
HAL Id: hal-00683311
https://hal.science/hal-00683311v1

Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardness of longest common subsequence for sequences
with bounded run-lengths

Guillaume Blin, Laurent Bulteau, Minghui Jiang, Pedro J. Tejada, Stéphane
Vialette

To cite this version:
Guillaume Blin, Laurent Bulteau, Minghui Jiang, Pedro J. Tejada, Stéphane Vialette. Hardness of
longest common subsequence for sequences with bounded run-lengths. 23rd Annual Symposium on
Combinatorial Pattern Matching (CPM’12), Jul 2012, Helsinki, Finland. pp.138-148, �10.1007/978-3-
642-31265-6_11�. �hal-00683311�

https://hal.science/hal-00683311v1
https://hal.archives-ouvertes.fr

Hardness of longest common subsequence

for sequences with bounded run-lengths

Guillaume Blin1, Laurent Bulteau2, Minghui Jiang3,
Pedro J. Tejada3, and Stéphane Vialette1

1 Université Paris-Est, LIGM, UMR 8049, France.
2 Université de Nantes, LINA, UMR 6241, France.

3 Utah State University, Department of Computer Science, USA.

Abstract. The longest common subsequence (LCS) problem is a classic and well-studied
problem in computer science with extensive applications in diverse areas ranging from
spelling error corrections to molecular biology. This paper focuses on LCS for fixed alpha-
bet size and fixed run-lengths (i.e., maximum number of consecutive occurrences of the
same symbol). We show that LCS is NP-complete even when restricted to (i) alphabets
of size 3 and run-length at most 1, and (ii) alphabets of size 2 and run-length at most 2
(both results are tight). For the latter case, we show that the problem is approximable
within ratio 3/5.

1 Introduction

The longest common subsequence (lcs for short) problem is a classic and well-studied
problem in computer science with extensive applications in diverse areas ranging from
spelling error corrections to molecular biology. A subsequence of a string is obtained
by deleting zero or more symbols of that string. This problem is a specialization of
the notion of edit distance in which we do not consider the operation of substitution.
Finding the longest string which is equal to a subsequence of two or more strings is
known as the longest common subsequence (LCS) problem. LCS has been extensively
studied during the last 30 years. In particular the case where the number of sequences is
2 has been studied in detail, and LCS is well-known to be polynomial-time solvable by
dynamic programming in this case (see [?] and references therein). Furthermore, there
exist methods with lower complexity which often depend on the length of the lcs, the size
of the alphabet, or both (the best general reference is [?]). More generally, the problem
is solvable in polynomial-time by dynamic programming when the number of input
sequences is constant. For the general case of an arbitrary number of input sequences,
the problem is NP-complete [?]. The problem has been also studied in the framework
of parameterized complexity [?,?,?]. LCS for unbounded alphabet size is W[t]-hard for
t ≥ 1 when parameterized by the number of input sequences, and W[2]-hard when
parameterized by the length of the sought common subsequence. For a fixed alphabet
size, LCS is W[1]-hard when parameterized by the number of input sequences but
is fixed-parameter tractable when parameterized by the length of the sought common
subsequence.

Run-length encoding is a well-known method for compressing strings, and a whole
line of research is devoted to studying LCS for run-length encoded strings. A string s is

run-length encoded if it is described as an ordered sequence of pairs (σ, i), often denoted
σi, each consisting of an alphabet symbol σ and an integer i. Each pair corresponds
to a run in s consisting of i consecutive occurrences of σ. For example, the string s =
bbbbbaaccc can be encoded as b5a2c3. Two typical examples of run-length encoding are
image compression since many images contain large runs of identically-valued pixels, and
mini-satellites in biological sequences since these sequences contain a large number of
tandem repeats. In this context, two lines of research are being explored. A first line of
research has tried to improve the running time of the algorithms by using sparse dynamic
programming to compute small subsets of the elements in the standard lcs table [?,?,?,?].
A second line of research has tried to find algorithms with running times depending only
on the number of runs in the input strings, without computing individual elements of
the standard lcs table [?,?]. It is worth mentioning that work has also been done on
computing the similarity of two run-length encoded in the affine gap penalty model [?],
the string edit distance problem, the pairwise global alignment problem, and the pairwise
local alignment problem in the linear-gap model with arbitrary scoring matrices [?], and
on computing the constrained lcs of run-length encoded strings [?]. Refer to [?,?,?,?,?]
and references therein for more problems on run-length encoded strings.

This paper is devoted to studying LCS for the general case of an arbitrary number
of input sequences for a fixed size alphabet with a special focus on fixed run-lengths. To
shorten notations, for positive integers p and q, we let LCS(p, q) stand for LCS where
input sequences are defined over an alphabet of size at most p, and each input sequence
has maximum run-length at most q. Abusing notation, we shall write q = ∞ to denote
unbounded run-lengths.

The paper is organized as follows. In Section 2, we present a new simple proof for
the hardness of LCS for binary alphabets and show that LCS(3, 1) is NP-complete.
Section 3 is devoted to proving hardness of LCS(2, 2), and we consider in Section 4
approximation issues of this problem.

2 Preliminary results and NP-completeness of LCS(3, 1)

For an arbitrary number of sequences, Maier [?] showed that LCS is NP-complete
even for an alphabet of size 2 (in our terms, LCS(2,∞) is NP-complete). This result
can be found in almost every textbook on algorithms and serves as a classical example
to demonstrate the limit of dynamic programming approaches to solving LCS for an
arbitrary number of input sequences. However, Maier’s proof is notoriously complicated
and we propose here as a warm-up an alternate and simpler proof (we shall next adapt
this proof to prove the NP-completeness of LCS(3, 1)).

Proposition 1. LCS(2,∞) is NP-complete.

Proof. Let G = (V,E) be a graph with n vertices and m edges. Write V = {1, 2, . . . , n}.
We construct m + 1 sequences S0, S1, . . . , Sm over alphabet Σ = {0, 1}, each of length
at most (n + 1)2 − 2 as follows. The sequence S0 is defined to be (0n1)n. For each
edge ej = {u, v} ∈ E, u < v and 1 ≤ j ≤ m, the sequence Sj is defined to be

(0n1)u−1 0n (0n1)v−u 0n (0n1)n−v. For example, in a graph with 7 vertices the edge
between vertices 2 and 4 is represented by the sequence 071 07 (071)2 07 (071)3.

We claim that the graphG has an independent set of size k if and only if the sequences
S0, S1, . . . , Sm have a common subsequence of length n2 + k.

Suppose first that G has an independent set I of size k. Consider the sequence
T = T1 T2 . . . Tn, where Ti = 0n if i /∈ I and Ti = 0n1 if i ∈ I. Clearly, |T | = n2 + k,
and T is a subsequence of S0. Furthermore, since each edge has at least one vertex not
in I, it can be seen (details omitted) that T is a common subsequence of S1, S2, . . . , Sm.

We now prove the reverse implication. Suppose that S0, S1, . . . , Sm have a common
subsequence of length n2 + k. Then any lcs of these m + 1 input sequences has length
at least n2 + k. Let Topt be an lcs of S0, S1, . . . , Sm, and consider a multiple alignment
of S0, S1, . . . , Sm inducing Topt. We modify this multiple alignment by shifting 0s right
to obtain another multiple alignment inducing Topt where matched 0s cannot be shifted
right anymore. For each sequence Sj , 0 ≤ j ≤ m, find the rightmost 0 included in
the multiple alignment and shift it right until it is the rightmost 0 of Sj or it is just
before a 1 included in the multiple alignment. Observe that each one of those 0s is
the rightmost 0 of a 0n1 or a 0n substring, and hence all the other 0s in those 0n1 or
0n substrings of Sj , 0 ≤ j ≤ m, can be aligned by shifting other 0s included in the
alignment right (otherwise, Topt is not an lcs). Moreover, observe that at least one 0
from each 0n1 substring of S0 has to be included in the alignment since otherwise we
obtain |Topt| ≤ n(n+1)−n = n2 < n2+ k, for any k ≥ 1, contradicting our assumption
that the length of an lcs is at least n2+k. Thus by repeating this shifting process for the
substrings of Sj , 0 ≤ j ≤ m, to the left of the last 0n1 or 0n substrings considered, we
can make sure that all the 0s in S0 are included in the alignment, and moreover all the
symbols that are included in the alignment from each 0n1 substring of S0 are aligned
with symbols from the same 0n1 or 0n substring of Sj , 1 ≤ j ≤ m.

Therefore a longest common subsequence is obtained by including all the 0s in S0 and
maximizing the number of 1s that can be aligned. After the shifting process described
above it can be seen that for each edge ej = {u, v} of G, at least one of the two 0n1
substrings at positions u and v of S0 must be aligned with a substring 0n of Sj . To
maximize the number of 1s in Topt, pick such vertices to create a minimum vertex cover.
The remaining vertices form a maximum independent set and thus |Topt| = n2 + α(G).
Hence, if we suppose that S0, S1, . . . , Sm has a common subsequence of length n2 + k ≤
n2 + α(G), then G has an independent set of size k ≤ α(G). ��

Taking run-lengths into consideration, we observe that LCS(2, 1) is certainly solvable
in polynomial-time since each input sequence is a binary string with alternate symbols.
(We shall prove in Section 3 that LCS(2, 2) is, however, already NP-complete.) The
following negative result is thus tight.

Proposition 2. LCS(3, 1) is NP-complete.

Proof. Let G be a graph with n vertices and m edges. We construct m + 1 sequences
of length at most (n + 1)(2n + 1) − 2, over alphabet Σ = {a, b, c}. The proof uses

the construction of Proposition 1 where we replace each 0 by ab and each 1 by c. For
example, in a graph with 7 vertices the edge between vertices 2 and 4 is represented by
the sequence (ab)7c (ab)7 ((ab)7c)2 (ab)7 ((ab)7c)3

We claim that the graphG has an independent set of size k if and only if the sequences
S0, S1, . . . , Sm have a common subsequence of length 2n2 + k.

For the direct implication, the proof works as for the one of Proposition 1. For the
reverse implication, a similar argument can be used to show that there is an alignment
that induces an lcs including all the as and bs of S0, and for which all the included
symbols from each (ab)nc substring of S0 are aligned with symbols from the same (ab)nc
or (ab)n substring of Sj , 1 ≤ j ≤ m: instead of finding the rightmost 0, simply find the
rightmost b included in the alignment (if the rightmost symbol in {a, b} included in the
alignment is an a, the alignment does not induce an lcs) and shift it right until it is the
rightmost b of Sj or it is next to a c included in the alignment; then align all the other
as and bs in the same (ab)nc or (ab)n substrings of Sj , 0 ≤ j ≤ m. Then again, an lcs is
obtained by including all the as and bs in S0 and maximizing the number of cs that can
be aligned, and the rest of the proof works. ��

3 NP-completeness of LCS(2, 2)

In the light of Proposition 1 and Proposition 2, a natural question arises: is LCS(2, 2)
polynomial-time solvable? In other words, for an alphabet of size 2, does limiting the
run-length to its minimal non-trivial value enough to guarantee tractability? We answer
by the negative, and this section is devoted to proving hardness of LCS(2, 2).

The following easy property will turn to be extremely useful for the rest of the
discussion as it allows us to focus on common subsequences with run-lengths at most 2.

Proposition 3. Let S be an arbitrary input instance of LCS(2, 2). Then, there exists
an lcs of S with maximum run-length 2.

Proof. For any three consecutive identical symbols in a longest common subsequence,
the second symbol can always be replaced. ��

We, however, observe that the above proposition cannot be taken as a general rule.
Indeed, the following two propositions rule out any extension of Proposition 3 to larger
alphabets and/or run-lengths.

Proposition 4. For any integer n, there exist an input instance S of LCS(3, 1) such
that every lcs of S has maximum run-length at least n.

Proof. It is enough to observe that the lcs of (01)n and (02)n is 0n. ��

Proposition 5. For any integer n, there exist an input instance S of LCS(2, 3) such
that every lcs of S has maximum run-length at least n.

Proof. Let Ln be the set of all sequences on alphabet Σ = {0, 1} that start with 0,
contain exactly n 0s, have run-length at most 3 for 0, and contain no two consecutive 1s
(i.e., run-lengths at most 1 for 1). Clearly, a common subsequence of Ln has length n

since 0n is a common subsequence of Ln. We show by induction on n that the only lcs of
Ln is 0n. The property is certainly valid for 1 ≤ n ≤ 3 since 0n ∈ Ln. For n ≥ 4, assume
that the property holds up to n− 1, and suppose, aiming at a contradiction, that there
exists a common subsequence T of Ln that contains at least one 1. Write T = 0p 1R,
where 0 ≤ p ≤ n and R ∈ Σ∗. Define S = (01)p−10001 (S = 001 if p = 0). The sequence
S contains p + 2 0s, and we claim that 0 ≤ p ≤ n − 2. Indeed, if p > n − 2 then the
smallest prefix of S that contains n 0s belongs to Ln but is not a super-sequence of T , a
contradiction. Now, define L� = SLn−p−2. We have L� ⊆ Ln, and hence T is a common
subsequence of L�. Furthermore, by construction of S, R is a common subsequence of
Ln−p−2. Therefore, by the induction hypothesis, R has length at most n − p − 2, and
hence T has length at most p+ 1 + (n− p− 2) = n− 1. ��

Before diving into the reduction, we need the following definitions. A 10-sequence is
a sequence starting with 1 and ending with 0. If S and T are 10-sequences, we say that
S is a 10-tight subsequence of T if S is a subsequence of T and neither 10S nor S10 is
a subsequence of T . The following easy lemmas are used in upcoming Proposition 6.

Lemma 1. Let S1, T1, S2, and T2 be 10 sequences. If S1 is a 10-tight subsequence of T1

and S2 is a 10-tight subsequence of T2, then S1S2 is a 10-tight subsequence of T1T2.

Lemma 2. Let S1, S2, S3, T1, T2, T3 be 10-sequences where S1 is a 10-tight subsequence
of T1, and S3 is a 10-tight subsequence of T3. Then, S1S2S3 is a subsequence of T1T2T3

if and only if S2 is a subsequence of T2.

Proposition 6. LCS(2, 2) is NP-complete.

The proof is by a reduction from 3-SAT. Let an arbitrary instance of 3-SAT be
given by a CNF formula Φ with n variables {v1, v2, . . . , vn} and m clauses. For any
variable vi, we write +vi for positive literal vi, −vi for the negative literal vi, and ±vi

for any literal of variable vi. First, we define 9 basic substrings as follows (bold is used
to emphasize some difference between the strings; A0 vs B0, {X,Y, Z}− vs {X,Y, Z}+):

A0 = 10110011 0010 B0 = 10110101 0010 D0 = 1100 1100 1100

X− = 1011001 00100 Y− = 11011001 00100 Z− = 11011001 0010

X+ = 1011011 00100 Y+ = 11011011 00100 Z+ = 11011011 0010

We now define m + 2 sequences {A,B,C1, C2, . . . , Cm} based on these 9 substrings.
The first two sequences are simply defined to be A = (A0)n and B = (B0)n. For each
1 ≤ j ≤ m, write x ∨ y ∨ z for the j-th clause of the formula, where literals x, y and z

are ±va, ±vb, and ±vc respectively and a < b < c. Define

Xj =

�
X− if x = −va

X+ if x = +va
Yj =

�
Y− if y = −vb

Y+ if y = +vb
Zj =

�
Z− if z = −vc

Z+ if z = +vc

and
L = (A0)

a−1
Xj (1 0D0)

b−a−1 R = (D0 1 0)
c−b−1

Zj (A0)
n−c

.

The string Cj is defined to be Cj = L 1 0Yj 1 0R.
After the construction step, we now turn to proving the correctness of the reduction.

We need some technical lemmas. Let P = 1011011 0010 and N = 1011001 0010.

Lemma 3. A and B have 2n lcs, they are exactly {P,N}n.

Proof. Consider an alignment that induces an lcs of A and B. Note that B0 is divided
into a left block 101101 and a right block 010010. There are 2n such blocks in B. We
show that the number of fully matched blocks is exactly m = n.

Every sequence of {P,N}n has length 11n and is a common subsequences of A and
B. Since |A| = |B| = 12n, both A and B have n symbols that are not part of the
common subsequence. Therefore, at most n blocks can be partially matched (otherwise
we miss more than n symbols), and hence m ≥ n. Furthermore, each block of B that is
fully matched introduces at least one gap in A (since no block of B is a substring of A).
Thus we also have m ≤ n. Moreover, in A, the gap between two substrings matched to
two consecutive blocks of B must be 0.

In the alignment, the 2n blocks of B specify 2n corresponding blocks of A, where
each fully matched block of B corresponds to a partially matched block of A with one
gap, and, each partially matched block of B with one gap corresponds to a completely
matched block of A. Observe that a completely matched block (10110)1 of B introduces
a single gap in A only if it corresponds to a partially matched block (10110)01 of A
which is a prefix of A0, and that a completely matched block 0(10010) of B introduces a
single gap in A only if it corresponds to a partially matched block 01(10010) of A which
is a suffix of A0. Since the prefix (10110)01 and the suffix 01(10010) both overlap in each
A0, there must be at most one completely matched block (10110)1 or 0(10010) in each
B0. Hence each B0 contains one fully matched block and one partially matched block,
and, for each B0, the lcs contains either (10110)1 (10010) = P or (10110) 0(10010) = N .
Therefore, the lcs is in {P,N}n. ��

According to Lemma 3, if sequences {A,B,C1, C2, . . . , Cm} have an lcs of length 11n,
then it is in {P,N}n. A sequence S ∈ {P,N}n is easily mapped to a truth assignment
φS as follows: φS(vi) = true if the i-th block of S is P , and φS(vi) = false otherwise.

Lemma 4. For any j and any sequence S ∈ {P,N}n, S is a subsequence of Cj if and
only if φ(vs) satisfies the j-th clause of Φ.

Proof. We write Si for the i-th block of S (such that for every i, Si ∈ {P,N}). For i ≤ j,
we write Si..j = SiSi+1 . . . Sj . If φS satisfies a boolean term t, we write φS � t, otherwise
φS � t. We first need to compare P and N with each basic substring of Cj , and we
obtain the following important relations (the proof is tedious but easy).

– P is a 10-tight subsequence of A0, 10D0, D010, X+, Z+, X−10, 10Z−.
– N is a 10-tight subsequence of A0, 10D0, D010, X−, Z−, X+10, 10Z+.

– P (but not N) is a subsequence of Y+, and N (but not P) is a subsequence of Y−. P
and N are subsequences of 10Y−, Y−10, 10Y+ and Y+10.

We prove the lemma by combining Lemma 1 with the above relations. The proof is
divided into three parts.

Part 1: from 1 to b− 1. Each Si, 1 ≤ i < a, is a 10-tight subsequence of A0, and hence
S1..a−1 is a 10-tight subsequence of (A0)a−1. Furthermore, sequence Sa is a subsequence
of Xj if and only if φS � x (since P is a subsequence of X+ but not of X−, and N is
a subsequence of X− but not of X+). Similarly, Sa is a 10-tight subsequence of Xj10 if
and only if φS � x. Hence,

– if φS � x, S1..a is a subsequence of (A0)a−1Xj ,
– if φS � x, S1..a is a 10-tight subsequence of (A0)a−1Xj10.

Moreover, each Si, a < i < b, is a 10-tight subsequence of 10D0 and D010, and hence

– if φS � x, S1..b−1 is a subsequence of (A0)a−1Xj(10D0)b−a−1 = L,
– if φS � x, S1..b−1 is a 10-tight subsequence of (A0)a−1Xj(10D0)b−a−110 = L10.

Part 2: from n down to b+1. Using a similar argument as in Part 1, reading sequences
from right to left, with Zj instead of Xj , we have:

– if φS � z, Sb+1..n is a subsequence of (D010)c−b−1Zj(A0)n−c = R,
– if φS � z, Sb+1..n is a 10-tight subsequence of 10(D010)c−b−1Zj(A0)n−c = 10R.

Part 3: junction. If φS � x, then S1..b−1, Sb, Sb+1..n are subsequences of L, 10Yj , 10R,
respectively, and hence S is a subsequence of Cj = L10Yj10R. If φS � y, then S1..b−1,
Sb, Sb+1..n are subsequences of L10, Yj , 10R, respectively, and hence S is a subsequence
of Cj = L10Yj10R. If φS � z, then S1..b−1, Sb, Sb+1..n are subsequences of L10, Yj10, R,
respectively, and hence S is a subsequence of Cj = L10Yj10R.

If φS � x ∨ y ∨ z, then Sb is not a subsequence of Yj . Since S1..b−1 and Sb+1..n

are 10-tight subsequences of L10 and 10R, respectively, then, according to Lemma 2,
S = S1..b−1SbSb+1..n is not a subsequence of Cj = L10 Yj 10R. ��

Proof (Proof of Proposition 6.). Let S be an lcs of {A,B,C1, . . . , Cm}. If S has length at
least 11n, then by Lemma 3 it is in {P,N}n, and by Lemma 4, φS satisfies every clause
of Φ, and hence Φ is satisfiable. Conversely, if Φ is satisfiable, set any truth assignment,
and create sequence S = S1 S2 . . . Sn such that Si = P if vi is true, and Si = N

otherwise. Then S is a common subsequence of {A,B,C1, C2, . . . , Cm} of size 11n. Since
the construction of sequences A,B,C1, . . . , Cm can be carried on in polynomial-time,
LCS(2, 2) is NP-complete. ��

4 Approximation

LCS is approximable within ratio O(m/ log(m)), where m is the length of the shortest
input string [?]. It is, however, not approximable within ratio nε for any constant ε < 1,

where n is the length of the longest input string [?] (see also [?]), and APX-hard if
the size of the alphabet is fixed [?]. Despite the discouraging results, it has been proved
that LCS over a fixed alphabet can be indeed very well approximated on the average by
using a simple algorithm called Long Run [?]. Bonizzoni et al. [?] developed an approx-
imate algorithm for LCS called Expansion Algorithm (their algorithm first compresses
sequences to streams by the same concept of run-length encoding, then progressively
find a common sequence of all streams by the bottom-up tree merging technique).

We present here a 3/5-approximation algorithm for LCS(2, 2). The algorithm is by
combining an exhaustive search for a limited number of common subsequences with
linear programming techniques.

Proposition 7. LCS(2, 2) is approximable within ratio 3/5.

Proof. Let S1, S2, . . . , Sm, bem input sequences over alphabetΣ = {0, 1} with maximum
run-length 2. The approximation algorithm is as follows:

Input: Subsequences S1, S2, . . . , Sn over alphabet Σ = {0, 1}
Output: A common subsequence of S1, S2, . . . , Sn

for all P ∈ {0, 1, 01, 001, 011, 0011} do

Let TP be the lcs of S1, S2, . . . , Sn in P ∗

end for

return the length of the longest common subsequence TP

For the sake of clarity, write A = 01, B = 001, C = 011, D = 0011, and X =
{A,B,C,D}. We focus on the case where each input sequence starts with 0 and termi-
nates with 1 (the general case is easily deduced from this restriction).

Let Topt be an lcs of S1, S2, . . . , Sm. According to Proposition 3, there is no loss of
generality in assuming that Topt has maximum run-length 2. Let nopt = |Topt|, and k

be the number of 01 substrings in Topt. First, it is easily seen that X is a code (i.e., any
u ∈ Σ∗ has at most one X-factorization). Furthermore, since each input sequence starts
with 0 and terminates with 1, so does any lcs, and hence Topt. Let Topt = t1t2 . . . tk

be the X-factorization of Topt. Let nA (respectively nB, nC , and nD) be the number of
indices i, 1 ≤ i ≤ k, such that ti = A (respectively, ti = B, ti = C, and ti = D), and
define nA = nA/nopt, nB = nB/nopt, nC = nC/nopt, nD = nD/nopt. Then it follows
that nopt = 2nA + 3nB + 3nC + 4nD, and hence

2nA + 3nB + 3nC + 4nD ≥ 1 (1)

(Notice that (1) is fundamentally an equality but only the “≥” part is used in the rest
of the proof.)

We now turn to relating |TP |, P ∈ {0, 1, 01, 001, 011, 0011}, to nA, nB, nC , and nD.
From optimality of |TP |, P ∈ {0, 1, 01, 001, 011, 0011}, we obtain

|T0| ≥ nA + 2nB + nC + 2nD

|T1| ≥ nA + nB + 2nC + 2nD

|TA| ≥ 2nA + 2nB + 2nC + 2nD

|TB| ≥ 3nB + 3nD

|TC | ≥ 3nC + 3nD

|TD| ≥ 4nD.

By definition, the approximation ratio r of our algorithm is defined by

r = max{|T0|, |T1|, |TA|, |TB|, |TC |, |TD|}/nopt,

and hence

r ≥ nA + 2nB + nC + 2nD (2)

r ≥ nA + nB + 2nC + 2nD (3)

r ≥ 2nA + 2nB + 2nC + 2nD (4)

r ≥ 3nB + 3nD (5)

r ≥ 3nC + 3nD (6)

r ≥ 4nD (7)

Inequalities (1) to (7) together with domain constraints nA ≥ 0, nB ≥ 0, nC ≥ 0, and
nD ≥ 0 define a (minimization) linear program (LP) that can be solved to optimality
in polynomial-time. Let r∗ be the optimal solution of the defined LP (referred to as the
primal problem). The dual LP reads as follows:

maximize y1

such that y2 + y3 + y4 + y5 + y6 + y7 ≤ 1

2y1 ≤ y2 + y3 + 2y4

3y1 ≤ 2y2 + y3 + 2y4 + 3y5

3y1 ≤ y2 + 2y3 + 2y4 + 3y6

4y1 ≤ 2y2 + 2y3 + 2y4 + 3y5 + 3y6 + 4y7

By the strong duality theorem, r∗ is also an optimal solution for the dual LP. A lower
bound for the dual LP is obtained as follows: y2 = y3 = y7 = 0, y4 = 3/5, y5 = y6 = 1/5,
and y1 = 3/5, and hence r∗ ≥ 3/5, thereby proving the proposition. ��

Two remarks are worth making about the proof of Proposition 7. First, the ap-
proximation ratio of the proposed algorithm is exactly 3/5. Indeed, for the sequence
(0110010011)n none of the tested patterns in {0, 1, 01, 001, 011, 0011} would return a
subsequence of length greater than 3n/5. Second, our lower bound for the dual problem
is defined by y2 = y3 = y7 = 0, and hence using patterns A∗, B∗ and C∗ only would
yield the same approximation ratio.

References

1. H.-Y. Ann, C.-B. Yang, C.-T. Tseng, and C.-Y.Hor. Fast algorithms for computing the constrained
lcs of run-length encoded strings. In H.R. Arabnia and M.Q. Yang, editors, Proc. International
Conference on Bioinformatics & Computational Biology (BIOCOMP), Las Vegas, USA, CSREA
Press, pages 646–649, 2009.

2. H.-Y. Ann, C.-B. Yang, C.-T. Tseng, and C.-Y. Hor. A fast and simple algorithm for computing
the longest common subsequence of run-length encoded strings. Information Processing Letters,
108:360–364, 2008.

3. A. Apostolico, G.M. Landau, and S. Skiena. Matching for run-length encoded strings. Journal of
Complexity, 15(1):4–16, 1999.

4. L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms.
In Proc. of the 7th International Symposium on String Processing Information Retrieval (SPIRE),
Coruña, Spain, pages 39–48. IEEE Computer Society, 2000.

5. P. Berman and G. Schnitger. On the complexity of approximating the independent set problem.
Information and Computation, 96:77–94, 1992.

6. H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hallett, and H.T. Wareham. Parameterized
complexity analysis in computational biology. Computer Applications in the Biosciences, 11(1):49–
57, 1995.

7. H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The parameterized complexity
of sequence alignment and consensus. Theoretical Computer Science, 147:31–54, 1994.

8. P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approximation algorithm for the
lcs. Discrete Applied Mathematics, 110(1):13–24, 2001.

9. H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-length coded
strings. Information Processing Letters, 54:93–96, 1995.

10. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge, 2007.
11. V. Freschi and A. Bogliolo. Longest common subsequence between run-length-encoded strings: a

new algorithm with improved parallelism. Information Processing Letters, 90:167–173, 2004.
12. M.M. Halldórsson. Approximation via partitioning. Technical report, School of Information Science,

Japan Advanced Institute of Science and Technology, Hokuriku, 1995.
13. P.-H. Hsu, K.-Y. Chen, , and K.-M. Chao. Finding all approximate gapped palindromes. In Y. Dong,

D.-Z. Du, and O.H. Ibarra, editors, Proc. 20th International Symposium Algorithms and Computation
(ISAAC), Honolulu, USA, number 5878 in Lecture Notes in Computer Science, pages 1084–1093,
2009.

14. G.S. Huang, J.J. Liu, and Y.L. Wang. Sequence alignment algorithms for run-length-encoded strings.
In Xi. Hu and J. Wang, editors, Proc. 14th Annual International Computing and Combinatorics
Conference (COCOON), Dalian, China, number 5092 in Lecture Notes in Computer Science, pages
319–330, 2008.

15. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common
subsequences. SIAM Journal on Computing, 24:1122–1139, 1995.

16. P.-H. Hsu K.-Y. Chen and K.-M. Chao. Finding all approximate gapped palindromes. In O. Cheong,
K.-Y Chwa, and K Park, editors, Proc. 21th International Symposium Algorithms and Computation
(ISAAC), Jeju Island, Korea, number 6507 in Lecture Notes in Computer Science, pages 339–350,
2010.

17. J.W. Kim, A. Amir, G.M. Landau, and K. Park. Computing similarity of run-length encoded strings
with affine gap penalty. Theoretical Computer Science, 395:268–282, 2008.

18. J.J. Liu, G.S. Huang, and Y.L. Wang. A fast algorithm for finding the positions of all squares in a
run-length encoded string. Theoretical Computer Science, 410:3942–3948, 2009.

19. J.J. Liu, G.S. Huang, Y.L. Wang, and R.C.T. Lee. Edit distance for a run-length-encoded string
and an uncompressed string. Information Processing Letters, 105:12–16, 2007.

20. J.J. Liu, Y.L. Wang, and R.C.T. Lee. Finding a longest common subsequence between a run-length-
encoded string and an uncompressed string. Journal of Complexity, 24:173–184, 2008.

21. D. Maier. The complexity of some problems on subsequences and supersequences. Journal of the
ACM, 25(2):322–336, 1978.

22. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto. Efficient algo-
rithms to compute compressed longest common substrings and compressed palindromes. Theoretical
Computer Science, 410:900–913, 2009.

23. J.S.B. Mitchell. A geometric shortest path problem, with application to computing a longest common
subsequence in run-length encoded strings. Technical report, Department of Applied Mathematics,
SUNY Stony Brook, 1997.

24. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence
and longest common subsequence problems. J. of Computer and System Sciences, 67(4):757–771,
2003. Special issue on Parameterized computation and complexity.

