Guillaume Blin

Laurent Bulteau

Minghui Jiang

Pedro J Tejada

Stéphane Vialette

Hardness of longest common subsequence for sequences with bounded run-lengths

The longest common subsequence (LCS) problem is a classic and well-studied problem in computer science with extensive applications in diverse areas ranging from spelling error corrections to molecular biology. This paper focuses on LCS for fixed alphabet size and fixed run-lengths (i.e., maximum number of consecutive occurrences of the same symbol). We show that LCS is NP-complete even when restricted to (i) alphabets of size 3 and run-length at most 1, and (ii) alphabets of size 2 and run-length at most 2 (both results are tight). For the latter case, we show that the problem is approximable within ratio 3/5.

Introduction

The longest common subsequence (lcs for short) problem is a classic and well-studied problem in computer science with extensive applications in diverse areas ranging from spelling error corrections to molecular biology. A subsequence of a string is obtained by deleting zero or more symbols of that string. This problem is a specialization of the notion of edit distance in which we do not consider the operation of substitution. Finding the longest string which is equal to a subsequence of two or more strings is known as the longest common subsequence (LCS) problem. LCS has been extensively studied during the last 30 years. In particular the case where the number of sequences is 2 has been studied in detail, and LCS is well-known to be polynomial-time solvable by dynamic programming in this case (see [?] and references therein). Furthermore, there exist methods with lower complexity which often depend on the length of the lcs, the size of the alphabet, or both (the best general reference is [?]). More generally, the problem is solvable in polynomial-time by dynamic programming when the number of input sequences is constant. For the general case of an arbitrary number of input sequences, the problem is NP-complete [?]. The problem has been also studied in the framework of parameterized complexity [?,?,?]. LCS for unbounded alphabet size is W[t]-hard for t ≥ 1 when parameterized by the number of input sequences, and W [START_REF] Ann | A fast and simple algorithm for computing the longest common subsequence of run-length encoded strings[END_REF]-hard when parameterized by the length of the sought common subsequence. For a fixed alphabet size, LCS is W [START_REF] Ann | Fast algorithms for computing the constrained lcs of run-length encoded strings[END_REF]-hard when parameterized by the number of input sequences but is fixed-parameter tractable when parameterized by the length of the sought common subsequence.

Run-length encoding is a well-known method for compressing strings, and a whole line of research is devoted to studying LCS for run-length encoded strings. A string s is run-length encoded if it is described as an ordered sequence of pairs (σ, i), often denoted σ i , each consisting of an alphabet symbol σ and an integer i. Each pair corresponds to a run in s consisting of i consecutive occurrences of σ. For example, the string s = bbbbbaaccc can be encoded as b 5 a 2 c 3 . Two typical examples of run-length encoding are image compression since many images contain large runs of identically-valued pixels, and mini-satellites in biological sequences since these sequences contain a large number of tandem repeats. In this context, two lines of research are being explored. A first line of research has tried to improve the running time of the algorithms by using sparse dynamic programming to compute small subsets of the elements in the standard lcs This paper is devoted to studying LCS for the general case of an arbitrary number of input sequences for a fixed size alphabet with a special focus on fixed run-lengths. To shorten notations, for positive integers p and q, we let LCS(p, q) stand for LCS where input sequences are defined over an alphabet of size at most p, and each input sequence has maximum run-length at most q. Abusing notation, we shall write q = ∞ to denote unbounded run-lengths.

The paper is organized as follows. In Section 2, we present a new simple proof for the hardness of LCS for binary alphabets and show that LCS(3, 1) is NP-complete. Section 3 is devoted to proving hardness of LCS(2, 2), and we consider in Section 4 approximation issues of this problem.

2 Preliminary results and NP-completeness of LCS [START_REF] Apostolico | Matching for run-length encoded strings[END_REF][START_REF] Ann | Fast algorithms for computing the constrained lcs of run-length encoded strings[END_REF] For an arbitrary number of sequences, Maier [?] showed that LCS is NP-complete even for an alphabet of size 2 (in our terms, LCS(2, ∞) is NP-complete). This result can be found in almost every textbook on algorithms and serves as a classical example to demonstrate the limit of dynamic programming approaches to solving LCS for an arbitrary number of input sequences. However, Maier's proof is notoriously complicated and we propose here as a warm-up an alternate and simpler proof (we shall next adapt this proof to prove the NP-completeness of LCS(3, 1)).

Proposition 1. LCS(2, ∞) is NP-complete.
Proof. Let G = (V, E) be a graph with n vertices and m edges. Write V = {1, 2, . . . , n}. We construct m + 1 sequences S 0 , S 1 , . . . , S m over alphabet Σ = {0, 1}, each of length at most (n + 1) 2 -2 as follows. The sequence S 0 is defined to be (0 n 1) n . For each edge e j = {u, v} ∈ E, u < v and 1 ≤ j ≤ m, the sequence S j is defined to be (0 n 1) u-1 0 n (0 n 1) v-u 0 n (0 n 1) n-v . For example, in a graph with 7 vertices the edge between vertices 2 and 4 is represented by the sequence 0 7 1 0 7 (0 7 1) 2 0 7 (0 7 1) 3 .

We claim that the graph G has an independent set of size k if and only if the sequences S 0 , S 1 , . . . , S m have a common subsequence of length n 2 + k. Suppose first that G has an independent set I of size k. Consider the sequence

T = T 1 T 2 . . . T n , where T i = 0 n if i / ∈ I and T i = 0 n 1 if i ∈ I. Clearly, |T | = n 2 +
k, and T is a subsequence of S 0 . Furthermore, since each edge has at least one vertex not in I, it can be seen (details omitted) that T is a common subsequence of S 1 , S 2 , . . . , S m .

We now prove the reverse implication. Suppose that S 0 , S 1 , . . . , S m have a common subsequence of length n 2 + k. Then any lcs of these m + 1 input sequences has length at least n 2 + k. Let T opt be an lcs of S 0 , S 1 , . . . , S m , and consider a multiple alignment of S 0 , S 1 , . . . , S m inducing T opt . We modify this multiple alignment by shifting 0s right to obtain another multiple alignment inducing T opt where matched 0s cannot be shifted right anymore. For each sequence S j , 0 ≤ j ≤ m, find the rightmost 0 included in the multiple alignment and shift it right until it is the rightmost 0 of S j or it is just before a 1 included in the multiple alignment. Observe that each one of those 0s is the rightmost 0 of a 0 n 1 or a 0 n substring, and hence all the other 0s in those 0 n 1 or 0 n substrings of S j , 0 ≤ j ≤ m, can be aligned by shifting other 0s included in the alignment right (otherwise, T opt is not an lcs). Moreover, observe that at least one 0 from each 0 n 1 substring of S 0 has to be included in the alignment since otherwise we obtain |T opt | ≤ n(n + 1)n = n 2 < n 2 + k, for any k ≥ 1, contradicting our assumption that the length of an lcs is at least n 2 + k. Thus by repeating this shifting process for the substrings of S j , 0 ≤ j ≤ m, to the left of the last 0 n 1 or 0 n substrings considered, we can make sure that all the 0s in S 0 are included in the alignment, and moreover all the symbols that are included in the alignment from each 0 n 1 substring of S 0 are aligned with symbols from the same 0 n 1 or 0 n substring of S j , 1 ≤ j ≤ m.

Therefore a longest common subsequence is obtained by including all the 0s in S 0 and maximizing the number of 1s that can be aligned. After the shifting process described above it can be seen that for each edge e j = {u, v} of G, at least one of the two 0 n 1 substrings at positions u and v of S 0 must be aligned with a substring 0 n of S j . To maximize the number of 1s in T opt , pick such vertices to create a minimum vertex cover. The remaining vertices form a maximum independent set and thus

|T opt | = n 2 + α(G).
Hence, if we suppose that S 0 , S 1 , . . . , S m has a common subsequence of length

n 2 + k ≤ n 2 + α(G), then G has an independent set of size k ≤ α(G).
Taking run-lengths into consideration, we observe that LCS(2, 1) is certainly solvable in polynomial-time since each input sequence is a binary string with alternate symbols. (We shall prove in Section 3 that LCS(2, 2) is, however, already NP-complete.) The following negative result is thus tight. Proof. Let G be a graph with n vertices and m edges. We construct m + 1 sequences of length at most (n + 1)(2n + 1) -2, over alphabet Σ = {a, b, c}. The proof uses the construction of Proposition 1 where we replace each 0 by ab and each 1 by c. For example, in a graph with 7 vertices the edge between vertices 2 and 4 is represented by the sequence (ab) 7 c (ab) 7 ((ab) 7 c) 2 (ab) 7 ((ab) 7 c) 3 We claim that the graph G has an independent set of size k if and only if the sequences S 0 , S 1 , . . . , S m have a common subsequence of length 2n 2 + k.

For the direct implication, the proof works as for the one of Proposition 1. For the reverse implication, a similar argument can be used to show that there is an alignment that induces an lcs including all the as and bs of S 0 , and for which all the included symbols from each (ab) n c substring of S 0 are aligned with symbols from the same (ab) n c or (ab) n substring of S j , 1 ≤ j ≤ m: instead of finding the rightmost 0, simply find the rightmost b included in the alignment (if the rightmost symbol in {a, b} included in the alignment is an a, the alignment does not induce an lcs) and shift it right until it is the rightmost b of S j or it is next to a c included in the alignment; then align all the other as and bs in the same (ab) n c or (ab) n substrings of S j , 0 ≤ j ≤ m. Then again, an lcs is obtained by including all the as and bs in S 0 and maximizing the number of cs that can be aligned, and the rest of the proof works.

NP-completeness of LCS(2, 2)

In the light of Proposition 1 and Proposition 2, a natural question arises: is LCS(2, 2) polynomial-time solvable? In other words, for an alphabet of size 2, does limiting the run-length to its minimal non-trivial value enough to guarantee tractability? We answer by the negative, and this section is devoted to proving hardness of LCS(2, 2).

The following easy property will turn to be extremely useful for the rest of the discussion as it allows us to focus on common subsequences with run-lengths at most 2. Proposition 3. Let S be an arbitrary input instance of LCS(2, 2). Then, there exists an lcs of S with maximum run-length 2.

Proof. For any three consecutive identical symbols in a longest common subsequence, the second symbol can always be replaced.

We, however, observe that the above proposition cannot be taken as a general rule. Indeed, the following two propositions rule out any extension of Proposition 3 to larger alphabets and/or run-lengths. Proposition 4. For any integer n, there exist an input instance S of LCS(3, 1) such that every lcs of S has maximum run-length at least n.

Proof. It is enough to observe that the lcs of (01) n and (02) n is 0 n . Proposition 5. For any integer n, there exist an input instance S of LCS(2, 3) such that every lcs of S has maximum run-length at least n.

Proof. Let L n be the set of all sequences on alphabet Σ = {0, 1} that start with 0, contain exactly n 0s, have run-length at most 3 for 0, and contain no two consecutive 1s (i.e., run-lengths at most 1 for 1). Clearly, a common subsequence of L n has length n since 0 n is a common subsequence of L n . We show by induction on n that the only lcs of L n is 0 n . The property is certainly valid for 1 ≤ n ≤ 3 since 0 n ∈ L n . For n ≥ 4, assume that the property holds up to n -1, and suppose, aiming at a contradiction, that there exists a common subsequence T of L n that contains at least one 1. Write T = 0 p 1 R, where 0 ≤ p ≤ n and R ∈ Σ * . Define S = (01) p-1 0001 (S = 001 if p = 0). The sequence S contains p + 2 0s, and we claim that 0 ≤ p ≤ n -2. Indeed, if p > n -2 then the smallest prefix of S that contains n 0s belongs to L n but is not a super-sequence of T , a contradiction. Now, define L = SL n-p-2 . We have L ⊆ L n , and hence T is a common subsequence of L . Furthermore, by construction of S, R is a common subsequence of L n-p-2 . Therefore, by the induction hypothesis, R has length at most np -2, and hence T has length at most p + 1 + (np -2) = n -1.

Before diving into the reduction, we need the following definitions. A 10-sequence is a sequence starting with 1 and ending with 0. If S and T are 10-sequences, we say that S is a 10-tight subsequence of T if S is a subsequence of T and neither 10S nor S10 is a subsequence of T . The following easy lemmas are used in upcoming Proposition 6.

Lemma 1. Let S 1 , T 1 , S 2 , and T 2 be 10 sequences. If S 1 is a 10-tight subsequence of T 1 and S 2 is a 10-tight subsequence of T 2 , then S 1 S 2 is a 10-tight subsequence of T 1 T 2 .

Lemma 2. Let S 1 , S 2 , S 3 , T 1 , T 2 , T 3 be 10-sequences where S 1 is a 10-tight subsequence of T 1 , and S 3 is a 10-tight subsequence of T 3 . Then, S 1 S 2 S 3 is a subsequence of T 1 T 2 T 3 if and only if S 2 is a subsequence of T 2 . Proposition 6. LCS(2, 2) is NP-complete.

The proof is by a reduction from 3-SAT. Let an arbitrary instance of 3-SAT be given by a CNF formula Φ with n variables {v 1 , v 2 , . . . , v n } and m clauses. For any variable v i , we write +v i for positive literal v i , -v i for the negative literal v i , and ±v i for any literal of variable v i . First, we define 9 basic substrings as follows (bold is used to emphasize some difference between the strings; A 0 vs B 0 , {X, Y, Z} -vs {X, Y, Z} +): The first two sequences are simply defined to be A = (A 0) n and B = (B 0) n . For each 1 ≤ j ≤ m, write x ∨ y ∨ z for the j-th clause of the formula, where literals x, y and z are ±v a , ±v b , and ±v c respectively and a < b < c. Define

A 0 =
X j = X -if x = -v a X + if x = +v a Y j = Y -if y = -v b Y + if y = +v b Z j = Z -if z = -v c Z + if z = +v c and L = (A 0) a-1 X j (1 0 D 0) b-a-1 R = (D 0 1 0) c-b-1 Z j (A 0) n-c . The string C j is defined to be C j = L 1 0 Y j 1 0 R.
After the construction step, we now turn to proving the correctness of the reduction. We need some technical lemmas. Let P = 1011 011 0010 and N = 1011 001 0010. Thus we also have m ≤ n. Moreover, in A, the gap between two substrings matched to two consecutive blocks of B must be 0.

In the alignment, the 2n blocks of B specify 2n corresponding blocks of A, where each fully matched block of B corresponds to a partially matched block of A with one gap, and, each partially matched block of B with one gap corresponds to a completely matched block of A. Observe that a completely matched block (10110)1 of B introduces a single gap in A only if it corresponds to a partially matched block (10110)01 of A which is a prefix of A 0 , and that a completely matched block 0(10010) of B introduces a single gap in A only if it corresponds to a partially matched block 01(10010) of A which is a suffix of A 0 . Since the prefix (10110)01 and the suffix 01(10010) both overlap in each A 0 , there must be at most one completely matched block (10110)1 or 0(10010) in each B 0 . Hence each B 0 contains one fully matched block and one partially matched block, and, for each B 0 , the lcs contains either (10110)1 (10010) = P or (10110) 0(10010) = N . Therefore, the lcs is in {P, N } n .

According to Lemma 3, if sequences {A, B, C 1 , C 2 , . . . , C m } have an lcs of length 11n, then it is in {P, N } n . A sequence S ∈ {P, N } n is easily mapped to a truth assignment φ S as follows: φ S (v i) = true if the i-th block of S is P , and φ S (v i) = false otherwise. Lemma 4. For any j and any sequence S ∈ {P, N } n , S is a subsequence of C j if and only if φ(v s) satisfies the j-th clause of Φ.

Proof. We write S i for the i-th block of S (such that for every i, S i ∈ {P, N }). For i ≤ j, we write S i..j = S i S i+1 . . . S j . If φ S satisfies a boolean term t, we write φ S t, otherwise φ S t. We first need to compare P and N with each basic substring of C j , and we obtain the following important relations (the proof is tedious but easy).

-P is a 10-tight subsequence of A 0 , 10D 0 , D 0 10, X + , Z + , X -10, 10Z -.

-N is a 10-tight subsequence of A 0 , 10D 0 , D 0 10, X -, Z -, X + 10, 10Z + .

-P (but not N) is a subsequence of Y + , and N (but not P) is a subsequence of Y -. P and N are subsequences of 10Y -, Y -10, 10Y + and Y + 10.

We prove the lemma by combining Lemma 1 with the above relations. The proof is divided into three parts.

Part 1: from 1 to b -1. Each S i , 1 ≤ i < a, is a 10-tight subsequence of A 0 , and hence S 1..a-1 is a 10-tight subsequence of (A 0) a-1 . Furthermore, sequence S a is a subsequence of X j if and only if φ S x (since P is a subsequence of X + but not of X -, and N is a subsequence of X -but not of X +). Similarly, S a is a 10-tight subsequence of X j 10 if and only if φ S x. Hence,

-if φ S x, S 1..a is a subsequence of (A 0) a-1 X j , -if φ S x, S 1.
.a is a 10-tight subsequence of (A 0) a-1 X j 10.

Moreover, each S i , a < i < b, is a 10-tight subsequence of 10D 0 and D 0 10, and hence

-if φ S x, S 1..b-1 is a subsequence of (A 0) a-1 X j (10D 0) b-a-1 = L, -if φ S x, S 1..b-1 is a 10-tight subsequence of (A 0) a-1 X j (10D 0) b-a-1 10 = L10.
Part 2: from n down to b+1. Using a similar argument as in Part 1, reading sequences from right to left, with Z j instead of X j , we have: Proof (Proof of Proposition 6.). Let S be an lcs of {A, B, C 1 , . . . , C m }. If S has length at least 11n, then by Lemma 3 it is in {P, N } n , and by Lemma 4, φ S satisfies every clause of Φ, and hence Φ is satisfiable. Conversely, if Φ is satisfiable, set any truth assignment, and create sequence S = S 1 S 2 . . . S n such that S i = P if v i is true, and S i = N otherwise. Then S is a common subsequence of {A, B, C 1 , C 2 , . . . , C m } of size 11n. Since the construction of sequences A, B, C 1 , . . . , C m can be carried on in polynomial-time, LCS(2, 2) is NP-complete.

-if φ S z, S b+1..n is a subsequence of (D 0 10) c-b-1 Z j (A 0) n-c = R, -if φ S z, S b+1

Approximation

LCS is approximable within ratio O(m/ log(m)), where m is the length of the shortest input string [?]. It is, however, not approximable within ratio n ε for any constant ε < 1, where n is the length of the longest input string [?] (see also [?]), and APX-hard if the size of the alphabet is fixed [?]. Despite the discouraging results, it has been proved that LCS over a fixed alphabet can be indeed very well approximated on the average by using a simple algorithm called Long Run [?]. Bonizzoni et al. [?] developed an approximate algorithm for LCS called Expansion Algorithm (their algorithm first compresses sequences to streams by the same concept of run-length encoding, then progressively find a common sequence of all streams by the bottom-up tree merging technique).

We present here a 3/5-approximation algorithm for LCS(2, 2). The algorithm is by combining an exhaustive search for a limited number of common subsequences with linear programming techniques. Proposition 7. LCS(2, 2) is approximable within ratio 3/5.

Proof. Let S 1 , S 2 , . . . , S m , be m input sequences over alphabet Σ = {0, 1} with maximum run-length 2. The approximation algorithm is as follows:

Input: Subsequences S 1 , S 2 , . . . , S n over alphabet Σ = {0, 1} Output: A common subsequence of S 1 , S 2 , . . . , S n for all P ∈ {0, 1, 01, 001, 011, 0011} do Let T P be the lcs of S 1 , S 2 , . . . , S n in P * end for return the length of the longest common subsequence T P For the sake of clarity, write A = 01, B = 001, C = 011, D = 0011, and X = {A, B, C, D}. We focus on the case where each input sequence starts with 0 and terminates with 1 (the general case is easily deduced from this restriction).

Let T opt be an lcs of S 1 , S 2 , . . . , S m . According to Proposition 3, there is no loss of generality in assuming that T opt has maximum run-length 2. Let n opt = |T opt |, and k be the number of 01 substrings in T opt . First, it is easily seen that X is a code (i.e., any u ∈ Σ * has at most one X-factorization). Furthermore, since each input sequence starts with 0 and terminates with 1, so does any lcs, and hence T opt . Let T opt = t 1 t 2 . . . t k be the X-factorization of T opt . Let n A (respectively n B , n C , and n D) be the number of indices i, 1 ≤ i ≤ k, such that t i = A (respectively, t i = B, t i = C, and t i = D), and define

n A = n A /n opt , n B = n B /n opt , n C = n C /n opt , n D = n D /n opt . Then it follows that n opt = 2n A + 3n B + 3n C +
r ≥ 4n D

Inequalities (1) to [START_REF] Bodlaender | The parameterized complexity of sequence alignment and consensus[END_REF] together with domain constraints n A ≥ 0, n B ≥ 0, n C ≥ 0, and n D ≥ 0 define a (minimization) linear program (LP) that can be solved to optimality in polynomial-time. Let r * be the optimal solution of the defined LP (referred to as the primal problem). The dual LP reads as follows:

maximize By the strong duality theorem, r * is also an optimal solution for the dual LP. A lower bound for the dual LP is obtained as follows: y 2 = y 3 = y 7 = 0, y 4 = 3/5, y 5 = y 6 = 1/5, and y 1 = 3/5, and hence r * ≥ 3/5, thereby proving the proposition.

Two remarks are worth making about the proof of Proposition 7. First, the approximation ratio of the proposed algorithm is exactly 3/5. Indeed, for the sequence (0110010011) n none of the tested patterns in {0, 1, 01, 001, 011, 0011} would return a subsequence of length greater than 3n/5. Second, our lower bound for the dual problem is defined by y 2 = y 3 = y 7 = 0, and hence using patterns A * , B * and C * only would yield the same approximation ratio.

Proposition 2 .

 2 LCS(3, 1) is NP-complete.

 1011 0011 0010 B 0 = 1011 0101 0010 D 0 = 1100 1100 1100 X -= 1011 001 00100 Y -= 11011 001 00100 Z -= 11011 001 0010 X + = 1011 011 00100 Y + = 11011 011 00100 Z + = 11011 011 0010 We now define m + 2 sequences {A, B, C 1 , C 2 , . . . , C m } based on these 9 substrings.

Lemma 3 .

 3 A and B have 2 n lcs, they are exactly {P, N } n .Proof. Consider an alignment that induces an lcs of A and B. Note that B 0 is divided into a left block 101101 and a right block 010010. There are 2n such blocks in B. We show that the number of fully matched blocks is exactly m = n.Every sequence of {P, N } n has length 11n and is a common subsequences of A and B. Since |A| = |B| = 12n, both A and B have n symbols that are not part of the common subsequence. Therefore, at most n blocks can be partially matched (otherwise we miss more than n symbols), and hence m ≥ n. Furthermore, each block of B that is fully matched introduces at least one gap in A (since no block of B is a substring of A).

 ..n is a 10-tight subsequence of 10(D 0 10) c-b-1 Z j (A 0) n-c = 10R. Part 3: junction. If φ S x, then S 1..b-1 , S b , S b+1..n are subsequences of L, 10Y j , 10R, respectively, and hence S is a subsequence of C j = L10Y j 10R. If φ S y, then S 1..b-1 , S b , S b+1..n are subsequences of L10, Y j , 10R, respectively, and hence S is a subsequence of C j = L10Y j 10R. If φ S z, then S 1..b-1 , S b , S b+1..n are subsequences of L10, Y j 10, R, respectively, and hence S is a subsequence of C j = L10Y j 10R. If φ S x ∨ y ∨ z, then S b is not a subsequence of Y j . Since S 1..b-1 and S b+1..n are 10-tight subsequences of L10 and 10R, respectively, then, according to Lemma 2, S = S 1..b-1 S b S b+1..n is not a subsequence of C j = L10 Y j 10R.

1)(

 1 4n D , and hence 2n A + 3n B + 3n C + 4n D ≥ 1 (Notice that (1) is fundamentally an equality but only the "≥" part is used in the rest of the proof.)We now turn to relating |T P |, P ∈ {0, 1, 01, 001, 011, 0011}, to n A , n B , n C , and n D . From optimality of |T P |, P ∈ {0, 1, 01, 001, 011, 0011}, we obtain|T 0 | ≥ n A + 2n B + n C + 2n D |T 1 | ≥ n A + n B + 2n C + 2n D |T A | ≥ 2n A + 2n B + 2n C + 2n D |T B | ≥ 3n B + 3n D |T C | ≥ 3n C + 3n D |T D | ≥ 4n D .By definition, the approximation ratio r of our algorithm is defined byr = max{|T 0 |, |T 1 |, |T A |, |T B |, |T C |, |T D |}/n opt ,and hencer ≥ n A + 2n B + n C + 2n D (2) r ≥ n A + n B + 2n C + 2n D (3) r ≥ 2n A + 2n B + 2n C + 2n D (4) r ≥ 3n B + 3n D(5)r ≥ 3n C + 3n D

 table [?,?,?,?]. A second line of research has tried to find algorithms with running times depending only on the number of runs in the input strings, without computing individual elements of the standard lcs table [?,?]. It is worth mentioning that work has also been done on computing the similarity of two run-length encoded in the affine gap penalty model [?], the string edit distance problem, the pairwise global alignment problem, and the pairwise local alignment problem in the linear-gap model with arbitrary scoring matrices [?], and on computing the constrained lcs of run-length encoded strings [?]. Refer to [?,?,?,?,?] and references therein for more problems on run-length encoded strings.

 y 1 such that y 2 + y 3 + y 4 + y 5 + y 6 + y 7 ≤ 1 2y 1 ≤ y 2 + y 3 + 2y 4 3y 1 ≤ 2y 2 + y 3 + 2y 4 + 3y 5 3y 1 ≤ y 2 + 2y 3 + 2y 4 + 3y 6 4y 1 ≤ 2y 2 + 2y 3 + 2y 4 + 3y 5 + 3y 6 + 4y 7