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ABSTRACT.The present contribution aims at providing a closer insighton boundary effects in non
local damage modelling. From micromechanics, we show that on a boundary interaction stress
components normal to the surface should vanish. These interaction stresses are at the origin
of nonlocality and therefore the material response of points located on the boundary should
be local. Then we discuss a tentative modification of the classical non local damage model
aimed at accounting for this effect due to existing boundaries and also boundaries that arise
from crack propagation. One-dimensional computations show that the profiles of damage are
quite different compared to those obtained with the original formulation. The region in which
damage is equal to1 is small. The modified model performs better at complete failure, with a
consistent description of discontinuity of the displacement field after failure.

RÉSUMÉ. Cette contribution a pour objet principal d’étudier les effets de surface dans une
formulation non locale de l’endommagement. A partir d’arguments micromécaniques, nous
montrons que sur la surface d’un solide et selon la normale à cette surface, les effets non locaux
disparaissent. Une modification du modèle d’endommagementnon local scalaire est proposée
pour tenir compte des effets de surface et des effets liées à l’apparition de nouvelles surfaces
(fissures). Les résultats sur un calcul unidimensionnel montrent que le modèle modifié permet
de mieux représenter la rupture complète de la barre et l’apparition d’une discontinuité dans
le champs de déplacement calculé.
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1. Introduction

Most failure models for strain softening materials involvenon locality. Whether
non locality is introduced in an integral or in a gradient format, an internal length is
added to the material description. Such constitutive relations provide consistent con-
tinuum models for progressive cracking in quasibrittle materials (see e.g. (Bažantet
al., 2002)). In those materials at least, non locality finds its origin in the interaction
between growing defects in the course of failure. These interactions may be approxi-
mated following the superposition scheme due to Kachanov (Kachanov, 1987) for in-
stance and folded into micromechanical damage based models(see e.g. Refs. (Bažant,
1994, Pijaudier-Cabotet al.,1990)).

Nearby the boundary of the solid, interactions between defects are expected to be
different compared to those observed in the bulk material. It has been stated, from
qualitative arguments, that on the boundary of a solid the material response should
be local (Krayaniet al.,2009). In the first part of this paper, we provide a derivation
of this result. Krayani and co-workers have restricted their discussion to existing
boundaries. Surfaces generated during cracking are evolving boundaries for which
the same effect is expected. Cracks should modify the nonlocal interaction and induce
some shielding effect: the interaction between two points located apart from a crack
should not exist. This means also that non locality, to some extend, should depend on
the state of damage in the material and, for instance, that the internal length entering
in nonlocal models should evolve in the course of failure.

Boundary effects on fracture properties have been investigated, e.g. by (Duanet
al., 2003, Duanet al., 2006). Grassl and Jirasek (Grasslet al., 2006) investigated
boundary effects on the fracture energy within a nonlocal continuum description.
More precisely, they looked at the notch effect and the way itwas treated in the aver-
aging process. Surprisingly, the best results they could obtain was in the case where
the notch is represented by a material which is totally damaged. For material points
close to the notch, the strain in this damage zone is so large that other contributions
in the averaging process become negligible. Boundary effects cannot, however, be
treated by removing boundaries and placing fictitious damaged material outside the
boundaries of the solid. From a practical and computationalpoint of view, adding
material where there is none is cumbersome. Furthermore, aswe will see, this is not
consistent with results from micromechanics.

Capturing existing and evolving boundaries in nonlocal model is still a pending
issue. In integral models, the weight function involved in the non local average is
chopped off and normalized (Pijaudier-Cabotet al.,1987). In gradient enhanced mod-
els, the free boundary condition on the non local variable isthe same as the condition
that would be induced by an axis of symmetry (no normal flux of the regularised vari-
able). Therefore, the non local interactions nearby a boundary of the solid are the same
as the non local interactions that would be observed nearby an axis of symmetry. In
damage models with nonlocal displacements, the local displacements are taken equal
to the nonlocal displacements at the boundary (Rodriguez-Ferranet al.,2005). This
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condition is rather arbitrary but it is the only case where itis consistent with the as-
sertion of locality of the material response on the boundary. Krayani and co-workers
(Krayaniet al.,2009) proposed some modifications of the integral non local damage
model aimed at accounting for the locality of the material response on the boundary.
In order to evaluate the pertinence of the modification of thenon local model numer-
ical simulations of size effect were considered. The issue was to analyse size effect
in specimen geometries where the crack initiates from a notch or from a flat surface
(unnotched specimens). It was demonstrated that the original non local model was not
capable to describe size effect in both cases with a single set of material parameters.
On the contrary, the modified model which accounts for a localbehaviour at the sur-
face of the specimen (where the crack initiates in unnotchedspecimens) provided a
more consistent description of size effect in both geometries.

The purpose of this paper is twofold: first we provide some justification based on
micromechanics of interacting cracks to the fact that the constitutive model should be
local at the boundary of the solid. Second we consider how existing and emerging
boundary effects (crack surfaces) can be folded into a new nonlocal damage formu-
lation. A crack is composed of two free surfaces facing each other. In a continuum
damage setting, a crack is represented by a band of intense damage. When damage is
almost maximum, close to 1 at material failure reproducing macro-crack formation, a
local response should be recovered and non local interactions should vanish. A one
dimensional example illustrates the capabilities of this new model to describe progres-
sive failure and also complete failure with a view to the estimate of crack opening.

2. Interactions in an elastic solid with micro-cracks

In this section, we are going to look at the material at a scalewhere the microstruc-
ture can be described in details. We will discuss the case of adamageable material,
viewed as an elastic material which contains a distributionof defects. The purpose
is to exhibit the various interactions which develops at this level, between cracks and
between cracks and the boundary of the solid. We are going to discuss the case where
the distance between the micro-cracks is not very small compared to their length (of
the same order of magnitude). Under this assumption, interaction is the same as if the
cracks were two voids. The spatial distribution of the interaction forces is the same,
except that the prefactor may differ between cracks and voids (Bažant, 1994, Pijaudier-
Cabotet al.,1991). Thus we will speak about cracks or voids indifferently.

2.1. Infinite body

Let us consider for the sake of simplicity the case of an elastic material containing
two voids and subjected to a remote stress fieldσ∞ (Figure 1). The two voids denoted
asS1 andS2 are of diametera1 anda2 respectively and the distance between their
center is denoted asr. We may compute the state of stress in the solid, accounting for
the presence of the voids and their interaction, according to a superposition scheme
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that is similar to the technique devised by Kachanov for crack interaction (Kachanov,
1987, Fondet al.,1995). We decompose this problem into two sub-problems:

– Sub-problem I: the solid is considered without any void andloaded by the remote
boundary condition corresponding toσ∞.

– Sub-problem II: the remote tractionσ∞ is transformed into distributed forces~P1

= ~P2 = −σ∞.~n acting inside each void whose inner surface is defined by the normal
vector~n.
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Figure 1. Infinite elastic body containing two voids.

Consider now sub-problem II. Again, we can apply the principle of superposition
(Figure 2), in order to compute the interaction stress field due to the presence of the
voids.

In sub-problem II-1, the voidS1 is considered alone loaded by a force distribution
~p1 on its inner surface. These surface forces generate on the imaginary contour of void
S2 stress vectors denoted as~p21. Similar considerations are performed for voidS2 in
sub-problem II-2. Superposition of these sub-problems II yields:
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~P1 =
~P2 =

~p1 + ~p12

~p21 + ~p1

[1]
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Figure 2. Superposition scheme in sub-problem II.

The difficulty is now that the distributions of the forces~pi acting inside voidSi and
of the influence pressure~pji on the imaginary contours of voidSj are not known. Usu-
ally, these distributions are approximated. A possibilityis to consider the distribution
of each component to be piecewise linear on the contour of thevoids (Pijaudier-Cabot
et al.,1991). The distribution of each component can be also expanded into Fourier
series with constant and periodic terms (Kachanov, 1987). The level of approximation
required for a proper representation depends on the complexity of the interactions.

The resulting state of stress (stress tensor) in the body at point x in the infinite
solid is the sum of the remote stress, and the interaction stresses due to the force
distributions~pi inside voidSi denoted asσ(x)xi:

σ(x) = σ∞ +

N∑

i=1

σ(x)xi
[2]

where we have extended the results to the case ofN voids, each voidi being located
at pointxi. In the very simplistic case of an elastic medium subjected to a remote
isotropic stress containing two weakly interacting voids,the states of stressσ(x)xi

are proportional to the remote stress field and depend on the ratio of the diameter of
the void to the distance to the voidai/r(x, xi) (Pijaudier-Cabotet al.,2004).
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2.2. Semi-infinite body

The same infinite elastic body is now cut into two pieces (Figure 3). The two voids
have the same radius and are symmetrically located with respect to this new boundary.
We shall be interested in the body containing voidS1 only. The objective is the same
as in the previous problem - we want to compute the elastic strain in the body - but
now we have to deal with a free boundaryΓ.
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Figure 3. Semi-infinite body with a single inclusion.

In sub-problem I, the solid without voidS1 is subjected to the remote stress field.
The corresponding distribution of stress satisfies the boundary conditions on the free
surfaceΓ:

σ∞.~n = ~0 [3]

In the new sub-problem II, the interaction between the void and the free surface is
computed. A formulation that is similar to the previous one in section 2.1 may be
followed. The surface forces~p1 acting on the inner surface of voidS1 generate on
Γ surface forces denoted as~pΓ,1. Surface forces acting onΓ are introduced and they
generate surface forces~p1,Γ on the inner contour ofS1. Superposition yields:

~P1 =
~0 =

~p1 + ~p1,Γ

~pΓ,1 + ~pΓ

[4]

Compared to Eq. (1-b), the left handside term in Eq. (4-b) is zero because of the
condition of free surface onΓ. The resulting interaction stress vectors on this surface
should vanish.

Within the context of an approximate interaction scheme, the introduction of the
surface forces onΓ may not be necessary and a new sub-problem II may be consid-
ered: we imagine that the two semi-infinite pieces in Fig. (3)containing voidsS1 and
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S2 are glued again. Inside voidS2 the pressure distribution is known, it is -~p1, the
opposite of the pressure inside voidS1. applied. Equation (1-a) becomes:

~P1 = ~p1 + ~p12 [5]

~p12 is proportional to−~p1 because−~p1 is applied inside voidS2. Since~P1 is known
from sub-problem I, the distribution of forces~p1 inside voidS1 is the solution of this
equation. The stress distribution at any pointx due to the distribution of forces inside
the two voids is

σ(x) = σ(x)x1 + σ(x)x2 [6]

Because of the symmetry of the problem and because voidS2 is loaded by a distri-
bution of forces that is the opposite of that in voidS1, we have on the free surface
Γ:

~n. (σ(x)x1 + σ(x)x2) .~n = 0 [7]

The normal component of the resulting interaction stress vector vanishes. The sum of
the tangential component overΓ, assumed to be infinitely long, vanishes too (this is for
the stress fields due to the voids taken separately in fact). Therefore, the conditions of
free boundary are verified pointwise onΓ for the normal component, and in an average
form for the tangential component.

In this new sub-problem II, an infinite body is considered although the aim is the
stress distribution in a semi-infinite body. The stress fieldsolution of this sub-problem
is such that surface forces cancel on the imaginary locationof the free surface (for
the shear component, the average over the surface cancels).In return, it generates
a specific state of stress, that is due to the interaction between voidsS1 andS2, or
equivalently between the boundaryΓ and the defectS1.

In the case of a semi-infinite body containingN voids, the resulting state of stress
(stress tensor) in the body at pointx is the sum of the remote stress, the interaction
stresses due to the force distributions~pi1 inside voidSi denoted asσ(x)xi1, and the
interaction stresses due to the force distributions~pi2 inside the symmetric of voidSi

with respect to the boundary of the solid denoted asσ(x)xi2:

σ(x) = σ∞ +

N∑

i=1

σ(x)xi1
+

N∑

i=1

σ(x)xi2
[8]

Obviously, the difficulties that are involved in the practical calculation of the distri-
bution of surface forces inside voidsSi (and on the free surface) remains the same
as for the infinite body and the same approximation techniques may be devised. It is
important to notice, however, that whatever the approximation of the distributions of
forces~pi, Eq. (7) still holds and that the condition of free surface onΓ is still satisfied
(in an average format for the tangential component).
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The same type of reasoning can be extended without difficulties to any type of
boundary condition at the limit of the solid. Whatever the approximation of the sur-
face forces in the interaction schemes, the interaction stress vectors should vanish on
the free boundary of a solid. Far from this boundary, the state of stress induced by the
surface forces~pΓ vanishes and the influence of the free boundary disappears.If non-
locality of the constitutive response is due to the presenceof these interaction terms,
nonlocality vanishes on the free surface, in the normal direction to this surface.

3. Upscaling and consequences in continuum modelling

The equivalent homogeneous material which is the macroscopic counterpart of
the above solid with micro-cracks is a continuum with an overall stiffness which is
a function of the density, size and shape of the micro-cracks(see e.g. (Budianskyet
al., 1976)). The present issue is not to define accurately what should be the function
relating the distribution of micro-cracks to the overall stiffness but ratherhow the
variable which defines the growth of damage in the continuum model can be obtained
from upscaling techniques. As opposed to standard homogenisation theories, we are
not looking at a frozen state of micro-cracking and at the corresponding continuum
state-related quantities but at the evolution problem and therefore at evolution-related
quantities. Still, it is important to see how state-relatedquantities are defined because
most probably it is a combination of those variables which will control damage growth
in the end.

As suggested in the constitutive relationship proposed by Bazant, (Bažant, 1994),
the interaction stresses computed in the previous section are at the origin of non lo-
cality in a continuum description. Another framework basedon a generalisation of
Hashin-Shtrikman variational principles (Hashinet al.,1962) was discussed by Dru-
gan and co-workers (Druganet al.,1996, Monettoet al.,1962) and it is quite instruc-
tive as it discusses RVE sizes and nonlocal effects.

In the case of a two phase composite with isotropic and statistically uniform dis-
tribution of phases, Drugan and Willis arrived to a nonlocalconstitutive relation in the
elastic regime relating the average stress< σ > to the average strain< ǫ >:

< σ >= L̂ :< ǫ > −T̂ : ∇2(< ǫ >) [9]

where the average strain< ǫ > is defined as:

< ǫ >= ǫ0 +

∫

Ω

Γ (x, ξ) dξ [10]

FunctionΓ (x, ξ)) is a measure of the local interactions derived with the help of
Green’s functions andǫ0 is the strain in the homogeneous comparison solid (equal
to the strain in the matrix if inclusions are very dilute). The above equation is very
similar to Eq. (2), except that it is expressed in term of strain rather than stress. Since
the material is elastic, the difference is not really fundamental.
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In the approach by Drugan (Druganet al.,1996), there is an evaluation of the size
of the representative volume element (RVE) in the homogenised material. The size
of the RVE is such that the second order gradient appearing inEq. (9) becomes neg-
ligible. In other words, the constitutive equations becomelocal, relating the average
stress to the average strain. This definition of the RVE was also used by Delaplace
and co-workers (Delaplaceet al., 1996) in order to compute a correlation length in
a lattice model. According to Drugan and Willis, the size of the RVE for a material
containing voids with a volume fraction less than0.33 is about two times the diameter
of the void. As pointed out in the same paper, this size of RVE is much less than what
is commonly expected in heterogeneous materials. A ratio offive to ten times the
size of the voids or cracks is usually used for defining the size of the RVE needed in
order to average in a statistical sense the fluctuations of the stress or strain. Hence, the
stress-strain relation may be defined locally as nonlocal second order gradient terms
are negligible but at the same size of RVE, averages of strains and stresses may not be
statistically representative.

We expect that the variable which controls the growth of damage be a function of
the average stress or the average strain computed accordingto Eq. (10). The issue is
now whether averaging results into a nonlocal quantity or not at the scale defined by
the size of the RVE where constitutive relations become local.

There is at least one instance where the average strain is local whatever the inter-
action terms, it is the case of a uniform distribution of voids. When the distribution of
micro-cracks remains homogeneous, the integral of the interaction terms in Eq. (10)
becomes independent ofx:

< ǫ(x) >= ǫ0(x) +

∫

Ω

Γ (x, ξ) dξ = ǫ∞(x) +

∫

Ω

Γ (ξ) dξ [11]

Interactions induce a corrective term which is homogeneousover the solid containing
micro-cracks. Obviously, the average of the strain becomeslocal in this case, what-
ever the magnitude of the interactions. We might expect alsothat when the second
order gradient of the average variable remains small, nonlocal effect remain negligi-
ble. For this, variation of the strain and of the interactions outside the RVE should be
negligible:

< ǫ(x) >= ǫ0(x) +

∫

Ω

Γ (x, ξ) dξ = ǫ∞(x) +

∫

RV E

Γ (x, ξ) dξ [12]

or
∫

Ω

Γ (x, ξ) dξ =

∫

RV E

Γ (x, ξ) dξ [13]

Equation (13) is a sort of insulation condition: at the center x of a RVE, a variation
of the interactions due to micro-crack growth outside the RVE may not be felt or be
negligible.

The size of the RVE is about two times the size of the voids or cracks. If the spacing
between the micro-cracks/voids is of the same order as the micro-crack length or the
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void radii, interactions cannot be neglected. According toXueli (Xueli et al.,1999),
interactions between two voids become sensitive when theirrelative distance is less
than twice their diameter. This corresponds to volume fractions of voids higher that
0.18 approximately. For volume fraction close to0.33, interactions induce a change of
the hoop stress on the voids surface by10 percent. Interactions are even more sensi-
tive when cracks are considered instead of voids. Accordingto Kachanov (Kachanov
et al., 1989, Gorbatikhet al., 2000) the stress distribution may change by as much
as20 percent in the case of colinear cracks or stacked cracks. Interactions are much
more sensitive for stacked cracks with crack densities from0.2 to 0.3. Therefore, if a
(micro-)crack next to a considered RVE grows, the interactions between micro-cracks
inside and outside the RVE will change, more specifically theinfluence pressure quan-
tities~pij computed in section2 will change. Hence, the average strain in RVE centered
at pointx should change although the configuration of micro-cracks inthe RVE does
not change. This is clearly non local effect which is gettingstronger as micro-cracking
develops. To summarise, as stated in (Kachanov, 1994), interactions may vanish when
considering the deterioration of the elastic stiffness butfield variables such as stresses
or strain, and local stress intensity factors which controlthe process of failure are still
sensitive to these interactions. This provides a justification for introducing a non local
variable in the equation governing the growth of damage.

Another point of view to the same problem is that the interaction between voids or
cracks may not be necessarily symmetric. This is important when strong gradients of
the crack/void density is encountered. The influence pressure quantities~pij computed
in the previous section are not symmetric.~pij 6= ~pji if the micro-cracki is not the
same as micro-crackj or if the remote state of stress in the solid without cracks or
voids is non homogeneous. A small micro-crack sitting near the crack tip of a large
crack is influenced by this one, whereas the large crack is notinfluenced by the small
one a lot. In the equivalent homogeneous material, the conditions of growth of damage
of a material point sitting nearby the tip of a damage zone should feel the damage zone
but the damage zone may not feel the state of damage of a material point outside it
as much. This is typical of a non local effect. The condition of damage growth at a
material point sitting in a homogeneous distribution of damage should not be the same
as the conditions of damage growth of the same material pointsitting nearby a zone
that is completely damaged. This is also the case of the interactions between a free
boundary and a micro-crack. A free boundary may be viewed as alarge crack face
and results into a strong gradient in the distribution of micro-cracking.

Crack interaction at the microstructural scale results into non locality at the macro
scale in the presence of strong gradients which does not vanish upon upscaling. This
non locality vanishes only in three cases: (i) when the distribution of micro-craking is
uniform and the solid is subjected to a homogeneous remote state of stress, local quan-
tities are equal to non local ones; (ii) at the boundary of a solid, non locality should
vanish in the direction normal to the boundary; (iii) upon a macro-crack formation,
non locality should also vanish on the macro-crack faces (intheir normal direction).
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4. Non local damage model

We are going to examine now how such results can be incorporated in a contin-
uum formulation and extended to the case of evolving boundaries, macro-crack sur-
faces described by a zone in which damage is equal to1 according to the continuum
model (Mazarset al., 1996). Although the constitutive relations are discussed in a
full 3D format, we will restrict applications of the modifiednon local model to the
one-dimensional case which is simple but not entirely representative of full boundary
effects (no tangential effects on the boundary). 2D and 3D generalisation are left for
further developments.

4.1. Isotropic (scalar) damage model

The classical stress-strain relation for this type of modelreads:

σij = (1 − D)Cijklεkl [14]

whereσij andεkl are the components of the stress and strain tensors, respectively
(i, j, k, l ∈ [1, 3]) andCijkl are the components of the fourth-order elastic stiffness
tensor. The damage variableD represents a measure of material degradation which
grows from zero (undamage material with the virgin stiffness) to one (at complete loss
of integrity). The material is isotropic, withE andν the initial Young’s modulus and
Poisson’s ratio respectively.

For the purpose of defining damage growth, a scalar equivalent strainεeq is in-
troduced, which quantifies the local deformation state in the material in terms of its
effect on damage. In this contribution, Mazars’ definition of the equivalent strain is
used (Mazars, 1984):

εeq =

√√√√
3∑

i=1

(
〈εi〉+

)2
[15]

where〈εi〉+ are the positive principal strains. Damage growth is governed by the
loading function:

g(ε, k) = εeq(ε) − k [16]

k equals the damage thresholdεD0
initially, and during the damage process it is the

largest ever reached value ofεeq. The evolution of damage is governed by the Kuhn-
Tucker loading-unloading condition:

g(ε, k) ≤ 0, k̇ ≥ 0, k̇g(ε, k) = 0 [17]

The damage variableD is determined as a linear combination of two damage variables
Dt andDc, that represent tensile damage and compressive damage respectively, by the



12 1re soumission àEuropean Journal of Environmental and Civil Engineering

help of two coefficientsαt andαc which depend on the type of stress state (Mazars,
1984):

D = αtDt + αcDc [18]

Dt,c = 1 −
1 − At,c

εeq

+
At,c

exp(Bt,c (εeq − εD0
))

[19]

Standard values of the model parameters in the damage have been given in
Ref. (Mazars, 1984).

4.2. Original non local formulation

In the integral-type non local damage models, the local equivalent strain is replaced
by its weighted average:

ε̄eq (x) =

∫

Ω

Ψ (x, ξ) εeq (ξ) dξ [20]

with Ω the volume of the structure andΨ (x, ξ) the weight function. It is required that
the non local operator does not alter the uniform field, whichmeans that the weight
function must satisfy the condition:

∫

Ω

Ψ (x, ξ)dξ = 1 ∀x ∈ Ω [21]

For this reason, the weight function is recast in the following form (Pijaudier-Cabotet
al., 1987):

Ψ (x, ξ) =
Ψ0 (x − ξ)

Ωr (x)
with Ωr (x) =

∫

Ω

Ψ0 (x − ξ) dξ [22]

whereΩr (x) is a representative volume andΨ0 (x − ξ) is the basic non local weight
function which is often taken as the polynomial bell-shapedfunction (Bažantet al.,
2002), or here as the Gauss distribution function:

Ψ0 (x − ξ) = exp

(
−

4 ‖x − ξ‖
2

l2c

)
[23]

lc is the internal length of the non local continuum. Preserving the uniform field
in the vicinity of the boundary makes the averaging in Eq. (22) not symmetric with
respect to its argumentsx andξ. This lack of symmetry leads to the non-symmetry of
the tangent operator (Bažantet al.,1988, Pijaudier-Cabot, 1995, Jiraseket al.,2002).
A symmetric non local formulation exists also (Borinoet al.,2003).
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4.3. Modified non local formulation

The goals of the modified non local formulation are twofold: (1) at the boundary of
the solid, non locality should vanish; (2) when a crack has formed - i.e. when a band
of damage close to 1 has been created, the constitutive relations should again be local
in this band. By comparison to the modifications discussed in(Krayaniet al.,2009)
which dealt with a boundary effect only, here we try to account also for boundary
effects occurring when a new free surface has formed in the process of cracking. We
are going to rely on a simple argument: in the process of cracking, the quantity of
information that can be transmitted between two neighbors depends on the state of
damage. The argument is rather similar to that of Desmorat and Gatuingt (Desmoratet
al., 2007). Some internal time is introduced in the constitutiverelation which induces
a decrease of the internal length upon damage growth. Here, the analogy with the
propagation of wave is used but the weight function is regarded as an attenuation
function in the transmission of information from one point to its neighbor.

Let us denote ass the distance appearing in Eq. (23), defined as‖x − ξ‖. This
distance is now modified according to the following incremental relation:

du =
ds

γ(ξ)
=

‖x − dξ‖

γ(ξ)
[24]

whereγ(ξ) is a function of the state of damage at point of coordinateξ. In the com-
putation of the average centered at pointx, we use now the distanceu instead of the
distances:

u =

∫

Ω

ds

γ(ξ)
[25]

In this remapping of the neighborhood around point of coordinatex, each point of
coordinateξ is now defined by the new coordinateu. In a spherical coordinate system
centered at pointx, the distance is defined by the above equation and the two angles
are kept the same, they are invariant through the mapping function. The weighted
average in Eq. (20) becomes:

ε̄eq (x) =

∫

Ω

Ψ(u)εeq(x + u)du [26]

γ(ξ) should be equal to1 when the material is not damaged at pointξ, and it decreases
when damage grows. As a consequence, the distance between two close neighbors
will be increased as damage grows and in the weighted averageprocess, the nonlocal
effect of pointξ will decrease.

Functionγ(ξ) remains to be defined completely. We use for this an analogy with
the attenuation during the propagation of waves. In the non local average defined in
Eq. (20) the weight functionΨ (x − ξ) is seen as the attenuation applied to a wave of
amplitudeεeq generated at pointξ and propagating toward pointx . Ψ (x − ξ) .εeq

is the interaction of pointξ on pointx. It is attenuated as the information is prop-
agated in the solid. We may now consider that the wave speed depends on the state
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of damage: the time needed for the interaction effect to cover distances is going to
increase if the material on the path of propagation of the wave is getting damaged. In a
one-dimensionnal setting, the wave speedc =

√
E/ρ becomescd =

√
(1 − D).E/ρ

wherecd is the velocity of the damaged material. This increase of time for the in-
formation to be transmitted in the damaged medium between the two pointsξ andx

is converted into a fictitious increase of distance between these two points. The time
needed for the interaction to propagate between the two points is kept the same, but
since we consider now that the interaction is propagated in an undamaged medium the
distance between the points is increased. When this distance is increased, the attenu-
ation is increased accordingly. Let us consider Eq. (24) anddivide both terms by the
wave speedc:

du

c
=

ds

γ(ξ) ∗ c
=

ds

cd

[27]

This equation states that the time needed for an informationto propagate over a dis-
tancedu in an undamaged medium is the same as the time needed for an information
to propagate over the lengthds in the damaged medium. Upon damage, the distance
between these two points is increased, which is equivalent to a slower wave propa-
gation and consequently, it is more attenuated than in the case where damage is not
observed. From this equation we have:

γ(ξ) =
cd

c
[28]

This qualitative reasoning implies that damage enters in the functionγ. The difficulty
is that the formulation becomes implicit. In order to keep the simplicity of the ap-
proach, we substitute to the non local value of damage the local expression and we
take:

γ(ξ) = (1 − F (εeq(ξ)))
1

2 [29]

whereF (εeq) is the function defined in Eq. (19).F (εeq) is the local value of damage
computed at the considered point. This definition of function γ is rather arbitrary. In
fact, it fulfills the requirements stated above: when the material is not damaged, this
function is equal to 1 and it becomes equal to zero if the material is totally damaged
locally. At this stage, the incremental value of the modifieddistance between two
points becomes infinite and the nonlocal interaction in between them vanishes. The
exponent1/2 has been chosen by analogy to wave propagation. This new definition of
the nonlocal averaging needs also to fulfill the conditions on the free boundary demon-
strated in the previous section. This can be performed by considering that on a free
boundary local damage is set equal to 1. According to Eq. (24), a close neighbor to a
point located on the boundary of the solid is located at a distancedu which becomes
infinite. Consequently, the nonlocal effect of this neighbor to the nonlocal average
centered at the boundary is equal to zero.
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5. One-dimensional example

In order to compare the original and the modified nonlocal formulation, we are
going to use the simple one-dimensionnal example devised in(Pijaudier-Cabotet al.,
1987). A bar of length2L, in which two constant strain waves converge toward its
center is considered. The amplitude of the wave is0.7 times the deformation at the
peak load in tension. When the two waves meet at the center, the strain amplitude is
doubled, the material enters the softening regime suddenlyand failure occurs.

Figure 4. Principle of the one dimensional computation.

The bar length is taken equal to30 cm. The parameters used in this example are:
the volumic massρ = 1 kg/m3, the Young’s modulusE = 1 MPa and the velocity
boundary conditionv = 0.7 cm/s applied at the bar ends. The other model parameters
areAt = 1, Bt = 2, εD0

= 1 and the internal lengthlc is 2 cm (there is no damage in
compression). A fixed mesh of99 constant strain elements is used. Time integration
is performed according to an explicit, central difference scheme. The time step is
∆t = 1s.

Figures 5 present the evolution with time of the profiles of damage and non local
strain. The two waves meet at the center of the bar at timet = 50s. Note that
damage develops over a band of finite – non zero – width. Compared to computations
with the original damage model shown in Fig. 6, the profile of damage is almost
triangular instead of being almost rectangular, forming a band of damage equal to 1
according to the original formulation. This difference is due to the modification of
the weight function as damage develops. This is illustratedin Figs. 7. The weight
function centered in the middle element where complete failure is expected to occur
(e.g. where damage is equal to1) shrinks progressively as damage develops. When
damage is equal to1 in this element, it is a Dirac delta function and the material
response becomes local. When damage is equal to1, it is as if the bar would be cut
into two pieces. At this point, the material response is local and this is in agreement
with micromechanics of crack interaction as demonstrated in this paper.

In neighboring elements, however, the weight function evolves differently. We
have computed the weight function nearby the element in which failure occurs, two
elements farther on the left. Figure (7) shows that the weight becomes cut at the center
of the bar. Information coming from material points locatedbehind the point at which
failure occurs is screened by damage. This is again a difference with the original non-
local damage formulation in which nonlocal interactions (weights) is transmitted even
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Figure 5. Evolution of the damage (top) and nonlocal strain (bottom) profiles with time (in s)
over the bar.

across a macro-crack. We have also checked in Fig. (8) that the distribution of damage
is not subject to spurious mesh dependency. For the finite element meshes used which
are already quite refined, the largest element size is smaller than the internal length
used in the computations, the profiles of damage are almost the same. Convergence
of the damage profiles with respect to mesh refinement means also that the energy
dissipated at failure is a constant. It is the sum of the energy dissipated due to damage
at each material point in the damage band.

The damage profiles are not dependent on the finite element size. The issue is
now whether the strain distribution should be also independent of the finite element
size or not. Before complete failure, this result is expected. Without this property,
the damage band which is a function of the maximum nonlocal strain recorded in
each finite element over the history of loading would not be expected to be mesh
independent. When damage is equal to one in the middle element, convergence of the
strain with respect to the size of this element may be questioned.
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Figure 6. Evolution of the damage profile with time (in s) over the bar according to the original
damage model.

Indeed, in the finite element located in the middle of the mesh, where complete
failure occurs, the stress is vanishing and the relative displacement at the extremity
of the finite element should be equal to the crack opening. According to the finite
element discretisation however, there is no displacement and strain discontinuity and
the crack opening is smeared over the element. Let us denote as h the length of this
finite element, the crack opening[u] is:

[u] = ǫ ∗ h [30]

If the finite element calculation has converged with respectto mesh refinement, upon
complete failure the crack opening should be independent ofthe element size and
therefore that the strain in the element located in the middle of the mesh evolves as a
function ofh−1. We have checked this in Fig. (9). According to the modified nonlocal
model, the maximum strain is indeed a power law of the finite element size. Exponent
−1 is recovered. At the same time, the crack opening displacement is measured. We
obtain[u] = 4, 81cm. Interestingly, the same crack opening displacement, computed
according to the technique proposed by Dufour and co-workers (Dufouret al.,2008)
is rather close[u] = 5, 07cm. For this calculation, we have chosen a constant weight
function for the computation of the estimate of the crack opening. It is important to
remark that the original nonlocal formulation is far from exhibiting the same property.
The maximum strain is constant and therefore, in this simpleapplication it may not
provide the displacement discontinuity properly.

6. Conclusions

Boundary effects are difficult issues in nonlocal models. Ineither integral or gra-
dient formulations, boundary conditions are rather arbitrary. In this paper, we have
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Figure 7. Evolution of weight function with damage: weight centered in the middle element
(top), weight centered near the middle element (bottom).

demonstrated first that on a free boundary non local interactions should vanish. Some
qualitative argument had already been discussed in the past(Krayani et al., 2009),
here we provide a more rigorous mathematical derivation.

In the course of failure, when a macro-crack is formed, new boundary surfaces are
appearing. This should also be taken into account in non local formulation, with the
same requirements as for an initial boundary in the solid. Grassl and Jirasek (Grassl
et al.,2006) showed that these boundaries had an influence on the energy of fracture.
We have proposed here a prototype damage model that accountsfor the progressive
shielding effect induced by a crack appearing in the material. This is achieved by a
remapping of the non local averaging, in the same spirit as in(Krayaniet al.,2009),
but with a different mathematical formulation.

One dimensionnal finite element calculations show that the modified non local
model still describes failure with a finite non zero fractureenergy, that the damage
profiles are triangular and not rectangular as observed in the original formulation,
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Figure 8. Evolution of the damage profiles for different meshes.

Figure 9. Evolution of the maximum strain il the middle element with the finite element size.

and that at complete failure, the model is capable of approaching a discontinuous
formulation, whereas the original formulation is not capable of reaching this limit
case.

This modified non local model should be seen as a first step toward a compre-
hensive modelling of boundaries and interface effect in nonlocal damage models. A
two dimensional implementation is required at least in order to check the capabilities
of this new model. For instance, a description of size effectthat is consistent with
Bazant’s universal size effect law for notched and unotchedspecimens needs to be
checked (Krayaniet al.,2009).
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