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29 Observatoire de Haute-Provence, F-04870, St.Michel l’Observatoire, France
30 Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint, 5, RO 40557, Bucharest, Romania
31 JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440, USA
32 INAF Osservatorio Astrofisico di Catania, Via S.Sofia 78, 95123, Catania, Italy
33 Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de la Palma, Santa Cruz de Tenerife, Spain
34 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo, Norway

Received 2010 Sep 9, accepted 2010 Sep 13
Published online 2010 Nov 11

Key words methods: data analysis – stars: interiors – stars: late-type – stars: oscillations

We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars,
made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscil-
lation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the
appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed
modes in one of the three stars.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The year 2009 marked an important milestone in aster-
oseismology, with the launch of the NASA Kepler Mis-
sion (Gilliland et al. 2010). Kepler will realize signif-
icant advances in our understanding of stars, thanks to

� Corresponding author: karoff@bison.ph.bham.ac.uk

its asteroseismology program, particularly for cool (solar-
type) main-sequence and subgiant stars that show solar-like
oscillations, i.e., small-amplitude oscillations intrinsically
damped and stochastically excited by the near-surface con-
vection (see Christensen-Dalsgaard 2004 for a recent re-
view). Solar-like oscillation spectra have many modes ex-
cited to observable amplitudes. The rich information con-
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tent of these seismic signatures means that the fundamen-
tal stellar properties (e.g., mass, radius, and age) may be
measured and the internal structures constrained to levels
that would not otherwise be possible (e.g., see Gough 1987;
Cunha et al. 2007).

For its first ten months of science operations, Kepler
will survey around 2000 solar-type stars for solar-like os-
cillations, with each star being observed for one month at
a time. After this initial “Survey Phase” approximately 100
solar-type stars will be selected for long-term observations.
At the time of writing, the number of known solar-type os-
cillators has increased by approximately one order of mag-
nitude, thanks to Kepler. This is with only about 40 % of
the total Survey Phase data available. The large homoge-
nous sample of data presented by Kepler opens the possibil-
ity to conduct a seismic survey of the solar-type part of the
colour-magnitude diagram, to compare trends in observed
properties with trends predicted from stellar structure and
evolutionary models.

In the Kepler Asteroseismic Science Consortium
(KASC) Working Group #1 has responsibility for astero-
seismic analysis of solar-type stars. First results were pre-
sented by Chaplin et al. (2010) on three G-type stars, and
many publications from the Survey Phase are planned for
the second half of 2010.

2 Kepler Asteroseismic Science Consortium
Working Group #1: solar-like oscillators

The KASC Working Group #1 is responsible for the data
analysis and modeling of the solar-type stars observed by
Kepler. The Group, which is chaired by W.J. Chaplin, is
divided into nine sub-groups:

1. Extraction of Mean Parameters,
chair: R. A. Garcı́a;

2. Extraction of individual mode parameters,
chair: T. Appourchaux;

3. Analysis of Mode Excitation and Damping,
chair: G. Houdek;

4. The Stellar Background,
chair: C. Karoff;

5. Model Grid Comparison,
chair: T. S. Metcalfe;

6. Fitting Models to Observed Frequencies,
chair: M. J. P. F. G. Monteiro;

7. Modeling Rotation, Mixing and New Physics,
chair: M. J. Thompson;

8. Analysis of Long-Term Variations,
chair: Y. Elsworth;

9. Ground-based Follow-Up,
chair: J. Molenda-Żakowicz.

This paper gives a brief summary of the work under-
taken by sub-groups 1 to 4 on the three G-type dwarfs in
Chaplin et al. (2010). Metcalfe et al. (this volume) and

Fig. 1 Power density spectra of the three G-type stars analyzed
by Chaplin et al. (2010).

Molenda-Żakowicz et al. (this volume) describe, respec-
tively, the corresponding work performed by sub-groups 5
to 7, and sub-group 9.

Recent improvements in the quality of asteroseismic ob-
servations, in particular from the excellent quality CoRoT
data (Michel et al. 2008), but also from other space- and
ground-based observing facilities, have driven improve-
ments in asteroseismic data analysis techniques. These im-
provements have been followed by significant work on
preparing for the mode-parameter analysis of the Kepler
data. This analysis involves the estimation of individual and
average mode parameters, and also estimation of parameters
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that describe non-resonant signatures of convection and ac-
tivity that are present in the Kepler data. Examples include
work conducted in the framework of asteroFLAG (Chaplin
et al. 2008); and work undertaken by the CoRoT Data Anal-
ysis Team (e.g., Appourchaux et al. 2008). This has led to
the development of suites of analysis tools for application
to the Kepler data (e.g., see Campante et al. 2010; Hekker
et al. 2010; Huber et al. 2009; Karoff et al. 2010; Mathur
et al. 2010; Mosser & Appourchaux 2009; Roxburgh 2009).
The levels of preparedness meant that analysis of the first
observations of solar-type stars by Kepler (see Fig. 1) could
be made in a timely fashion, in order to meet the publica-
tion deadlines set down by NASA. Shown below is a list of
the different tasks that were conducted for the Chaplin et al.
(2010) paper:

21 Oct.: data received;
23 Oct.: global seismic analysis;
26 Oct.: paper written and sent to sub-group chairs;

2 Nov.: paper approved by working sub-group chairs and
sent to working group members;

16 Nov.: paper approved by working group members and
submitted.

3 Signatures of convection in the stellar
background

Power-frequency spectra of photometric observations of the
Sun and other solar-type stars show not only signatures of
oscillations, but also signatures arising from other intrinsic
stellar phenomena. In order of increasing frequency there is
power due to: rotational modulation of effects of magnetic
activity, like starspots, and also the decay of active regions;
granulation; and faculae. We might also hope in the future
to be able to detect signatures of chromospheric oscillations
and high-frequency waves, both of which are observed in
the Sun.

The characteristic timescales and amplitudes of the
components arising from the decay of active regions, gran-
ulation, and faculae are commonly represented using a
Harvey-like model (Harvey 1985):

B(ν) =
∑

i

4σ2
i τi

1 + (2πντi)α
+ c , (1)

where σ is the amplitude of the component, τ is the char-
acteristic timescale, ν is the frequency, and c is a constant
that give the white noise level. The exponent α depends on
the “memory” of the physical process responsible for the
component.

Chaplin et al. (2010) were able to measure not only the
characteristic timescales and amplitudes of the granulation
component, but also the presence (and properties of) a com-
ponent assumed to be the signature of faculae (marked by
the arrow in Fig. 2). We are now in the process of measuring
the characteristic timescales and amplitudes of the differ-
ent background components in around 200 solar-type stars

Fig. 2 Power density spectra of the three G-type stars analyzed
by Chaplin et al. (2010), smoothed by Gaussian running-means of
width of two times the large frequency separations. The spectra
of KIC 3656476 and KIC 11026764 have been shifted upwards
by 1 and 5 ppm2/µHz, respectively. The arrows mark the locations
of the signature of faculae. The dashed and dotted lines show the
best-fitting models of the granulation and facular components, re-
spectively.

observed during the first four months of the Kepler astero-
seismic survey. These stars have been selected because they
show clear signatures of solar-like oscillations, meaning that
we will also be able to perform a full asteroseismic analysis
of their data to provide estimates of masses, radii and ages.
The aim of this study will be to identify how signatures of
convection and activity vary with stellar properties.

4 The échelle diagrams

Solar-like p modes of high radial order and low angular de-
gree are reasonably well-described by the asymptotic rela-
tion (Tassoul 1980):

νn,l ∼ Δν(n + l/2 + ε) − l(l + 1)D0. (2)

Here, n (the radial order) and l (the angular degree) are in-
tegers. D0 is the small frequency separation parameter and
ε is a phase constant determined by the reflection properties
near the surface.

Departures of stellar oscillation frequencies from the
asymptotic relation may be shown visually by plotting the
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oscillation power in a so-called échelle diagram (Grec et
al. 1983), as is done in Fig. 3. Here, the oscillation power
for each star has been plotted against the frequencies mod-
ulo the average large frequency separation. Individual strips
of the power spectrum are offset vertically, such that the
mean value of each échelle order gives the lower frequency
of each échelle order.

Were a star to obey strictly the asymptotic rela-
tion, its frequencies would lie in vertical ridges in the
échelle diagram. The échelle diagrams in Fig. 3 show
that stars KIC 6603624 and KIC 3656476 exhibit only
small departures from an asymptotic description, whereas
KIC 11026764 shows clear deviations in its l = 1 ridge.
These deviations are due to the fact that this star has started
to evolve off the main sequence and thus shows avoided
crossings (Osaki 1975; Aizenman et al. 1977). Avoided
crossings result from interactions between acoustic modes
and buoyancy modes, which affect (or “bump”) the frequen-
cies and also change the intrinsic properties of the modes,
with some taking on mixed acoustic and buoyancy charac-
teristics. The precise signatures of these avoided crossings
are very sensitive to the evolutionary state of the star. It is
therefore reasonable to assume that the presence of mixed
modes will improve significantly the age determination of
stars.

For solar-type stars Δν provides a measure of the in-
verse of the sound travel time across the star, while D0

is sensitive to the sound-speed gradient near the core. It
is conventional to define two small frequency separations:
δν02, which is the spacing between adjacent modes of l = 0
and l = 2; and δν13, the spacing between adjacent modes of
l = 1 and l = 3. The asymptotic relation then predicts that
δν02 = 6D0 and δν13 = 10D0. The spacings δν02 are seen
clearly in all three stars. It is normally assumed that l = 3
modes are too weak to be visible in stellar photometric ob-
servations like the ones we have from Kepler (Kjeldsen et al.
2008). None of the three stars reported here shows convinc-
ing evidence for l = 3 modes; however, preliminary analyses
of Kepler Survey data do show possible evidence of l = 3
modes in some stars.

We add in passing that KIC 3656476 does show signs
of extra power on the high-frequency side of its l = 1 mode
at ≈1770 μHz (marked by the arrow in Fig. 3). We do not
expect this power to be due to the presence of an l = 3
mode. Such power would lie on the low-frequency side of
the stronger l = 1 mode, like its l = 2 counterparts, which
for this star clearly lie on the low-frequency side of their
l = 0 neighbours. Aside from the possibility this might be
an artifact, it is conceivable that the extra power might be
the signature of a mixed mode (see also Bedding et al. 2010
for a discussion of this).

5 Individual mode parameters

At the time of writing we have access to data on a few hun-
dred solar-type stars. The quality of these data is such that

Fig. 3 Échelle diagrams of the three G-type stars analyzed by
Chaplin et al. (2010). The spectra have been smoothed by a Gaus-
sian running-mean with a width of 2 µHz, before substrings of the
spectra were stacked on top of one another. The large separation in
the three stars were measured to 110.2 ± 0.6, 94.1 ± 0.6 and 50.8
± 0.3 µHz (from top to bottom).

it is possible to extract estimates of individual frequencies,
amplitudes, and also some mode lifetimes, in a large frac-
tion of the targets showing evidence for solar-type oscilla-
tions. It may also be possible to extract estimates of rota-
tional splittings in some of the more rapidly rotating stars.

The analysis of the three G-type stars has shown that not
only can the oscillation mode frequencies and amplitudes be
measured with high precision, but it is also possible to place
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Fig. 4 Oscillation mode linewidth for KIC 11026764. Note how
similar the change in linewidth as a function of frequency is to
what has been observed for the Sun.

constraints on the mode lifetimes, which in all three cases
appear to be similar in length to the Sun. Moreover, the anal-
ysis of KIC 11026764 show that the mode lifetimes plateau
is at frequencies close to the frequency of maximum power
νmax (see Fig. 4), just as for the Sun (see Chaplin et al. 2009
for a discussion of the predictions of mode lifetimes).

The observed maximum mode amplitudes of the three
stars are all higher than solar. This is in line with predic-
tions from simple scaling relations (Kjeldsen & Bedding
1995; Samadi et al. 2007), which use the inferred funda-
mental stellar properties as input. Data from a larger selec-
tion of survey stars are required before we can say anything
more definitive about the relations.

Kepler will deliver multi-year datasets for the best solar-
type asteroseismic targets, and from these data we expect to
be able to extract: signatures of rapid structural changes in
the stellar interiors, from the borders of convective regions
and from zones of ionization in the near-surface layers; rota-
tional splittings as a function of n and l, and possibly subtle
signatures originating from differential rotation; and chang-
ing oscillation mode frequencies and amplitudes due to stel-
lar cycles (see Karoff et al. 2009 for details)
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