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Abstract

For the source analysis of ElectroEncephaloGraphic (EEG) data, both equiv-

alent dipole models and more realistic distributed source models are em-

ployed. Several authors have shown that the Canonical Polyadic Decompo-

sition ( also called ParaFac) of Space-Time-Frequency (STF) data can be

used to fit equivalent dipoles to the electric potential data. In this paper

we propose a new multi-way approach based on Space-Time-Wave-Vector

(STWV) data obtained by a 3D local Fourier transform over space accom-

plished on the measured data. This method can be seen as a preprocessing
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step that separates the sources, reduces noise as well as interference and ex-

tracts the source time signals. The results can further be used to localize

either equivalent dipoles or distributed sources increasing the performance

of conventional source localization techniques like, for example, LORETA.

Moreover, we propose a new, iterative source localization algorithm, called

Binary Coefficient Matching Pursuit (BCMP), which is based on a realistic

distributed source model. Computer simulations are used to examine the

performance of the STWV analysis in comparison to the STF technique for

equivalent dipole fitting and to evaluate the efficiency of the STWV approach

in combination with LORETA and BCMP, which leads to better results in

case of the considered distributed source scenarios.

Keywords: EEG, CanDecomp/ParaFac, Canonical Polyadic

decomposition, Source localization, LORETA,

Space-Time-Frequency/Space-Time-Wave-Vector analysis

1. Introduction

ElectroEncephaloGraphy (EEG) is a long-standing technique for the anal-

ysis of cerebral activity and consists in measuring the electric potential on

the surface of the head with an array of sensors. Due to its good temporal

resolution compared to other methods (like for example functional Magnetic

Resonance Imaging (f-MRI)), the EEG is routinely used to record seizures

in epileptic patients. An important issue is the identification of the epilep-

togenic zone, which can then be removed by surgery. To localize the sources

based on the electric potential measured on the surface of the scalp, a mul-

titude of different approaches has been proposed [1]. These methods vary
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mainly in the assumptions on the nature of the sources. In a first step,

they can be distinguished into equivalent dipole models, which try to fit one

dipole to each locally active cortical region, and distributed source models,

which describe the neural activity everywhere in the brain with the help of

thousands of dipolar sources.

One approach for the localization of equivalent dipoles is based on ten-

sor decompositions applied to multi-way data. This technique requires a

third dimension in addition to space and time. Several authors have stud-

ied the use of the Canonical Polyadic (CP) decomposition (also known as

CanDecomp/ParaFac model) applied to Space-Time-Frequency (STF) data

obtained by a wavelet transform over time [2, 3, 4, 5, 6] or the application

of the Wigner-Ville distribution [7]. The method was tested on simulated as

well as real data and lead to promising results. But this technique depends

on the source time signals, which are assumed to be oscillatory, and does not

permit to separate several simultaneously active brain regions with correlated

activities into more than one component, thus preventing the representation

of such a scenario by an adequate number of equivalent dipole sources.

In this paper, a new CP based approach using a different dimension is

explored. This technique is based on data transformed into the Space-Time-

Wave-Vector (STWV) domain and is obtained using a 3D local Fourier trans-

form over space. The advantage of this method is that it does not depend on

the temporal behavior of the sources. Instead, the STWV approach requires

the sources to be superficial (i. e., at the surface of the cortex) in order to

obtain meaningful results when applying the CP decomposition. However,

since it is known that the activity recorded by EEG measurements is mostly
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generated by pyramidal cells located in the gray matter [8], this requirement

is usually well met. Due to these properties, the STWV method permits to

accurately localize one or several equivalent dipole sources and extract at the

same time a good estimate of the source time signals. Contrary to the STF

analysis, it also allows for the separation of correlated sources.

Furthermore, we propose to employ the results of the STWV method,

which are characterized by an increased SNR compared to the original data,

separated sources and already extracted source time signals, as a basis for

distributed source localization procedures. To this end, we introduce a new

distributed source localization algorithm, referred to as Binary Coefficient

Matching Pursuit (BCMP). This algorithm is based on a distributed source

model assuming radially oriented source dipoles of equal strengths that are

located on the surface of the cortex. In [9], a similar model was shown to

accurately explain measured electric potential data. As will be shown in the

following, the BCMP algorithm outperforms the source localization results of

the Low Resolution Electromagnetic Tomography (LORETA) technique [10],

which is probably the best known distributed source localization method and

has been reported to give more accurate results than other Weighted Min-

imum Norm algorithms [11]. LORETA selects the smoothest solution pos-

sible, assuming that adjacent neurons are synchronously active. However,

this constraint also accounts for a relatively low spatial resolution producing

blurred source localization results. Furthermore, it is noteworthy that stan-

dard LORETA does not supply a satisfactory estimate of the source time

signals because the temporal information can only be considered by comput-

ing independent LORETA solutions for each time sample. On the contrary,
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the BCMP algorithm based on the STWV preprocessed data provides an

accurate estimate of the source time signals.

The rest of the paper is organized as follows: Based on Section 2, which

describes the EEG data model, we explain the concept of multilinear model-

ing for both the STF and the STWV analysis in Section 3. Subsequently, the

source extraction and localization schemes for equivalent dipole fitting and

distributed source modeling based on the preprocessed data are described in

Section 4 and analyzed with the help of computer simulations in Section 5.

A short summary of the results is given in Section 6.

The following notation is used throughout this paper: bold italic upper-

case letters denote tensors, e.g., T , bold uppercase letters denote matrices,

e.g., A, bold lowercase letters denote column vectors, e.g., a, and plain font

denotes scalars, e.g., Xijk, Tij or ai. Moreover, (·)T denotes a transposition

and (·)+ stands for the Moore-Penrose pseudo-inverse.

2. Data model

The electric potential on the surface of the scalp can be recorded with an

array of sensors as a function x(r, t) of electrode position r and time t. The

obtained EEG data, which is sampled in space and time, can be stored in

a data matrix X ∈ R
Nr×Nt where Nr and Nt denote the number of sensors

and time samples, respectively. Assuming a static propagation medium, this

matrix can be factorized into a leadfield matrix A(0) ∈ R
Nr×R, depending on

spatial parameters (geometry and conductive properties of the head) and a

signal matrix S ∈ R
R×Nt , which describes the temporal variations of the R

current sources:
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X = A(0)S (1)

In practice, the measurements are subject to noise which leads to the per-

turbed data matrix

X̃ = A(0)S+N (2)

where N is the noise matrix. In this paper, we assume that the noise is gen-

erated by noise dipoles located on the surface of the cortex not covered by

the source dipoles, which emit a zero-mean white Gaussian background ac-

tivity. This leads to temporally white, but spatially correlated additive noise

on the scalp. In practice, EEG measurements are also subject to artifacts,

e.g., due to eye movements and muscle activity. In this paper, we assume

that artifacts and non-Gaussian EEG rhytms that are not of interest have

been removed prior to the data analysis.

The description of the leadfield matrix A(0) =
[

a
(0)
1 . . . a

(0)
R

]

depends on

both the source model and the used head model. In case of the equivalent

dipole model, each of the leadfield vectors a
(0)
r , r = 1 . . . R, is a function of

the position and orientation of one equivalent dipole.

For the development of the BCMP algorithm, we introduce the following

definition and model of a distributed source: According to [9], a distributed

source can be described as the union of (one or) several non-necessarily con-

tiguous areas of the cortex (so-called patches) with highly correlated source

activities. This source region can be represented by a number of dipolar

sources each of which models thousands of simultaneously active neurons

that are arranged in parallel and oriented perpendicular to the surface of the

cortex. The distributed source model thus assumes the following:

1. The underlying dipolar sources are located exclusively on the surface

6



of the cortex.

2. The dipole sources are radially oriented.

Additionally, we assume that

3. all dipole sources of a given distributed source have the same strength.

The leadfield vector a(0) of one distributed source can then be described as

a superposition of the leadfield vectors d(ρk) of K source dipoles where ρk

is the position of the k-th dipole source:

a(0) =
K
∑

k=1

d(ρk) (3)

The computation of the leadfield vectors for given dipole parameters is per-

formed either analytically or numerically, depending on the head model em-

ployed [12].

3. Multilinear modeling

The data model (1) is a bilinear model in space and time. The goal is

to recover the leadfield and signal matrices by separating the measured data

into spatial and temporal characteristics. However, for a matrix decomposi-

tion to be unique, constraints like, for example, orthogonality or statistical

independence can be imposed, as incorporated in Principal Component Anal-

ysis (PCA) or Independent Component Analysis (ICA), respectively [13].

Since there is no physiological justification for such constraints, especially in

epilepsy where different distributed sources can be partially correlated, an-

other solution to the problem of non-uniqueness is desirable. This is where
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the CP decomposition comes into play. The CP model can be used to ap-

proximate a tensor X of size I × J ×K and rank Q by a tensor X̂ of given

lower rank P :

X̂ =
P
∑

p=1

T (p), (4)

T (p) being decomposable tensors of the form

Tijk(p) = γp · ai(p) bj(p) ck(p) (5)

where γp denote the CP component amplitudes and ai(p), bj(p) and ck(p)

are stored in three loading matrices A, B and C of sizes I × P , J × P

and K×P , respectively, with unit norm columns; see [14] [15] and references

therein. Equation (4) is referred to as the CP model and comprises a trilinear

structure. The crucial point is that one may consider that there are almost

surely finitely many CP decompositions (for X̂) if P < IJK
I+J+K−2

, even if to

date, this conjecture is fully proved only in the symmetric case. On the other

hand, Kruskal’s lemma provides non necessary but sufficient conditions for a

unique CP decomposition to exist; see [15] and references therein.

It is worth noting that, even when the CP (4) is unique, its represen-

tation (5) with three loading matrices will always be subject to (the same)

permutation of their columns, which are themselves identified up to a mul-

tiplicative scalar factor of unit modulus. This indeterminacy is inherent in

the representation of decomposable tensors, and has nothing to do with the

uniqueness of decomposition (4).
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3.1. Space-Time-Frequency (STF) analysis

To apply the CP tensor model to EEG data, a transformation needs to

be found which turns the data matrix into a data tensor. One possibility

to collect a third diversity consists in computing the wavelet transform (or

a short term Fourier transform) over time of the measured electric potential

data [2, 3, 4, 5, 6]. The resulting tensor W depends on space r, time t, and

frequency f :

W (r, t, f) =

∫

∞

−∞

x(r, τ)ψ(a, τ, t)dτ (6)

The frequency f can be estimated from the scale a of the wavelet ψ(a, τ, t)

by f = fc/(a · T ) where fc is the center frequency of the wavelet and T is the

interval between time samples.

If the frequency content of each of the EEG source signals can be assumed

to be time-invariant except for a scaling factor, which is the case for oscilla-

tory signals, the time and frequency variables separate. Thus, the tensor W

approximately comprises a trilinear structure and can be decomposed using

the CP model (4-5):

W (ri, tj, fk) ≈
P
∑

p=1

γp a(ri; p)b(tj; p) c(fk; p) (7)

Here, ri, tj and fk represent the sampled space, time and frequency variables

and a(ri; p), b(tj ; p) and c(fk; p) denote elements of the loading matrices

A, B and C of the CP model indicating the space, time and frequency

characteristics, respectively. In the absence of noise, for decorrelated sources,

the number of dominant components P of the CP model equals the number

of sources R, whereas P generally equals R+1 in a noisy environment [2, 3]

because noise accounts for an additional component in (7).
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3.2. Space-Time-Wave-Vector (STWV) analysis

The new idea of this paper consists in applying a transformation to the

space variable instead of the time variable. If a 3D local Fourier transform

of the electric potential data is computed over space, a third order tensor F

is obtained where the third variable is now the wave vector k.

F (r, t,k) =

∫

∞

−∞

w(r′ − r)x(r′, t)ejk
T
r
′

dr′ (8)

Here, w(r′ − r) denotes a 3D window function centered at r which selects

electric potential data within a certain region of the scalp to be used for the

Fourier transform at point r.

Similarly to the STF approach, a CP decomposition of the sampled tensor

F given by

F (ri, tj,kl) ≈
P
∑

p=1

γp a(ri; p)b(tj; p) c(kl; p) (9)

into a finite number of dominant components P that equals the number of

sources is possible if the data fulfills the following property: For each source

the spatial frequency content of the leadfield vector a(0) ( including the direc-

tions of the associated dominant wave vectors ) has to be the same at every

sensor, except for a scaling factor. However, in practice, the dominant wave

vectors, which indicate the direction of the largest changes of electric poten-

tial, can differ a lot at two distant sensors, thus violating the requirement

for a trilinear model. This problem can be overcome by the fact that super-

ficial sources as examined in this paper only produce great potential values

within small regions (see Figures 2 (top right) and 1 for an example of the

electric potential distribution and the space-wave-vector data generated by a

dipole source at one time instant). At adjacent sensors the spatial frequency

content associated to the dominant wave vectors can then be assumed to be
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approximately the same up to scaling factors, and the differences at distant

sensors can be neglected.

Figure 2 shows an example of the space, time and wave vector character-

istics obtained after the decomposition of the tensor F of a dipole source.

4. Source extraction and localization

After separating the EEG data into several components associated with

different sources using the CP model, the source time signals can be extracted

and the source positions can be estimated. Whereas the source extraction can

be achieved by simply estimating the signal matrix S, the source localization

concept consists of two steps:

1. Compute an estimate of the leadfield matrix A(0).

2. Determine the source parameters (dipole positions and orientation, if

not assumed to be radial).

The estimation of the signal matrix and the leadfield matrix will be described

in detail for both STF and STWV decompositions in the context of equivalent

dipoles. Once these estimates are obtained, the preprocessing of the EEG

data is completed and the actual source localization can follow.

This procedure has several advantages over source localization on the raw

data which are due to the previous signal processing steps (tensor decompo-

sition and leadfield as well as signal matrix estimation):

• The electric potential distribution has been separated into components

each of which corresponds to only one distributed source. The source

localization process can thus be applied to each source separately.
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• The noise has been reduced.

• The source time signals have already been extracted, which is, accord-

ing to [1], for example not satisfactorily achieved with LORETA.

4.1. Equivalent dipole fitting

4.1.1. Source extraction

Due to the different properties of the STF and STWV models, the meth-

ods used for the estimation of the signal matrix differ (cf. Figure 3). In the

case of the STF analysis, an exact separation of the Wavelet transformed data

into time and frequency characteristics can only be obtained if the frequency

content of the signal is constant over time (cf. Section 3.1). In practice, this is

not the case and the bilinear approximation of the time-frequency data limits

the accuracy of the time signals estimated by the temporal characteristics.

This is why we use the pseudo-inverse of the estimated leadfield matrix Â(0)

(see Section 4.1.2) to obtain an improved estimate of the signal matrix Ŝ in

equation (1). This can be problematic if Â(0) is not a tall matrix, meaning

that there are more sources than sensors. However, in the case of equivalent

dipole models, the number of sought sources usually does not exceed 3 or 4,

which is much smaller than the number of electrodes.

By contrast, the temporal characteristics extracted by the CP decompo-

sition of the STWV tensor F already constitute an accurate approximation

Ŝ of the signal matrix S. This property is due to the fact that the Fourier

transform over space does not affect the source activities, which means that

the elements F (ri, tj ,kl) of the tensor F admit the exact bilinear model

F (ri, tj,kl) =
R
∑

r=1

b(tj ; r)D(ri,kl; r) (10)
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where b(tj ; r) is the activity of source r at time tj .

4.1.2. Source localization

In the case of the STF method the Wavelet transform over time of the

electric potential data does not affect the leadfield matrix, which means that

the spatial characteristics on the one side and the combined time-frequency

characteristics on the other side still form a perfect bilinear model. Therefore,

the loading matrixA containing the spatial characteristics extracted with the

STF approach constitutes a good approximation for the leadfield matrixA(0).

However, the 3D local Fourier transform over space accomplished to ob-

tain the tensor F of the STWV approach does not lead to a bilinear model

with clearly separated space and wave vector characteristics. Consequently,

the loading matrix A of the STWV method does not permit to accurately

localize the dipole sources, and another approach based on the signal matrix

has to be taken (cf. Figure 3). Once an accurate estimate Ŝ of the signal

matrix is available (see Section 4.1.1), the leadfield matrix can be computed

from:

Â(0) = XŜ+ (11)

using the original data. Note that, since it is always possible to have more

time samples than sources, the computation of the pseudo-inverse Ŝ+ of the

signal matrix Ŝ does not raise any problem.

Once the leadfield estimation has been accomplished, the source param-

eters, namely location and orientation of the equivalent dipoles which best

match the estimated leadfield in a least squares sense need to be determined.

To this end, a non-linear least squares algorithm can be employed provided

that an analytical expression for the leadfield vectors is available.

13



4.2. Distributed source modeling

As a distributed source can comprise an area of up to 20 cm2 of simulta-

neously activated brain tissue, a separation into several CP components can

occur. This is due to the fact that the spatial Fourier transform is computed

for smaller patches. The active region of the cortex is then characterized by

the space-wave-vector data of several sensors which can be decomposed into

different components. These components have to be identified as belonging

to the same distributed source. To this end, one can exploit the fact that the

neuronal activity within a distributed source is highly correlated. Thus, the

association of several CP components to one distributed source is character-

ized by a correlation coefficient between their temporal characteristics which

exceeds a certain threshold. To obtain a representative signal vector for each

distributed source, the signal vectors associated with the CP components

belonging to this source are then simply added. Analogously, an estimate

of the leadfield matrix can be determined by summing up all the leadfield

vectors of the CP components which belong to the same distributed sources.

Please note that to obtain meaningful results, it is important to include the

component amplitudes in the CP model. In case of the STF analysis, they

have to be considered in the spatial characteristics whereas for the STWV

approach, they need to be incorporated in the temporal characteristics.

The objective of distributed source localization then consists in providing

a better estimate of the actual spatial form of the distributed sources, based

on the leadfield vector associated with each of the sources.
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4.2.1. Cortical LORETA

In fact, mathematically, the source localization based on the leadfield

vectors extracted from the data matrix with the help of the CP decomposition

leads to the same problem as other distributed source localization techniques

try to solve, i.e., finding a solution c to

â(0)(r) = D · c (12)

Here, â(0)(r), r = 1 . . . R, is the estimated leadfield vector of the r-th source,

the matrixD = [d1 . . .dNd
] ∈ R

Nr×Nd contains the leadfield vectors of all grid

dipoles and the solution vector c contains a set of continuous real-valued co-

efficients that can be interpreted as the strengths of the grid dipoles. In

order to find a unique solution to this underdetermined set of equations, var-

ious constraints can be imposed. Thus, an algorithm like, for example, Low

Resolution Electromagnetic Tomography (LORETA), which searches for the

smoothest solution to equation (12), can be applied to the preprocessed data.

In order to incorporate the physiology-based assumptions of superficial, ra-

dially oriented sources, the original LORETA algorithm [10] can be modified

in the following way:

1. Rather than employing a 3D grid that permeates the whole head, a

grid that covers only the surface of the cortex is used.

2. Instead of looking for the 3 components describing the dipole moment

vector and dipole strength at each vertex of the grid, only the dipole

strength is determined since its orientation is assumed to be radial.

This modified version of LORETA is subsequently referred to as cortical

LORETA.
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As the inverse problem that is solved in case of the original LORETA

algorithm is mathematically the same as equation (12), we can use its explicit

solution given in [10]. Thus, the vector

clor =
(

OLTLO
)

−1
(D)T

[

D
(

OLTLO
)

−1
(D)T

]+

â(0) (13)

contains the cortical LORETA solution for the strength of each of the grid

dipoles, where O is a diagonal matrix with Oi,i =

√

(di)
T
di, i = 1 . . . Nd and

L implements the spatial Laplacian operator [10] (see [16] for an implemen-

tation based on a non-uniform grid), ensuring that the LORETA constraint

of the smoothest possible solution is fulfilled. Choosing a certain threshold

value for these dipole amplitudes, all the dipoles whose strength exceeds the

threshold can be said to belong to the distributed source.

4.2.2. Binary Coefficient Matching Pursuit (BCMP)

Since the spatial resolution of the results that LORETA supplies is rel-

atively low and this method is not well suited for the localization of focal

sources, we propose another distributed source localization scheme which is

based on the distributed source model described above.

The objective of this algorithm consists in identifying the grid dipoles

which lead to the best approximation of the estimated leadfield by solving

the following combinatorial optimization problem:

min
i

||â(0)(r)−m ·D · i||2 (14)

where â(0)(r), r = 1 . . .R, is the estimated leadfield vector of the r-th source

(cf. equation (3)), m is a normalization factor due to the scaling ambiguity

of the CP model, D contains the leadfield vectors of all grid dipoles and i

is a coefficient vector whose elements are binary (either 1 or 0). As most of
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the coefficients of the vector i in equation (14) are 0, this corresponds to a

sparse representation of the distributed source from grid dipoles. This fact

has motivated the following approach, which is based on the Matching Pur-

suit algorithm [17]. The main difference consists in the restriction to binary

coefficients in the present problem. The resulting Binary Coefficient Match-

ing Pursuit (BCMP) algorithm comprises the following steps and should be

executed for every source leadfield vector:

1. Initialization: Set the coefficient vector i = 0Nd,1, where 0Nd,1 is a

vector of size Nd×1 whose elements are 0, and the number of iterations

k = 1. Find the vector di of D which leads to the minimal metric. The

dictionary D(1) is obtained by removing the vector di from D.

Set â(1) = di, i(1)(i) = 1 and the metric at iteration 1 met(1) =

||â(0)(r)−m(1) · â(1)||2, where

m(k) =

∑Nr

n=1 |â
(k)
n |

∑Nr

n=1 |â
(0)
n (r)|

is the normalization factor at iteration k which needs to be introduced

due to the scaling indeterminacy of the decomposition.

2. At the (k+1)-th step, set i(k+1) = i(k), find the vector dj of D
(k) which

minimizes

met(k + 1) = min
j

||â(0)(r)−m(k+1) ·
(

â(k) + dj

)

||2

and update the estimated leadfield: â(k+1) = â(k) + dj .

Find the index i of the leadfield vector di in D corresponding to the

leadfield vector dj and set i(k+1)(i) = 1. Remove vector dj from the

dictionary D(k) to obtain D(k+1). Increment the iteration index: k =

k + 1.

17



3. Stop after a given number of iterations kmax is reached and return

the index vector i(kmax). This vector indicates the indices of the grid

dipoles whose leadfield vectors are stored in the original dictionary D

and which are thus associated with the distributed source.

To ensure a physiologically reasonable result, small holes in the form of

the distributed source can be filled and isolated grid dipoles associated to

the distributed source, which occur in the case of noise, can be removed by

applying a smoothing procedure.

The algorithm can be accelerated remarkably by considering only dipoles

of the cortical grid which are located under a scalp region with high electric

potential values, corresponding to the expanded distributed source region.

5. Simulation results

To examine the performance of the STWV analysis for source extrac-

tion and localization, computer simulations are performed. In the context

of equivalent dipoles, the STWV analysis is compared to the STF tech-

nique. Furthermore, following the STWV analysis, we compare the dis-

tributed source localization results obtained with the BCMP algorithm to

those of cortical LORETA.

In general, the simulation consists of the following steps: For a given

source configuration of radially oriented dipoles, the leadfield is computed

with the help of a 3-shell spherical head model. The radii of the 3 shells

representing brain, skull and scalp are 8 cm, 8.5 cm and 9.2 cm and their

conductivities are set to 3.3 × 10−3 S/cm, 8.25× 10−5 S/cm and 3.3× 10−3

S/cm, respectively. Epileptiform signals are generated with the help of the
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Jansen model [18] for a sampling interval of T = 0.008 s.

A noise matrix containing temporally white, but spatially correlated noise

is computed in the same way as the data matrix for given noise dipoles with

radial orientation emitting white Gaussian signals. The noise sources are

chosen from a cortical grid such that they do not correspond to equivalent

dipoles and do not belong to distributed sources. To produce an approxi-

mately uniform grid on the inner sphere with 5 mm distance between adja-

cent dipoles, a model referred to as cubed sphere is used. The noise matrix is

normalized to match a given SNR Ps/Pn, where Pn is the power of the noise

and Ps =
1

Nr·Nt

∑Nr

i=1

∑Nt

j=1X
2
i,j is the signal power. Then the noise matrix is

added to the data matrix according to (2).

Then the data tensor F ∈ CN ′

r×Nt×Nk is constructed for Nk = 63 fixed

wave vector samples according to the STWV approach by computing a 3D

non-uniform discrete local Fourier transform over space of the noisy electric

potential data. To ensure meaningful results, the transform is only computed

for N ′

r sensors that are surrounded by at least 9 other electrodes within a

certain distance, selected by employing the following spherical Blackman

window function

w(r′ − r) = 0.42 + 0.5 · cos

(

2π
||r′ − r||

∆r

)

+ 0.08 · cos

(

4π
||r′ − r||

∆r

)

centered at point r (compare Figure 4). The diameter ∆r of the window

function is adapted according to each sensor configuration, such that the

data of sensors at the boundary of the array is not transformed. The wave

vector samples k = [k1, k2, k3]
T are arbitrarily chosen to contain all possible

combinations of k1, k2, k3 ∈ {0,±1,±2} such that there are no two wave

vectors k1 and k2 for which k1 = −k2.
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Subsequently, the tensor is decomposed with the help of a semi-algebraic

CP algorithm which is based on joint matrix diagonalizations [19], followed

by one step of an Alternating Least Squares algorithm to ensure a real-

valued signal matrix. The rank used for the decomposition is determined

with the Corcondia algorithm [20]. For equivalent dipoles, the rank of F

corresponds to the number of sources whereas the CP components still have

to be regrouped in the case of distributed sources. If the correlation coef-

ficient between the temporal characteristics of two CP components exceeds

a threshold of 80 %, the components are assumed to belong to the same

distributed source. The next step after the CP decomposition consists in the

estimation of the leadfield and signal matrices as described in Section 3.2 for

the STWV analysis. The results can then be used for source localization.

5.1. Equivalent dipole fitting

In this section, EEG data generated from one radially oriented, super-

ficial equivalent dipole is analyzed. The data is recorded by 64 electrodes

in order to obtain sufficient information for the computation of the spatial

Fourier transform. To compare the results of the STWV analysis to those

obtained with the STF analysis, we additionally compute a discrete Wavelet

transform of the electric potential data using a real-valued Morlet-Wavelet.

The resulting tensor W ∈ RNr×Nt×Nf where Nf = Nt stands for the number

of frequency samples is equally decomposed and signal and leadfield matrices

are estimated according to the STF analysis described in Section 3.1. Even-

tually, the positions of the equivalent dipoles are estimated by a non-linear

least squares algorithm for both the STWV and the STF analysis. Then the

Source Localization Errors (SLE) are computed over N realizations according
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to

SLE =
1

N

N
∑

n=1

√

||ρ̂n − ρn||2 (15)

where ρ̂n and ρn denote the estimated and the original positions of the n-th

realization, respectively. Moreover, to evaluate the source extraction results,

the correlation coefficient between the original and the estimated source time

signals is calculated for both methods.

Number of time samples. To examine the influence of the number of time

samples on the performance of the multi-way methods, the correlation co-

efficient between the estimated and the original signals, and the RMSE lo-

calization error of a source located at ρ = [−π/12, π/5, 8 cm] (in spherical

coordinates) are determined for different numbers of time samples for simu-

lated EEG data recorded with 64 electrodes at a SNR of -3 dB; see Figure 5.

The results consist of the outcome of 1000 trials and show that the STWV

method still permits to localize the dipole source if only very short time sam-

ples are used whereas at least 150 time samples are necessary for the STF

analysis to give as accurate results. If the tensors of both approaches are

of the same size (which is the case for Nk = 63 time samples), the STWV

method clearly leads to better results for both source localization and ex-

traction.

Influence of noise. Since EEG data is usually very noisy, an important issue

of source localization methods is their robustness to noise. In the following

simulation for a sensor array composed of 64 electrodes, the influence of spa-

tially correlated, temporally white Gaussian noise on the source localization

accuracy is examined for both STWV and STF analyses in case of a dipole

source positioned at ρ = [π/2, π/8, 8 cm] (in spherical coordinates) and 100
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time samples. Subsequent results, displayed in Figure 6, constitute an av-

erage over at least 100 trials with different noise and signal matrices. For a

SNR of -4 dB or better, the source localization error of the STWV analysis

drops below 1 cm and the correlation coefficient exceeds 90 %, which means

that the source parameters are well estimated. On the contrary, for the STF

approach to yield as accurate results, the SNR needs to be at least 0 dB.

Thus the STWV method is clearly more robust to noise than the STF analy-

sis. This can be explained by the fact that the STWV technique reduces the

temporally white noise by averaging over time when the leadfield matrix is

calculated from the pseudo-inverse of the estimated signal matrix Ŝ. Hence

the noise on the STWV leadfield matrix is diminished.

On the contrary, the STF method tries to eliminate the noise on the

signal matrix by averaging over space, which does not eliminate the spatially

correlated noise. Moreover, the STF analysis partly separates the noise into

an additional component of the CP model, which is often not as efficient for

denoising as the procedure of the new STWV analysis.

5.2. Distributed source modeling

A distributed source comprises several circular-shaped patches defined

by the center of the patch and its area. It is described by dipoles chosen

from a cortical grid. The epileptiform signal of each distributed source is

superimposed with white Gaussian noise to create highly correlated activities

with a correlation coefficient of about 95 % for all source dipoles. For all

distributed source simulations, data is generated for 128 electrodes, 100 time

samples and a SNR of -3 dB if not stated otherwise.

After preprocessing the data with the help of the STWV analysis, the
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distributed sources are localized using the BCMP algorithm, which is followed

by a smoothing operation (described in subsection 4.2.2).

For comparison, a cortical LORETA solution to the source localization

problem is computed. Here, two cases are examined:

1. Cortical LORETA is run on the raw EEG data, averaged over all time

samples.

2. Cortical LORETA is applied to the preprocessed data following the

proposed STWV analysis.

For both the BCMP algorithm and cortical LORETA, the number of dipoles

sought is fixed to approximately match the number of grid dipoles of the

original distributed source2.

To evaluate the results, a measure called the True Positive Fraction

(TPF), which contains the percentage of correctly identified distributed source

dipoles, is employed. The TPF is defined by

TPF =
#{I ∩ Î}

#{I}
(16)

where I and Î denote the indices in the sets of grid dipoles forming the

original distributed source and the estimated distributed source, respectively,

and #{I} denotes the number of elements in the set I.

Number of time samples. As for the equivalent dipole simulations, the objec-

tive of the first simulation is to examine the influence of the number of time

samples. To this end, a distributed source comprising an area of approxi-

mately 16 cm2 and composed of three circular-shaped patches of sizes 5 cm2,

2In practice, the number of dipoles could, for example, be determined by searching for

the minimal metric met(k) that occurs during the BCMP algorithm.
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5 cm2 and 6 cm2 which are centered at [−π/20, π/5, 8 cm], [π/20, π/5, 8 cm]

and [π/10, π/6, 8 cm] (in spherical coordinates) is localized with the help

of the BCMP algorithm and cortical LORETA. As the resulting values of

the TPF displayed in Figure 7 (top) show, the BCMP algorithm outper-

forms the cortical LORETA solutions (in terms of the TPF), especially for

small numbers of time samples. Moreover, running cortical LORETA on the

data preprocessed by the STWV technique enhances the performance of the

source localization compared to the cortical LORETA solution based on the

raw data.

Influence of noise. Another interesting question is how the performance of

the BCMP algorithm depends on the level of noise. Figure 7 (bottom) shows

the TPF of the BCMP and cortical LORETA source localization results as

a function of the SNR for a distributed source composed of 4 patches cov-

ering about 14 cm2 of cortex. The patches are located at [π/2, π/8, 8 cm],

[11π/20, 0, 8 cm], [16π/30, π/16, 8 cm] and [21π/40, 19π/120, 8 cm] (in spheri-

cal coordinates) and all comprise an area of 4 cm2. Here, applying the BCMP

algorithm to EEG data with SNRs greater than -4 dB yields better results

than using cortical LORETA. For very low SNRs, however, cortical LORETA

outperforms the BCMP algorithm. In this case, a performance gain can be

observed for using cortical LORETA in combination with the STWV analy-

sis proposed in this paper, whereas there is not much difference in the source

localization accuracy for high SNRs.

Two distributed sources. A main point of interest is the localization of more

than one distributed source because here the capability of the STWV analysis

to separate the sources comes into play. This issue shall be addressed in the
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following, where two distributed sources with statistically independent activ-

ities are combined. The first source consists of three circular-shaped patches

of sizes 5 cm2, 5 cm2 and 6 cm2, which are centered at [−π/20, π/5, 8 cm],

[π/20, π/5, 8 cm], and [π/10, π/6, 8 cm] (in spherical coordinates), respec-

tively, and the second source comprises four circular-shaped patches of equal

area 4 cm2 located at [π/2, π/8, 8 cm], [11π/20, 0, 8 cm], [16π/30, π/16, 8 cm],

and [21π/40, 19π/120, 8 cm] (in spherical coordinates). Applying cortical

LORETA to the averaged potential data, the two sources are localized si-

multaneously and the TPF amounts to 81 % (see Figure 8 (left)). As Figure

8 (right) shows, the STWV technique correctly separates the two sources into

distinct components. If cortical LORETA is run on the preprocessed data,

its performance can be increased to a TPF of 86 %, which confirms the hy-

pothesis that to obtain accurate results, the STWV preprocessing should be

used. The best results can be achieved if the two sources are localized with

the BCMP algorithm based on the STWV decomposed data, which leads to

a TPF of 91 % (see Figure 8 (right)).

6. Conclusions

In this paper, we have shown that the newly developed STWV analy-

sis constitutes a powerful preprocessing tool for the analysis of EEG data

generated by superficial sources. This could imply that deep mesial brain

structures might be difficult to localize with STWV, which would potentially

constitute a burden for a further application of this method in the particular

field of epilepsy. Nevertheless, such a burden is most likely to disappear with

the use of realistic models of the brain which include most of the mesial cere-
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bral structures. The STWV method does not only permit to separate the

sources, but simultaneously extracts the source time signals prior to the ac-

tual source localization. Compared to the STF analysis, the STWV method

is particularly well suited if the data is only recorded over a small number

of time samples. A potential application of the STWV technique is thus

the tracing of the temporal evolution of sources. Moreover, the estimation

error of the leadfield matrix is reduced, which improves the perfomance of

the source localization as can be seen from the cortical LORETA solutions

based on the averaged potential data and the preprocessed data. To further

enhance the accuracy of distributed source localization results based on a

model that assumes equal strengths of source dipoles, we have proposed to

employ the iterative BCMP algorithm and have demonstrated its efficiency

with the help of computer simulations. These simulations are a necessary

step prior to the application of the STWV analysis to actual measured sig-

nals. Indeed they provide the ”ground truth” necessary for the quantification

of the performance of this method. Ultimately, further studies will assess the

pertinency of the STWV analysis in combination with the BCMP algorithm

for spatially distributed sources along with realistic head models and will

consider the application of this method to real EEG data.
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Figure 1: Space-Wave-vector data at one time instant computed from the data generated

by a dipole source located at ρ = [−π/12, π/5, 8 cm] (in spherical coordinates) in the

absence of noise and recorded with 64 electrodes.
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Figure 2: Space characteristics a(ri) of the STWV analysis (top left) in comparison to the

original potential distribution (top right), as well as the absolute value of the wave vector

characteristics |c(kl)| (bottom left) and time characteristics b(tj) (bottom right) of the

STWV tensor for EEG data generated by a dipole source located at ρ = [−π/12, π/5, 8 cm]

(in spherical coordinates) and recorded with 64 electrodes for 200 time samples in the

absence of noise. The white cross in the top figures marks the dipole position.
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Figure 3: Leadfield and signal matrix estimation procedures for the STF and the proposed

STWV analyses.
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Figure 4: Selection of data in a 2-dimensional domain using a window function that is a

circle. The black points mark the electrode positions, at which the electric potential is

measured. The window is centered at the sensor position for which the local Fourier trans-

form is to be computed. Data outside of the window is not considered for the transform.
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Figure 5: Source localization error (left) and correlation coefficient of original and es-

timated source time signals (right) for the Space-Time-Wave-Vector (STWV) and the

Space-Time-Frequency (STF) analysis as a function of the number of time samples for

SNR = −3 dB and Nr = 63.
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Figure 6: Source localization error (left) and correlation coefficient of original and es-

timated source time signals (right) for the Space-Time-Wave-Vector (STWV) and the

Space-Time-Frequency (STF) analysis as a function of the SNR for Nt = 100 and Nr = 63.
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Figure 7: (Left) True positive fraction (TPF) for the Binary Coefficient Matching Pursuit

(BCMP) algorithm and the two versions of cortical LORETA as a function of the number

of time samples for 128 sensors and a SNR of -3 dB. (Right) TPF depending on the SNR

for Nt = 100 and Nr = 127.
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Figure 8: Topographic plots of the electric potential distribution on the surface of the scalp

showing the localization results for 2 distributed sources for EEG data recorded with 128

sensors for 100 time samples and a SNR of -3 dB. White crosses denote the dipoles describ-

ing the original sources whereas blue points mark the estimated sources. (Left) Cortical

LORETA solution based on the averaged potential distribution. (Right) Results of the

Binary Coefficient Matching Pursuit (BCMP) algorithm for the 2 components extracted

with the Space-Time-Wave-Vector (STWV) analysis.
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