogne 146 

(Gironde complex), Adour, Vilaine and Charente rivers. The continental shelf reaches widths 147 

of about 140 km off the coast of Brittany but narrows to less than 15 km off the Spanish 148 

shore. The physical and hydrological features of the Bay of Biscay are of great complexity, 149 

e.g. coastal upwelling, coastal run-off and river plumes, seasonal currents, eddies, internal 150 

waves and tidal fronts (Planque et al., 2004). These abiotic processes greatly influence the 151 

phytoplankton dynamics and as a consequence, the whole food-web composition, structure 152 

and functioning (Varela, 1996).  153 

The model was restricted to divisions VIIIa and b of the International Council for the 154 

Exploration of the Sea (ICES; www.ices.dk). An ecosystem model has already been built for 155 

the Cantabrian Sea, which exhibits particular hydro-morphological characteristics (ICES 156 

division VIIIc) (Sanchez and Olaso, 2004). The deep offshore basin (ICES division VIIId) 157 

was not sufficiently documented to be included into the modelling process. The study site in 158 

the Bay of Biscay was limited to the middle-depth continental shelf, between the 30-m and 159 

150-m isobaths, and its surface area was considered to be 102,585 km2. There has been long-160 
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term, consistent and regular monitoring of the benthic, demersal and pelagic biota in this 161 

study area. 162 

 163 

2.2 Trophic modelling approach 164 

A mass-balance (neglecting year-to-year change in biomass, compared to flows) model of the 165 

Bay of Biscay continental shelf was constructed using Ecopath with Ecosim 6 (Christensen 166 

and Pauly, 1992; Christensen et al., 2008). The model combines biomass, production and 167 

consumption estimates to quantify flows between the different elements of aquatic exploited 168 

ecosystems at a specific point in time. The parameterisation of the Ecopath model is based on 169 

satisfying two “master” equations. The first describes the production term for each 170 

compartment (species or group of species with similar ecotrophic roles) included in the 171 

system: 172 

Production = fishery catch + predation mortality + net migration + biomass accumulation + 173 

other mortality. 174 

“Other mortality” includes natural mortality factors such as mortality due to senescence, 175 

diseases, etc. The second equation expresses the principle of conservation of matter within a 176 

compartment: 177 

Consumption = production + respiration + unassimilated food. 178 

The formal expressions of the above equations can be written as follows for a group i and its 179 

predator j: 180 

�� × ��/��� = 	� + ∑ �� × ��/�� × ���� + ��� + ����� + ���1 − ���� × ��/���  (1) 181 

and 182 

�� × ��/��� = �� × ��/��� + �� + ��  (2) 183 

where the main input parameters are biomass density (B, here in kg C·km-2), production rate 184 

(P/B, year-1), consumption rate (Q/B, year-1), proportion of i in the diet of j (DCij; DC = diet 185 
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composition), net migration rate (Ex, year-1), biomass accumulation (Bacc, year-1), total catch 186 

(Y; kg C·km-2), respiration (R; kg C·km-2·year-1), unassimilated food rate (U) and ecotrophic 187 

efficiency (EE). 188 

Biomass, Q/B and P/B values of multi-species compartments were determined by the 189 

weighted average of the relative abundance of each species. There are as many linear 190 

equations as groups in the system, so if one of the parameters is unknown for a group, the 191 

model computes it by solving the set of linear equations. In particular, EE, which corresponds 192 

to the fraction of the production of each group that is used in the food web, is difficult to 193 

measure. Hence, it was estimated by the model for most of the groups. The “manual” mass-194 

balanced procedure that includes two major levels of verification was used. First, for those 195 

groups with EE > 1, the model was modified by adjusting their initial input parameters and 196 

the predation intensity exerted by predators on them (slight and gradual increase or decrease 197 

in values, within the interval of confidence of the parameter). For this parameter, a value 198 

greater than one indicated a demand on the compartment that was too high to be sustainable 199 

within the food web. Secondly, the same procedure was applied to the gross food conversion 200 

efficiency (GE) estimates, also called P/Q ratio, which must be in the physiologically realistic 201 

range of 0.1-0.3 for most consumers and generally higher for small organisms. EE for a 202 

detritus group is defined as the ratio between what flows out of that group and what flows into 203 

it. Theoretically, under steady-state assumption, this ratio should be equal to one. 204 

The Ecopath model was validated using the pre-balance (PREBAL) diagnostics (Link, 2010) 205 

to ensure that any potential and major problems are captured before network outputs are used 206 

to address research or management questions. PREBAL provides a set of guidelines presented 207 

as a form of “checklist”. Diagnostic tests allow evaluation of the cohesiveness of the data 208 

despite the natural discrepancies that occur when using myriad data sources measured across 209 

varying scales. In brief, each functional group was plotted along the x-axis in order of 210 



10 
 

decreasing trophic level to allow easy visualization of trophic relationships. Byron et al. 211 

(2011) summarized the PREBAL analysis into five simple ecological and physiological 212 

“rules” that should be met. 213 

 214 

2.3 Defining the model compartments 215 

Functional groups were defined following three criteria: the similarities between the species 216 

in terms of size and food preferences, the amount of ecological data available to determine 217 

precise parameters and diet compositions and the main research questions to which the model 218 

should respond. On this basis, 32 trophic groups were retained (Table 1), two of which were 219 

seabirds, five marine mammals, nine fish, eight invertebrates, three zooplankton, two primary 220 

producers, one bacteria, discards from commercial fisheries and detritus corresponding to 221 

allochthonous imports into the web and autochthonous internal cycling within the web. Data 222 

collections for plankton to top-predators (marine birds and small cetaceans) cover a period 223 

long enough for sufficient data to be available, but short enough for massive changes in 224 

biomass not to have occurred. They encompassed different seasons and years, starting in 1994 225 

and ending in 2005. The European anchovy Engraulis encrasicolus has been affected by a 226 

below average recruitment since 2002, which led to the closure of the fishery in the area from 227 

June 2006 to December 2009 (ICES, 2010). The model presented in this study corresponded 228 

to a typical year between 1994 and 2005, before the collapse of the anchovy fishery. 229 

Biomasses, diets and species compositions were averaged across seasons. 230 

 231 

2.4 Initial input parameters and diet compositions 232 

2.4.1 Marine mammals and seabirds 233 

Birds were counted visually and identified to species level by aerial surveys on a monthly 234 

basis from October 2001 to March 2002, in August 2002, in June 2003 and May 2004 235 
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(ROMER and ATLANCET surveys). The Bay of Biscay is heavily used as a migration route 236 

and as a wintering area for marine birds, so there is a great seasonal variation in their 237 

abundance. As this long-distance migratory pattern was included through an annual biomass 238 

estimate, imports were not added to their diets. The four most abundant seabird taxa were 239 

northern gannets Sula bassana, large gulls (i.e. herring gulls Larus argentatus, lesser black-240 

backed gulls Larus fuscus, great black-backed gulls Larus maritimus and yellow-legged gull 241 

Larus michahellis), kittiwakes Rissa tridactyla and auks (i.e. common murres Uria aalge, 242 

razorbills Alca torda and Atlantic puffins Fratercula arctica) (Certain and Bretagnolle, 2008) 243 

(Table 1). Based on Hunt et al. (2005), the mean body mass for these taxa was set to 3.2, 1.1, 244 

0.4 and 0.9 kg respectively. They were grouped in two categories according to feeding 245 

strategies: “surface feeders” for gulls and kittiwakes and “plunge and pursuit divers” for 246 

gannets and auks. Wet weights were converted into dry weights and carbon contents based on 247 

two conversion factors, i.e. 0.3 and 0.4 respectively. These values were derived from expert’s 248 

knowledge on the basis of the carbon to wet mass ratio of 0.1 used by Heymans and Baird 249 

(2000). 250 

Their diet regime was assumed to be composed mostly of energy-rich pelagic species and 251 

large zooplankton crustaceans (Hunt et al., 2005; Certain et al., 2011). Some marine birds are 252 

also well-known to feed largely on fisheries discards (Arcos, 2001). This artificial low-quality 253 

food source has been shown to be detrimental on a long-term basis for gannets (Grémillet et 254 

al., 2008) (Table 2). 255 

Daily ration for wild piscivorous birds (Rc) in g·day-1 was calculated according to the 256 

following empirical equation (Nilsson and Nilsson, 1976): 257 

������� = −0.293 + 0.85 × %���&�  (3) 258 

where W is the body mass of birds expressed in g. This value was then multiplied by 365 days 259 

and divided by the mean weight of the taxon to provide annual Q/B ratio. 260 
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The P/B ratio for the two functional groups was based on estimates published in Nelson 261 

(1979). 262 

Abundance for the small cetacean community (porpoises and dolphins excluding whales) was 263 

derived from the combination of results from (i) the SCANS-II project focusing on small 264 

cetaceans in the European Atlantic and the North Sea and carried out in July 2005 by ships 265 

and aircraft, (ii) the estimated small delphinid abundance in the Bay of Biscay based on 266 

repeated extensive aerial surveys (ROMER and ATLANCET campaigns) in different seasons 267 

and years (2001–2004) across the Bay of Biscay continental shelf (Certain et al., 2008), and 268 

(iii) the monitoring of marine mammals in the same area based on stranding and spring 269 

shipboard observations performed during PELGAS IFREMER cruises (Certain et al. (2011); 270 

authors’ unpublished data). The five most common species were separated in the model: the 271 

common dolphin Delphinus delphis, the striped dolphin Stenella coeruleoalba, the bottlenose 272 

dolphin Tursiops truncatus, the long-finned pilot whale Globicephala melas and the harbour 273 

porpoise Phocoena phocoena (Table 1). Following the method developed by Trites and Pauly 274 

(1998), mean body weight was calculated for each species according to its maximum body 275 

length. A conversion factor of 0.1 for wet weight to carbon content was used (Bradford-276 

Grieve et al., 2003). 277 

Diet compositions were obtained from stomach content analysis of stranded animals found 278 

along the North-East Atlantic French coast (Spitz et al., 2006a; Spitz et al., 2006b; Meynier et 279 

al., 2008). Some cetacean species forage both on the shelf and on the oceanic domains of the 280 

Bay of Biscay. Consequently, the proportion of oceanic prey in their diet was considered as 281 

imports (Table 2). 282 

Consumption can be estimated from energy requirements, prey energy densities and prey 283 

compositions by percent mass. The daily energy requirement or field metabolic rate (FMR) in 284 
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kJ·day-1 is related to mean body mass (W in kg) according to the model developed by Boyd 285 

(2002), the coefficient used was the one proposed by the author for marine mammals alone: 286 

'(� = 2629 ×&*.+,-  (4) 287 

Daily consumption (Rc) in kg·day-1 was calculated by converting energy requirements to food 288 

biomass and adjusting by a factor of assimilation efficiency: 289 

�� = '(�/�0.8 × ∑��� × �����  (5) 290 

where Pi was the proportion by mass of prey species i in the diet and EDi, the energy density 291 

of prey i (kJ·kg-1; Spitz et al. (2010)). Assimilation efficiency was typically estimated at 0.8 292 

(Leaper and Lavigne, 2007). This value was then multiplied by 365 days and divided by the 293 

mean weight of the taxon to provide annual Q/B ratio. 294 

Values of P/B were taken from Christensen et al. (2009); they varied from 0.03 for baleen 295 

whales to 0.08 for dolphins and porpoises. 296 

 297 

2.4.2 Fish groups 298 

Stocks of the common sole Solea solea, the European hake Merluccius merluccius, two 299 

European anglerfish Lophius budegassa and L. piscatorius and the megrim Lepidorhombus 300 

whiffiagonis were assessed from ICES/ACFM advice report (ICES, 2004). The biomass of 301 

most other benthic and demersal fish species was estimated from bottom-trawl surveys 302 

conducted annually in autumn in the Bay of Biscay (EVHOE IFREMER cruises). Data were 303 

averaged over six years, between 1998 and 2003 and then multiplied by four to take into 304 

account the mean bottom-trawl capture efficiency below 0.3 (Trenkel and Skaug, 2005). The 305 

capture efficiency represents the proportion of individuals in the trawl path being retained by 306 

the gear. Wet body weights were converted to dry weights and then to carbon contents using 307 

conversion factors of 0.2 and 0.4 respectively (Brey et al., 2010). The biomass of most pelagic 308 

fish species was estimated using data from acoustic surveys conducted each spring in the Bay 309 
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of Biscay (PELGAS IFREMER cruises). Data were averaged over three years, between 2000 310 

and 2003. The distribution range of the horse mackerel Trachurus trachurus was not fully 311 

encompassed by IFREMER surveys, which resulted in an underestimation of the total 312 

biomass. Thus, an ecotrophic efficiency of 0.95 was preferentially entered in the input 313 

parameters for this commercially exploited species and the biomass was left to be estimated 314 

by the model. Wet body weights were first converted to dry weights with a conversion factor 315 

of 0.14 and finally to carbon contents using a conversion factor of 0.45 (Jorgensen et al., 316 

1991) (Table 1). 317 

The Q/B ratio was determined using Fishbase (Froese and Pauly (2000); www.fishbase.org). 318 

For each species, Q/B was estimated from the empirical relationship proposed by Palomares 319 

and Pauly (1998): 320 

�����/�� = 7.964 − 0.204 × %���&0� − 1.965 × 12 + 0.083 × 3 + 0.532 × ℎ + 0.398 ×321 

5 (6) 322 

where W∞ was the asymptotic weight, T’ was the mean environmental temperature expressed 323 

as 1000/(T (°C) + 273.15), A was the aspect ratio of the caudal fin, h and d were dummy 324 

variables indicating herbivores (h=1, d=0), detritivores (h=0, d=1) and carnivores (h=0, d=0). 325 

Under steady-state conditions, the P/B ratio is equal to instantaneous coefficient of total 326 

mortality (Z) (Allen, 1971): 327 

6 = ( + '  (7) 328 

with M being natural and F fishing mortality. M was calculated using the Fishbase life-history 329 

tool from Pauly’s (1980) empirical equation: 330 

( = 7*.8+ × �09*.,:; × 1*.-8<  (8) 331 

where K was the curvature parameter of the von Bertalanffy growth function (VBGF), L∞ the 332 

asymptotic length and T the mean environmental temperature in °C. If no estimate of K was 333 

available, M was calculated from the preliminary empirical relationship: 334 
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( = 10�*.+889*.:=>×?@A�BC�D*.*,×E�  (9) 335 

Parameters of the VBGF were taken from publications, calculated from survey data or, most 336 

often, found on Fishbase. 337 

A mean temperature of 11°C for benthic and demersal fish and 14°C for pelagic fish were 338 

assumed, considering that former species live on or near the sea bottom. Fishing mortality 339 

was set to zero for non-commercial species such as the European sprat Sprattus Sprattus. 340 

Whenever possible, fishing mortality was taken directly from ICES reports, otherwise, it was 341 

estimated from the same sources by dividing catches by biomasses. For the horse mackerel 342 

Trachurus trachurus, the instantaneous rate of total mortality (Z) was estimated using the 343 

Hoenig (1983) empirical equation based on a maximum observed age (tmax) of 15 years: 344 

�F�6� = 1.44 − 0.984 × ln	�J_max			�  (10) 345 

For demersal and benthic fish species, knowledge of their diet came from the literature and 346 

Fishbase, as well as stomach contents (Le Loc'h, 2004) and carbon and nitrogen stable 347 

isotopic analysis performed on specimens captured on a large sedimentary muddy bank 348 

known as the “Grande Vasière” and on the external margin of the continental shelf (Le Loc'h 349 

et al., 2008) (Table 2). They were consequently grouped into four categories: “Benthivorous 350 

demersal fish” comprised 24 species, including the common sole Solea solea; 351 

“Suprabenthivorous demersal fish” included eight species such as the blue whiting 352 

Micromesistius poutassou and small European hakes (< 10 cm) Merluccius merluccius; 353 

“Piscivorous and benthivorous demersal fish” contained, among 41 other species, the 354 

European conger Conger conger, the pouting Trisopterus luscus and the small-spotted 355 

catshark Scyliorhinus canicula; “Piscivorous demersal fish” included large specimens of the 356 

European hake which have a diet consisting of both demersal and pelagic fish (the full list of 357 

species is given in the first supplementary material). 358 
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Based exclusively on experts’ knowledge, the pelagic species were divided into five groups, 359 

each representing a well-known, valuable and strategic species. Three thoroughly-monitored 360 

clupeid species, the European anchovy Engraulis encrasicolus, the European sprat Sprattus 361 

sprattus and the European pilchard Sardina pilchardus, were taken into account. The first two 362 

feed exclusively on mesozooplankton (200 < size < 2000 µm) (Whitehead, 1985). However, 363 

an ontogenetic dietary shift to smaller prey represented by microzooplankton (< 200 µm) and 364 

large phytoplanktonic cells (> 3 µm) was apparent in approximately one year-old pilchards 365 

(individuals < 18 cm) (Bode et al., 2004). Percentages calculated for the whole pilchard 366 

population were weighted averages of those for adults with a weigh of 0.76, and those for 367 

juveniles with a weigh of 0.24. The fourth group consisted of the Atlantic mackerel Scomber 368 

scombrus, a zooplankton feeder of which the large individuals prefer macrozooplankton (> 369 

2000 µm). The last group was composed of the horse mackerel Trachurus trachurus, a 370 

bentho-pelagic species which feeds on both domains (Table 2) (Cabral and Murta, 2002). 371 

 372 

2.4.3 Invertebrates 373 

2.4.3.1 Cephalopods 374 

From bottom-trawl surveys conducted annually in autumn in the Bay of Biscay (EVHOE 375 

IFREMER cruises), the more abundant pelagic cephalopods in the area appeared to be the 376 

broadtail short-finned squid Illex coindetii, the European flying squid Todarodes sagittatus, 377 

and four squid species belonging to the Loliginidae family, Loligo spp. and Alloteuthis spp. 378 

The most abundant benthic cephalopods were the horned octopus Eledone cirrhosa and the 379 

common octopus Octopus vulgaris, together with species of the Sepiidae family. As there has 380 

been little systematic study of catchability and gear selectivity in cephalopods, their biomass 381 

was left to be estimated by Ecopath, using an EE of 0.95. This value was justified by their 382 

commercial exploitation in the ecosystem. For these groups, wet body weights were converted 383 
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to dry weights then to carbon contents using conversion factors of 0.192 and 0.402 384 

respectively (Brey et al., 2010) (Table 1). 385 

The P/B and Q/B ratios corresponded to the values proposed by Sanchez and Olaso (2004) for 386 

the Cantabrian Sea. The P/Q ratio was unusually high for animals of this size, in relation to 387 

the special eco-physiological characteristics of cephalopods which allow rapid growth 388 

(Jackson and O'Dor, 2001). 389 

In the same way, diet composition was roughly estimated from information gathered for the 390 

southern part of the Bay. Part of their diet includes pelagic shrimps, which are considered as 391 

macrozooplankton in the present study (Table 2). 392 

 393 

2.4.3.2 Suprabenthic and benthic invertebrates 394 

Suprabenthic/benthic invertebrates were sampled in 2001 in late spring in the “Grande 395 

Vasière” (INTRIGAS II survey). Species were grouped into six compartments according to 396 

size, feeding ecology and position regarding the seafloor: “suprabenthic invertebrates” 397 

(crustacean suspension feeders mainly members of the Euphausiids family), “metazoan 398 

meiofauna” (largely dominated by nematodes), “surface suspension and deposit feeders 399 

invertebrates” (various species pertaining to polychaetes, bivalves and crustacean decapods), 400 

“sub-surface deposit feeders invertebrates” (eight species of polychaetes, sea urchins and sea 401 

cucumbers), “necrophagous benthic invertebrates” (four species of isopods), “carnivorous 402 

benthic invertebrates” (polychaetes and crustacean decapods such as the Norwegian lobster 403 

Nephrops norvegicus). The biomass was obtained from Duchemin et al. (2008), Le Loc’h 404 

(2004), Le Loc’h et al. (2008) as ash-free dry weight and converted to carbon content using a 405 

factor of 0.4 (Steele, 1974) (Table 1). 406 

The P/B ratio was estimated from Schwinghamer et al. (1986): 407 

�/� = 0.525 ×&^�−0.304�   (11) 408 
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with W, mean body mass converted to an energy equivalent using conversion factor (1 g C = 409 

11.4 kcal; Platt and Irwin (1973)). 410 

The P/Q ratio, also called the gross food conversion efficiency (GE), was preferentially 411 

entered in the model. Indeed, relevant values are available from the literature and typically 412 

range from 0.05 to 0.3 (Christensen and Pauly, 1993). 413 

Dietary profiles were determined from stable isotope analysis (Le Loc'h et al., 2008) (Table 414 

2). 415 

 416 

2.4.4 Zooplankton 417 

Microzooplankton includes protozoans < 200 µm, mostly ciliates and heterotrophic 418 

flagellates. It was studied in 2004 through four seasonal surveys at three stations located in 419 

front of the Gironde River (MICRODYN survey) and three spring surveys in the southern 420 

Bay of Biscay in 2003, 2004 and 2005 (PELGAS IFREMER cruises). The cell volume was 421 

converted into carbon units using allometric relationships and/or factors (for a complete 422 

review of sampling and sample treatments, see Marquis et al. (in press)). Annual Q/B ratio 423 

was the intermediate value between the estimate of Sanchez and Olaso (2004) for the 424 

Cantabrian Sea and the calculation from phytoplankton grazing experiments on Gironde 425 

plume waters (Landry and Hassett, 1982). An ecotrophic efficiency of 0.95 was assumed for 426 

this compartment. 427 

Mesozooplankton ([200-2000] µm) consists mostly of metazoans with copepods 428 

predominating and macrozooplankton (> 2000 µm) consists mainly of metazoans with 429 

decapods and jelly plankton (tunicates, cnidarians) predominating. The samples were obtained 430 

during BIOMAN surveys covering the South-East of the Bay of Biscay in spring (May and 431 

June) for the period 1999-2002 (Irigoien et al., 2009). Achievement of reliable estimates of 432 

biomass was based on the statistical relationship between zooplankton sample volume, easily 433 
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estimated by digital image analysis, and the corresponding organic C and N contents of paired 434 

aliquots samples. The semi-automatic method used here allowed estimating individual bio-435 

volume but not the taxonomic composition of zooplankton. So, gelatinous zooplankton which 436 

has vastly different biological parameters could not be isolated as a specific Ecopath 437 

compartments in the present model. The full procedure was described in Alcaraz et al. (2003). 438 

Annual Q/B ratios were taken from Sanchez and Olaso (2004) for the Cantabrian Sea. An 439 

ecotrophic efficiency of 0.95 was assumed (Table 1 and 2). 440 

 441 

2.4.5 Primary producers, bacteria and detritus 442 

These compartments were characterized during 14 IFREMER surveys performed over nine 443 

years from 1994 to 2002, in various seasons, covering the spread of the Gironde and Loire 444 

plumes as well as a larger proportion of the Bay of Biscay continental shelf (see Labry et al. 445 

(2002) for a description of full sampling and sample treatments). Most of the data were 446 

comprised between 1998 and 2002 and as a consequence, matched with the period covered by 447 

data gathered for other compartments (see the second supplementary material). 448 

Total chlorophyll a was determined after size-fractioning filtration between nano- and 449 

microplankton (size > 3 µm) and picoplankton (size < 3 µm) and analysed by fluometric 450 

acidification procedure (Yentsch and Menzel, 1963). A ratio of carbon to chlorophyll a of 451 

50:1 was taken for conversion. Phytoplankton production was determined by the in situ 14C 452 

method (Steeman-Nielsen, 1952). 453 

A significant import of allochthonous material probably derives from large rivers flowing into 454 

the Bay of Biscay. A value of 454 kg C·km-2·year-1 was evaluated from Abril et al. (2002) and 455 

the mean discharge value of these systems (www.hydro.eaufrance.fr). 456 

Bacteria were fixed, stained and counted by epifluorescence microscopy (Porter and Feig, 457 

1980). Bacterial production was estimated using the method based on the tritiated thymidine 458 
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incorporation into DNA (Furhman and Azam, 1982). Values were converted into biomass and 459 

bacterial production assuming a cell content of 16 femtogram of carbon. The biomass was 460 

multiplied by two to take into account both pelagic and benthic bacteria populations. It is not 461 

possible to estimate the Q/B ratio for groups that feed exclusively on detritus. P/Q ratio for 462 

bacteria was derived from the paper by Vézina and Platt (1988) (Table 1 and 2). In Ecopath, 463 

detritus is not assumed to respire, although it would if bacteria were considered part of the 464 

detritus. This is why it was better to create a separate group for the detritus-feeding bacteria. 465 

 466 

2.4.6 Placing the fishery into the system: landings and discards 467 

Total French catches from the Bay of Biscay exceeded 90 000 tons in 1997. Anchovy 468 

(Engraulis encrasicolus) and pilchard (Sardina pilchardus) represented over half the pelagic 469 

catch, while hake (Merluccius merluccius), sole (Solea solea) and anglerfish (Lophius 470 

piscatorius and L. budegassa) dominated the demersal catch. The major French shellfish 471 

fishery is Norway lobster (Nephrops norvegicus) and this is located on the “Grande Vasière” 472 

in southern Brittany, as well as on the “Vasière” of the Gironde. Prawns and large crustaceans 473 

accounted for less of 2500 tons annually from the Bay of Biscay. Catches of cuttlefish (Sepia 474 

officinalis) and squid (Loligo vulgaris and L. forbesii) vary from year to year depending on 475 

their relative abundance; landings exceeded 6000 tons in 1997 (OSPAR Commission, 2000). 476 

Pelagic fish landings were obtained from the relevant working group (WGMHSA; ICES 477 

(2005b)). Benthic and demersal fish catches were based on international landings of ICES 478 

division VIIIa and b averaged over the 1998-2002 period for surveyed stocks (ICES, 2004) 479 

and on French landings statistics for the year 2002 for the main other targeted species. 480 

Among suprabenthic and benthic invertebrates, the Norwegian lobster has the greatest 481 

economic importance. Catches for this species were also available in the above-mentioned 482 

reference. 483 
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Cephalopod landings were taken from the relevant ICES working group (WGCEPH; ICES 484 

(2005a)) and were averaged over the 1996-2003 period. Since available landings included 485 

captures from division VIIIc as well, 86 % of the total value was considered to take into 486 

account the relative VIIIab/VIIIabc surfaces. 487 

In pelagic fisheries, discarding occurs in a sporadic way compared to demersal fisheries. 488 

Discard estimates are still not available for sardine and anchovy; however, given their high 489 

economic value, discard levels are thought to be low. Discard data for cephalopods are still 490 

not homogeneously collected by EU member countries. For these compartments, discards 491 

were set to zero in the model. Discards for benthic and demersal species were obtained from 492 

direct observations on Nephrops trawlers operating in the Bay of Biscay, 69 hauls being 493 

sampled over the whole 1998 year (Table 1). 494 

 495 

2.5 Trophic structure and ecological network analysis 496 

A flow diagram was created to synthesise the main trophic interactions in the ecosystem. 497 

Furthermore, to provide a quantitative description of the ecosystem structure, the effective 498 

trophic level (TL) and the omnivory index (OI) were calculated for each functional group, 499 

along with the transfer efficiencies (TE) between successive aggregated trophic levels along a 500 

modified Lindeman spine (Table 1). OI is a measure of the variance in trophic level of the 501 

prey of a given group. Ecosystem state and functioning were characterized by the total system 502 

throughput or activity (TST), which quantifies how much matter the system processes, Finn’s 503 

cycling index (FCI), which measures the relative importance of cycling to this total flow, and 504 

the total primary production to total respiration ratio (Pp/R), which expresses the balance 505 

between energy that is fixed and energy that is used for maintenance. The average residence 506 

time for energy in the system was estimated as the ratio of total system biomass to the sum of 507 

all respiratory flows and all exports (Herendeen, 1989). It has been assumed that the residence 508 
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time of particles in a system increases to a maximum during succession, as a result of 509 

increasing ecological organisation. The connectance index (CI) and the system omnivory 510 

index (SOI) were regarded as two indices reflecting the complexity of the inner linkages 511 

within the ecosystem. Taking into account both the size of the ecosystem in terms of flows 512 

(TST) and organization (information content), ascendency (A) has been proposed as an index 513 

to characterize the degree of development and maturity of an ecosystem (Ulanowicz, 1986). 514 

Capacity (C) represents the upper limit of A. The relative ascendency measure (A/C) is the 515 

fraction of the potential level of organization that is actually realized (Ulanowicz, 1986). It is 516 

hypothesized that high values of this index are related to low levels of stress in the system and 517 

vice-versa. Hence disturbance activities, like fishing, are expected to produce a decrease in A 518 

(Wulff and Ulanowicz, 1989). The complement to A is System Overhead (O), which 519 

represents the cost to an ecosystem for circulating matter and energy (Monaco and 520 

Ulanowicz, 1997). Thus, O effectively represents the degrees of freedom a system has at its 521 

disposal to react to perturbations (Ulanowicz, 1986).Values were compared with those 522 

provided by Sanchez and Olaso (2004) and Jimeno (2010) and for other comparable shelf 523 

ecosystems (summary table in Trites et al. (1999)). Finally, the mixed trophic impact (MTI) 524 

routine indicates the effect that a small increase in the biomass of one (impacting) group will 525 

have on the biomass of other (impacted) groups (Ulanowicz and Puccia, 1990). Particular 526 

attention was paid to the impacts of fisheries activities on higher trophic-level ecosystem 527 

components. Fishing activities were further described using the mean trophic level of the 528 

catches (TLc) and the primary production required to sustain harvest (PPR). TLc reflects the 529 

strategy of a fishery in terms of food-web components selected, and is calculated as the 530 

weighted average of TL of harvested species. The PPR required to sustain fisheries has been 531 

considered as an ecological footprint that highlights the role of fishing, in channelling marine 532 

trophic flows toward human use. To assess the effects of export from the system due to 533 
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fishing activities, the L index has been applied (Libralato et al., 2008). It is based on the 534 

assumption that the export of secondary production due to fisheries reduces the energy 535 

available for upper ecosystem levels, thus resulting in a loss of secondary production. The 536 

index that allows quantifying the effects of fishing at an ecosystem level is calculated as: 537 

� = −��� × 1�EBP9= �Q × ln	�1��⁄   (12) 538 

with Pp the primary production of the system. Estimates of PPR and Pp were based on the 539 

primary producers’ food chain and also by including detrital production. It is possible to 540 

associate with each index value a probability of the ecosystem being sustainably fished (Psust, 541 

Libralato et al. (2008), Coll et al. (2008)). At the same time, the exploitation rates (F/Z, 542 

fishing mortality to total mortality) by ecological group were also taken into account. 543 

Libralato et al. (2006) presented an approach for estimating without bias the 544 

“keystoneness”(KS) of living functional groups by combining their overall impact on the 545 

system (estimated from the MTI matrix) and their biomass proportion. Keystones are defined 546 

as relatively low biomass species with high overall effect. From the positive and negative 547 

contribution to the overall effect, it is possible to calculate the bottom-up and top-down 548 

effects that contribute to the keystoneness index. The relative importance of top-down or 549 

bottom-up trophic controls in continental shelf ecosystems has important implications for how 550 

ecosystems respond to perturbations (e.g. Frank et al. (2007)). 551 

 552 

3. Results 553 

The initial model was not balanced, since they were some ecotrophic efficiencies greater than 554 

1. Contrarily, gross food conversion efficiencies were mostly acceptable. Biomass and 555 

production estimates of most demersal fish, sardine and anchovy were insufficient to support 556 

consumption by mackerel and horse mackerel that constitute the two most abundant fish 557 

biomass in the area. More importantly, the biomass of horse mackerel was left to be estimated 558 
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by the model because of its migratory and bento-pelagic feeding behaviour that renders 559 

difficult the estimation of its abundance by scientific surveys. Consequently, proportions of 560 

those groups in the diet composition of mackerel and horse mackerel were re-assessed, and 561 

when consistent with existing literature, fixed to slightly lower values. In parallel, production 562 

terms for piscivorous, piscivorous and benthivorous and benthivorous demersal fish were re-563 

examined to determine higher acceptable values. 564 

Among the five ecological and physiological “rules” that should be met, the one concerning 565 

the decrease of biomass and vital rates with trophic levels was the more critical in our model. 566 

The biomass spectrum has too much biomass in the middle trophic levels, indicating that the 567 

model is most likely too focused on fish taxa (Fig. 2a). Twenty-five percent of compartments 568 

were fish species or groups. Q/B and R/B across trophic levels did not show the expected 569 

decline contrary to the P/B vital rate (Fig. 2b, c and d). This failure was mostly driven by the 570 

7 homeotherms’ groups at upper trophic levels which tend to have higher values than the 571 

trend line because of a higher consumptive demands per unit body mass than poikilotherms. 572 

The normal decomposition pattern was more marked when plotting total or scaled values of P, 573 

Q and R. The unique vital rate ratio approaching 1 concerned zooplankton which had a 574 

biomass in the same order of that of phytoplankton. This is the sole reasonable exception to 575 

this diagnostic given the high productivity and low standing stock biomass of primary 576 

producers. 577 

The flow diagram clarified the connections between levels (Fig. 3). Benthic and pelagic food 578 

chains appeared to be linked mainly in their upper ranges by demersal fishes, particularly 579 

suprabenthivorous species. They optimize foraging benefits by feeding from both systems and 580 

they are, in turn, consumed by a large panel of pelagic top-predators. OI in this study ranged 581 

between 0.037 and 1.914 and it was lowest for the common dolphin, which feeds almost 582 

exclusively on high-value pelagic species, and for the large hake, which preys solely on other 583 
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fish with TL values in the same range (Table 1 and 2). In contrast, other marine top-predators 584 

appeared far less specialized, with a significant proportion of their diet coming from imports 585 

to the system, assigned by Ecopath to a mid-trophic level position (TL II+), or from dead 586 

discarded organisms, assigned to a basal trophic level (TL I). 587 

The ecosystem consisted of five main aggregated trophic levels; biomass values for trophic 588 

levels VI to XII were extremely small. Transfer efficiencies between successive discrete 589 

trophic levels were regular from lower to higher trophic levels, the mean along this spine 590 

being 16.8 %. The primary producers, detritus and discarded organisms in TL I took 47.5 % of 591 

the throughput of the entire system. TL II was mainly bacteria, zooplankton and 592 

benthic/suprabenthic invertebrates representing 42.9 % of the total throughput. Thus, most of 593 

the activity (90 %) in terms of flow occurred in the lower part of the food web (Fig. 4). 594 

The system was estimated to process 939 103 kg C·km-2
·year-1 (TST), with 34.5 % of the total 595 

throughput being recycled (FCI). The overall residence time was calculated to be 0.046 years 596 

equivalent to 17 days. The herbivory to detritivory ratio that quantifies the flow along grazing 597 

and detrital food webs is an indication of the importance of detrital components in the system 598 

and was equal to 0.76 (Fig. 4). In addition, the EE of detritus was estimated to be 0.972, 599 

indicating that more or less all the energy entering this compartment is re-used in the system. 600 

All these elements suggested a strongly detritus-based trophic organization, with an intensive 601 

use of particulate organic matter as a food source. The primary production to respiration ratio 602 

(Pp/R) was 1.037. Concerning the two proxies for food-chain complexity (Table 3), the global 603 

omnivory of 0.212 (SOI) is a relatively “intermediate” value when compared with those 604 

obtained for other shelf ecosystems in the world and with outputs from previous Bay of 605 

Biscay models. The connectance of the trophic compartments of 0.213 (CI) was consistent 606 

with previous estimates but falls in the lower range. The system showed a relatively low value 607 

of A/C (22.7 %) and conversely a high value of O/C, A, O and C being respectively874,288, 608 
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2,981,572 and 3,856,013 flowbits. These values were close to the ones estimated for the 609 

French Atlantic shelf, i.e. 31% and 69 %. 610 

The mixed trophic impact routine underlined the fact that marine top-predators had very 611 

limited direct or indirect impacts on other trophic groups of the model. Among them, the 612 

bottlenose dolphin caused the most pronounced effect (Fig. 5). Fisheries had a direct negative 613 

impact on demersal fish stocks, particularly marked for piscivorous species such as large 614 

hakes. Fishery wastes, on the other hand, appeared beneficial to surface feeders. Fishing 615 

activities could in turn, be positively affected by a small increase in the targeted species, but 616 

also by a limited amount of their main food sources, which in the case of forage fish are 617 

composed of mesozooplanktonic organisms. In addition, fisheries were characterized by a TLc 618 

of 3.75, a PPR of 14.82 % and a L index of 0.06 calculated using a Pp equal to 445,931 kg 619 

C·km-2
·year-1 and an average transfer efficiency TE across trophic levels of 16.8%. This L 620 

value resulted in a probability of having been subjected to a sustainable fishing regime of 621 

29.86%. Exploitation rates by ecological group ranged between 0.013 for the carnivorous 622 

benthic invertebrates and 0.372 for the piscivorous demersal fish, with a median of 0.117. 623 

Another important feature of the MTI matrix concerned the joint favourable effect of sardine, 624 

pilchard and sprat on apex predators. The influence of detritus as a structuring compartment 625 

highlighted in the previous paragraph was reinforced by its positive effect on various groups, 626 

with the exception of primary producers, for which indirect negative influences predominated. 627 

Among consumers and producers, the keystone functional groups belonged to the plankton 628 

compartments: large phytoplankton, micro- and mesozooplankton (Fig. 6). The bottom-up 629 

effect, evaluated through the proportion of positive values contributing to the overall effect 630 

was 83, 43 and 70 % respectively.  631 

A sensitivity analysis revealed that the main results concerning the functioning of the 632 

ecosystem were not affected by lower EE for zooplankton. EE were set to lower values for the 633 
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three zooplankton compartments, i.e. 0.45, 0.35 and 0.35 for macro-, meso- and 634 

microzooplankton respectively, and the model was rerun. The herbivory to detritivory ratio 635 

calculated using the Lindeman spine was equal to 0.76 with current setting and to 0.56 with 636 

lower values of EE. Adding to this, the keystone species identified were the three same 637 

compartments (mesozooplankton, large phytoplanktonic cells and microzooplankton), with 638 

both sets of EE. 639 

 640 

4. Discussion 641 

Even though our Ecopath model was validated to meet certain standardization requirements 642 

on the basis of the PREBAL, gaps exist particularly on model structure that was most likely 643 

too focused on fish and that included numerous homeotherms’ groups. This particularity of 644 

our model was linked to future research questions that would be addressed with the present 645 

model on the Bay of Biscay. They necessitate mono-specific boxes for each small pelagics 646 

and marine mammals’ species frequenting the area. Model structure was recognized in many 647 

occasions to greatly influence the effectiveness for a model to capture real ecosystem 648 

properties (Fulton et al., 2003). 649 

 650 

4.1 Late successional position and implications for stability 651 

According to Odum (1969), the “strategy” of long-term evolutionary development of the 652 

biosphere is to increase homeostasis with the physical environment, in the sense of achieving 653 

maximum protection from its perturbations through a large, diverse and complex organic 654 

structure. The author proposed 24 attributes to characterize ecosystem development from 655 

“young” to “late” successional stages (the full list of attributes is given in the third 656 

supplementary material; Christensen (1995)). A careful analysis of the present system’s 657 

characteristics revealed that detritus is central to energy flow within the Bay of Biscay 658 
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continental shelf food web. This finding was confirmed by the Cantabrian Sea model 659 

(Sanchez and Olaso, 2004) that covered a small portion of the Bay presenting distinct hydro-660 

morphological characteristics and the model of Jimeno (2010) that encompassed the same 661 

area as our model but that was built with fewer specific local data. In these two previous 662 

attempts, detritus accounted for 19.3 % and 39 % of total consumption and constituted one of 663 

the main energy flow inputs as well. In the above-mentioned theory of ecosystem 664 

development, this (among other elements) is strongly characteristic of the community 665 

energetics of mature stages of ecosystem development. These detritus-based systems were 666 

demonstrated to be more likely to support energetically feasible food chains and to be more 667 

resilient than ecosystems based solely on primary production. The stabilizing effect of detritus 668 

on these systems is the result of constant allochthonous imports and/or a longer residence time 669 

of energy linked to internal cycling (Moore et al., 2004). Odum (1969) identified an increased 670 

degree of cycling as an indicator of more mature communities which tend to internalize flows. 671 

The high FCI value confirms the strategic position of detritus as a perennial reservoir of 672 

energy in the Bay of Biscay. The overall residence time matched with the range already 673 

reported for other continental shelves and seas at tropical latitudes (Christensen and Pauly, 674 

1993) and was thus considered as relatively “long” by the present authors. This high value 675 

was associated with ecosystem maturity, notably by selecting species with lower growth 676 

potential but stronger competitive performances as succession occurs (Odum, 1969). 677 

In addition to the dominance of detritivory in the food-web functioning, the Pp/R ratio 678 

indicates most likely that the system is in a state of organic carbon balance. According to 679 

Odum’s principles of ecological succession, this feature related to ecosystem bioenergetics is 680 

also an excellent index of the relative maturity of the system. CI and SOI are also correlated 681 

with system maturity since the internal ecological organization is expected to increase as the 682 

system matures. The relatively moderate values for these outputs suggested a “web-like” food 683 
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chain with an intermediate level of internal flow complexity, through which energy is 684 

transferred efficiently (mean TE far above the widely accepted value of 10 %). Comparisons 685 

with similar or comparable ecosystems (Trites et al., 1999; Jimeno, 2010) suggested that the 686 

Bay of Biscay continental shelf is relatively immature (ascendency) and has a high resistance 687 

to external perturbations (system overhead). This finding qualified the conclusion derived 688 

from other holistic metrics regarding the late maturity stage of the system which seems most 689 

probably “still developing”. 690 

However, the apparent dominance of heterotrophic processes in this food web, mostly based 691 

on regenerated production, should be viewed with caution in the light of some methodological 692 

choices made during model building. The restriction of the study area to the band between the 693 

30-m and 150-m isobaths, corresponding to a zone of relative homogeneity and highly 694 

documented, had necessary implications in terms of herbivory to detritivory ratio. First, a 695 

large variety of primary producers generally encountered inshore of the 30-m isobath, in the 696 

shallowest reaches of the open coast (e.g. seagrasses, macroalgae, and microphytobenthos) 697 

were thus partially ignored. Similarly, nutrients and carbon transport between shelves and the 698 

open ocean were not taken into account; in the Eastern Biscay, primary production of the 699 

shelf has been inferred to depend on oceanic imports (Huthnance et al., 2009).  700 

 701 

4.2 Bottom-up forcing as a general mechanism of control 702 

Cury et al. (2003) presented a general overview of the different types of energy flow in 703 

marine ecosystems that can be elucidated by plotting time series of predator and prey 704 

abundances. They illustrated the bottom-up control with a simplified four-level food web, 705 

through which the negative impact of the physical factor on the phytoplankton cascades to the 706 

zooplankton, the prey fish and the predators. For the South Bay of Biscay, analysis of 707 

quantitative long-term estimates of trophic-level abundances indicates that the coastal 708 
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phytoplankton-mesozooplankton system was mainly bottom-up regulated (Stenseth et al., 709 

2006). 710 

On the basis of ecosystem models, Libralato et al. (2006) demonstrated the generally high 711 

importance of bottom-up effects in keystoneness for shallow coastal ecosystems and semi-712 

enclosed marine environments such as the Chesapeake Bay, Georgia Strait, Prince Williams 713 

Sound in the northern hemisphere. Indeed, the lower part of the trophic web (phyto- and 714 

zooplankton) appears very important in these ecosystems, even if benthic groups also tend to 715 

have a high keystoneness index (KS). This finding contrasts with the traditional and 716 

widespread notion that keystone species/groups tend to be high-trophic-status species exerting 717 

a high impact by means of top-down effects (Paine, 1966). Based on the keystoneness 718 

analysis, the middle continental shelf of the Bay of Biscay can be added to the list of 719 

ecosystems exhibiting this “non-straightforward” pattern of keystoneness. Previous models of 720 

the Bay of Biscay (“Biscaya 1970”, “Biscaya 1998” (Ainsworth et al., 2001) and “Cantabrian 721 

Sea 1994” (Sanchez and Olaso, 2004)) were included in the comparative study of Libralato et 722 

al. (2006). It was interesting to note that planktonic compartments appeared as well in groups 723 

with the highest keystoneness, strengthening the conclusion that low trophic levels had a 724 

major structuring role in this food web. 725 

This result, in conjunction with the trophic aggregation in the Lindeman spine, strongly 726 

suggests here a “donor driven” ecosystem, and when associated to direct outputs from the 727 

MTI matrix, highlighted a marked bottom-up control of small pelagic fish by 728 

mesozooplanktonic prey. At upper-trophic-levels, although there is some limited evidence for 729 

top-down control of forage fish by predator populations, overall many observations suggest 730 

bottom-up control of predator populations by forage fish. Bottom-up control by forage fish is 731 

particularly noticeable for seabirds whose feeding strategies are usually less flexible because 732 

they are physically constrained to the near-surface layer (Cury et al., 2000). When looking at 733 
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the intersection between top-predators and forage fish communities in the present MTI matrix, 734 

the same conclusion of a dominant ascending regulation was emphasized. 735 

The relative importance of top-down and bottom-up mechanisms may be scale-dependent. 736 

Considering the large spatial scale of the study (> 100,000 km2), the explanation for this 737 

strong bottom-up control may lie in part in the species-energy relationship (Hunt and 738 

McKinnell, 2006). Across temperate to polar biomes, at large geographical scales, there is 739 

substantial evidence for a broadly positive monotonic relationship between species richness 740 

and energy availability. Global scale patterns of animal distribution most probably reflect 741 

natural spatial variability in abundance of prey (Gaston, 2000). Within the large-scale (67,000 742 

km2) fishing areas extending from southern California to western Alaska, a large proportion 743 

(87%) of the spatial variation in long-term, averaged, resident fish production was controlled 744 

by bottom-up trophic interactions and this linkage extends to regional areas as small as 10,000 745 

km2 (Ware and Thomson, 2005). The geographical location of the study area was proposed as 746 

a potential factor affecting trophic ecosystem regulation. A comparative study including 747 

ecosystems of both sides of the Atlantic showed that warmer, southern areas, which are more 748 

species rich, exhibited positive predator-prey associations, suggesting that resources limit 749 

predator abundance (Frank et al., 2007). The Bay of Biscay was considered as a southern 750 

locality in the above-mentioned study. 751 

 752 

4.3 Preliminary implications for ecosystem-based fisheries management 753 

First, comparison of two models of the Eastern Bering Sea ecosystem, separated by a forty 754 

year interval, revealed that fisheries tend to greatly reduce ecosystem maturity (Trites et al., 755 

1999). The paper of Christensen (1995) included several ecosystems for which the maturity 756 

state could be compared before and after a disturbance, notably fishing, and the findings were 757 

in all cases in agreement with disturbances leading to a reduction in maturity (Christensen and 758 
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Walters, 2004). The relatively late successional stage highlighted by the ecosystem’s 759 

attributes did not indicate that such a phenomenon was already taking effect in the Bay of 760 

Biscay. Secondly, trophodynamic indicators are particularly useful in synthesizing 761 

information made available by means of ecosystem models, for use in ecosystem approach to 762 

fisheries and in identifying and tracking ecosystem effects of fishing (Cury et al., 2005). The 763 

fairly high percentage of primary production required for harvests in this ecosystem (14.82 %) 764 

justifies growing concerns for sustainability and biodiversity. But when compared with 765 

previous PPR estimates of 24.2 % for tropical and 35.3 % for non-tropical shelves (Pauly and 766 

Christensen, 1995) and the fisheries of the Cantabrian Sea using 36.6 % of the total primary 767 

production (Sanchez and Olaso, 2004), the present value probably suggests a rate of 768 

exploitation that is more respectful of the carrying capacity of the ecosystem and more 769 

appropriate to the objective of sustainable fisheries than previously thought. Given the 770 

ecosystem-based reference framework relying on %PPR/TLc pairs, the Bay of Biscay 771 

continental shelf for the period “1994-2005” was classified as an ecosystem that is still 772 

“sustainably fished” with a probability around 70 % (Tudela et al., 2005). However, when 773 

using the more complex L index, the probability of the ecosystem to be sustainably fished 774 

decreased to a considerable lower value (30 %), depicting a much more pessimistic situation 775 

regarding the level of system exploitation. This index was different from previous one as it 776 

integrates both ecosystem properties and features of fishing activities. This inclusion accounts 777 

for differences in ecosystem functioning, thus allowing for meaningful results to be derived 778 

for different ecosystem types (Pranovi and Link, 2009). Adding to this, when considering 779 

stock specific exploitation rates, values for small pelagics and hake, when compared to those 780 

obtained for the same species in the Cantabrian Sea (Sanchez and Olaso, 2004) and to those of 781 

closely related species in southern coastal upwelling ecosystems (Coll et al., 2006), pointed 782 

towards a moderate exploitation of the resources over the Atlantic French continental shelf. 783 
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None of them exceeded 0.5, the limit reference point at which stocks should be considered as 784 

overexploited (Rochet and Trenkel, 2003).  785 

 786 

Conclusions 787 

In the context of other models developed for this area, this was the first attempt to 788 

characterize the Bay of Biscay continental shelf functioning with an Ecopath model. The three 789 

fundamental characteristics of this system that emerged from the present Ecological Network 790 

Analysis were that it was most likely detritus-based, relatively mature and bottom-up 791 

controlled, with phytoplanktonic and zooplanktonic keystone species. These conclusions had 792 

reinforced partial observations made from previous models of the area about the importance 793 

of low trophic levels as drivers of the trophic ecosystem functioning. The model developed 794 

here and the findings of the present study provide strong methodological support and relevant 795 

scientific basis respectively for addressing additional research questions through Ecosim 796 

simulations. Dynamic simulations would help in clarifying the exploitation status of the whole 797 

ecosystem and in identifying fishing scenarios that allow the maintenance of forage fish 798 

stocks, the conservation of top-predators and the persistence of a stable ecosystem. As a 799 

second step, Ecosim would be particularly useful in defining food-web indicator(s) in the light 800 

of the Marine Strategy Framework Directive. Based on the ecological properties derived from 801 

the model developed here, mesozooplankton abundance, diversity and/or biomass could, 802 

along with other factors and especially benthic compartments, be reliable indicators of Bay of 803 

Biscay continental shelf changes. 804 
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Figure Captions 823 

Figure 1: Study area of the Bay of Biscay continental shelf and locations of the main rivers 824 

flowing into it. For clarification, ICES divisions VIIIa, b, c and d are also added. Boundaries 825 

of the first two are shown with a bold line. 826 

 827 

Figure 2: PREBAL diagnostics depicting values obtained following the manual mass-balance 828 

procedure of the model. TL increase from right to left. To offer a better visualization, all 829 

primary producers’ groups (29 and 30 in Table 1) and zooplankton groups (25, 26 and 27 in 830 

Table 1) are summed. Abbreviations of vital rates are given in section 2.2. “Trophic 831 

modelling approach”. Groups depicted in black are primary producers and detritus in figure 832 

2a and marine mammals and seabirds in figure 2b, c and d. 833 

 834 

Figure 3: Trophic model of the Bay of Biscay continental shelf. Boxes are arranged using 835 

trophic-level (TL) as y-axis and benthic/pelagic partitioning as x-axis. The size of each box is 836 

proportional to the biomass it represents. Numbers refer to a code for compartments provided 837 

in Table 1. 838 

 839 

Figure 4: Biomasses, flows, transfer efficiencies are aggregated into integer trophic levels 840 

(TL) in the form of Lindeman spine. P stands for primary producers, D for detritus and TE for 841 

trophic efficiencies. In the present work, a modified Lindeman Spine is used to demonstrate 842 

the contribution of detritus-based and grazing food chains separately. 843 

 844 

Figure 5: Combined direct and indirect trophic impacts. Black circles indicate positive 845 

impacts and white circles negative impacts. 846 

 847 
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Figure 6: Keystoneness (KS) for the functional groups of the Bay of Biscay continental shelf 848 

food web. For each functional group, the keystoneness index (y-axis) is reported against 849 

overall effect (x-axis). Overall effects are relative to the maximum effect measured, thus for 850 

x-axis the scale is between zero and one. The keystone functional groups are those where the 851 

value of the proposed index is close to or greater than zero. Numbers refer to a code for 852 

compartments provided in Table 1. 853 

 854 
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Table 1: Input (regular) and output (bold) parameters for the ecosystem components used in the Bay of Biscay continental shelf model. TL: trophic level, OI: 
omnivory index, B: biomass (kg C·km-2), P/B: production/biomass ratio (year-1), Q/B: consumption/biomass ratio (year-1), EE: ecotrophic efficiency, P/Q: gross 
food conversion efficiency, U/Q: unassimilated consumption, landings (Y) and discards expressed in kg C·km-2

·year-1, Gear types used to catch each 
compartment: BT bottom trawler, GN gillnet, LL long-liner, PS purse seiner and PT pelagic trawler. 
 
                                                                    
                      TL   OI   B    P/B   Q/B   EE   P/Q   U/Q  Y    Gear type  Discards  
1. Plunge and pursuit divers seabirds       4.36   0.499  0.27   0.09   57.66  0    0.002  0.2                 
2. Surface feeders seabirds           3.72   1.328  0.07   0.09   69.96  0    0.001  0.2                 
3. Striped dolphins Stenella coeruleoalba     4.73   0.844  0.59   0.08   20.80  0    0.004  0.2                 
4. Bottlenose dolphins Tursiops truncatus     5.09   0.250  2.18   0.08   21.67  0    0.004  0.2                 
5. Common dolphins Delphinus delphis      4.61   0.057  1.44   0.08   26.11  0    0.003  0.2                 
6. Long-finned pilot whale Globicephala melas  4.65   1.914  0.83   0.05   10.34  0    0.005  0.2                 
7. Harbour porpoise Phocoena phocoena     4.69   0.069  0.06   0.08   40.69  0    0.002  0.2                 
8. Piscivorous demersal fish           4.67   0.037  48.45  0.55   2.03   0.996  0.271  0.2  9.90   BT/LL/GN       
9. Piscivorous and benthivorous demersal fish   4.05   0.568  130   0.66   3.42   0.994  0.192  0.2  3.51   BT/GN   13.82   
10. Suprabenthivorous demersal fish       3.49   0.114  311.20  0.55   5.30   0.995  0.104  0.2  0.15   BT     26.79   
11. Benthivorous demersal fish         3.41   0.394  28.97  0.87   5.51   0.979  0.158  0.2  4.41   BT/GN   0.20    
12. Mackerel Scomber scombrus         3.75   0.124  450   0.50   4.40   0.879  0.114  0.2  24.57  BT/PS    0.49    
13. Horse mackerel Trachurus trachurus     3.69   0.086  614.79  0.36   4.00   0.950  0.091  0.2  20.27  BT/PS    1.01    
14. Anchovy Engraulis encrasicolus       3.67       55.75  1.82   8.68   0.996  0.210  0.2  12.28  PT/PS         
15. Sardine Sardina pilchardus         3.44   0.277  184.20  0.68   8.97   0.935  0.076  0.2  9.28   PT/PS         
16. Sprat Sprattus sprattus           3.67       49.78  1.34   11.59  0.993  0.116  0.2                 
17. Benthic cephalopods            3.71   0.321  11.84  2.75   7.00   0.950  0.393  0.2  3.80   BT          
18. Pelagic cephalopods            4.45   0.362  22.45  3.20   7.50   0.950  0.427  0.2  2.27   BT          
19. Carnivorous benthic invertebrates       3.23   0.210  141   2.24   11.20  0.993  0.200  0.2  2.91   BT     1.09    
20. Necrophagous benthic invertebrates      2        16.97  1.53   15.30  0.954  0.100  0.2                 
21. Sub-surface deposit feeders invertebrates   2.34   0.224  234.80  1.60   8.00   0.966  0.200  0.3                 
22. Surface suspension and deposit feeders inv.  2        223.90  2.80   14   0.984  0.200  0.2                 
23. Benthic meiofauna             2        100   10   50   0.970  0.200  0.4                 
24. Suprabenthic invertebrates          2.14   0.189  38   20   100   0.975  0.200  0.2                 
25. Macrozooplankton (≥ 2 mm)         2.57   0.512  120   10.47  38   0.950  0.276  0.4                 
26. Mesozooplankton (0.2-2 mm)        2.67   0.381  638   16.44  80   0.950  0.206  0.4                 
27. Microzooplankton (≤ 0.2 mm)        2.18   0.154  894   45.05  316   0.950  0.143  0.4                 
28. Bacteria                 2        394   115   328.57  0.811  0.350  0.5                 
29. Large phytoplankton (≥ 3 µm)        1        1046  119       0.851                        
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30. Small phytoplankton (< 3 µm)        1        448   151       0.752                        
31. Discards                 1        46.67          0.788                        
32. Pelagic detritus              1    0.217  2800a          0.972                        
a Pelagic detritus biomass was entered preferentially in the model as its estimation was more precise compared to the one of benthic detritus. 
Detritus imports to the system were estimated to be 454 kg C·km-2

·year-1. 
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Table 2: Predator/prey matrix (column/raw). The fraction of one compartment consumed by another is expressed as the fraction of the total diet, the sum of 
each column being equal to one. 
                         1.   2.   3.   4.   5.   6.   7.   8.   9.   10.  11.  12.  13.  14.   
1. Plunge and pursuit divers seabirds                                                    
2. Surface feeders seabirds                                                         
3. Striped dolphins Stenella coeruleoalba                                                  
4. Bottlenose dolphins Tursiops truncatus                                                  
5. Common dolphins Delphinus delphis                                                   
6. Long-finned pilot whale Globicephala melas                                                
7. Harbour porpoise Phocoena phocoena                                                   
8. Piscivorous demersal fish                   0.014 0.335 0.015 0.002 0.011                       
9. Piscivorous and benthivorous demersal fish           0.097 0.169 0.031 0.085 0.240 0.150 0.040    0.010           
10. Suprabenthivorous demersal fish          0.100    0.345 0.081 0.004 0.006 0.216 0.180 0.055 0.005 0.030 0.017 0.010     
11. Benthivorous demersal fish                  0.148 0.125 0.032    0.012 0.050 0.010    0.010           
12. Mackerel Scomber scombrus            0.090 0.070    0.023 0.056 0.004 0.009 0.100 0.09  0.005    0.033 0.005     
13. Horse mackerel Trachurus trachurus        0.140 0.070    0.132 0.050 0.039 0.276 0.220 0.135 0.005 0.020 0.030 0.005     
14. Anchovy  Engraulis encrasicolus          0.070 0.130 0.002 0.002 0.226    0.003 0.130 0.022 0.005    0.011 0.005     
15. Sardine Sardina pilchardus            0.380 0.210    0.031 0.449 0.006 0.213 0.115 0.040 0.005    0.009 0.007     
16. Sprat Sprattus sprattus              0.140 0.110    0.009 0.080       0.055 0.018 0.005    0.007 0.005     
17. Benthic cephalopods                     0.006    0.032 0.243 0.009    0.010 0.002 0.003           
18. Pelagic cephalopods                     0.122 0.093 0.025 0.006 0.008    0.005 0.003 0.007 0.005 0.010     
19. Carnivorous benthic invertebrates                                  0.275    0.200    0.020     
20. Necrophagous benthic invertebrates                                 0.020    0.050           
21. Sub-surface deposit feeders invertebrates                              0.030    0.120           
22. Surface suspension and deposit feeders invertebrates                          0.220    0.540           
23. Benthic meiofauna                                                           
24. Suprabenthic invertebrates                                     0.010 0.380       0.010     
25. Macrozooplankton (≥ 2 mm)               0.120          0.050          0.175    0.200 0.150     
26. Mesozooplankton (0.2-2 mm)                                      0.410    0.655 0.723 1    
27. Microzooplankton (≤ 0.2 mm)                                            0.033 0.050     
28. Bacteria                                                               
29. Large phytoplankton (≥ 3 µm)                                                      
30. Small phytoplankton (< 3 µm)                                                      
31. Discards                    0.080 0.290                   0.020    0.010           
32. Pelagic detritus                                                            
Import                             0.266       0.559 0.003                       
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Table 2: (continued) 
                          15.  16.  17.  18.  19.  20.  21.  22.  23.  24.  25.  26.  27.  28.  
1. Plunge and pursuit divers seabirds                                                    
2. Surface feeders seabirds                                                         
3. Striped dolphins Stenella coeruleoalba                                                  
4. Bottlenose dolphins Tursiops truncatus                                                  
5. Common dolphins Delphinus delphis                                                   
6. Long-finned pilot whale Globicephala melas                                                
7. Harbour porpoise Phocoena phocoena                                                   
8. Piscivorous demersal fish                                                        
9. Piscivorous and benthivorous demersal fish            0.060 0.100                               
10. Suprabenthivorous demersal fish                    0.070 0.005                            
11. Benthivorous demersal fish                   0.002                                  
12. Mackerel Scomber scombrus                      0.190                               
13. Horse mackerel Trachurus trachurus                  0.085                               
14. Anchovy  Engraulis encrasicolus                    0.080                               
15. Sardine Sardina pilchardus                      0.057                               
16. Sprat Sprattus sprattus                        0.073                               
17. Benthic cephalopods                      0.040 0.035 0.004                            
18. Pelagic cephalopods                         0.050 0.005                            
19. Carnivorous benthic invertebrates                 0.210 0.050 0.051                            
20. Necrophagous benthic invertebrates                      0.005                            
21. Sub-surface deposit feeders invertebrates             0.079    0.205                            
22. Surface suspension and deposit feeders invertebrates         0.079    0.270                            
23. Benthic meiofauna                             0.210    0.340                      
24. Suprabenthic invertebrates                    0.180 0.090 0.035                            
25. Macrozooplankton (≥ 2 mm)                   0.350 0.090 0.060                            
26. Mesozooplankton (0.2-2 mm)            0.800 1      0.030 0.110             0.050 0.200 0.050       
27. Microzooplankton (≤ 0.2 mm)            0.090                         0.050 0.200 0.500 0.040    
28. Bacteria                                                         0.130    
29. Large phytoplankton (≥ 3 µm)            0.110                   0.600 0.100 0.900 0.600 0.300 0.290    
30. Small phytoplankton (< 3 µm)                                                0.180    
31. Discards                                 0.010 0.020                         
32. Pelagic detritus                              0.030 0.980 0.660 0.400 0.900       0.150 0.360 1   
Import                                                                  
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Table 3: Values taken by indices (SOI and CI) reflecting the complexity of the inner linkages 
within the ecosystem for the present model and previous attempts to modelize parts of the 
Bay of Biscay continental shelf. 
 
                                        
     Present model    French Atlantic shelf    Cantabrian Sea       
               (Jimeno, 2010)      (Sanchez and Olaso, 2004)  
SOI    0.212        0.164          0.268           
CI    0.213        0.340          0.318           
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