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ABSTRACTT he present contribution aims at providing a closer insighboundary effects in non
local damage modelling. From micromechanics, we show that boundary interaction stress
components normal to the surface should vanish. Theseatstten stresses are at the origin
of nonlocality and therefore the material response of pointated on the boundary should
be local. Then we discuss a tentative modification of thesttabnon local damage model
aimed at accounting for this effect due to existing bouretadnd also boundaries that arise
from crack propagation. One-dimensional computationsasttmat the profiles of damage are
quite different compared to those obtained with the origfioamulation. The region in which
damage is equal td is small. The modified model performs better at completar&gilwith a
consistent description of discontinuity of the displacenfield after failure.

RESUME. Cette contribution a pour objet principal d’étudier les &ff de surface dans une
formulation non locale de 'endommagement. A partir d’argants micromécaniques, nous
montrons que sur la surface d'un solide et selon la normalettesurface, les effets non locaux
disparaissent. Une modification du modéle d’endommagenmntocal scalaire est proposée
pour tenir compte des effets de surface et des effets li€apgatition de nouvelles surfaces
(fissures). Les résultats sur un calcul unidimensionneltreahque le modéle modifié permet
de mieux représenter la rupture compléte de la barre et l&@jipn d’'une discontinuité dans
le champs de déplacement calculé.
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1. Introduction

Most failure models for strain softening materials invohan locality. Whether
non locality is introduced in an integral or in a gradientfat, an internal length is
added to the material description. Such constitutive icatprovide consistent con-
tinuum models for progressive cracking in quasibrittle enials (see e.g. (Bazaat
al., 2002)). In those materials at least, non locality finds iigiorin the interaction
between growing defects in the course of failure. Theseant®ns may be approxi-
mated following the superposition scheme due to Kachanaeliignov, 1987) for in-
stance and folded into micromechanical damage based mgdels.g. Refs. (Bazant,
1994, Pijaudier-Cabat al.,1990)).

Nearby the boundary of the solid, interactions betweenadgfere expected to be
different compared to those observed in the bulk materiahas been stated, from
qualitative arguments, that on the boundary of a solid theer# response should
be local (Krayankt al.,2009). In the first part of this paper, we provide a derivation
of this result. Krayani and co-workers have restrictedrtidéscussion to existing
boundaries. Surfaces generated during cracking are egphoundaries for which
the same effect is expected. Cracks should modify the nahiloeraction and induce
some shielding effect: the interaction between two poiotsied apart from a crack
should not exist. This means also that non locality, to soxtenel, should depend on
the state of damage in the material and, for instance, teantbrnal length entering
in nonlocal models should evolve in the course of failure.

Boundary effects on fracture properties have been inwvatstity e.g. by (Duapt
al., 2003, Duaret al., 2006). Grassl and Jirasek (Grasslal., 2006) investigated
boundary effects on the fracture energy within a nonlocatiooum description.
More precisely, they looked at the notch effect and the wayas treated in the aver-
aging process. Surprisingly, the best results they coutdiolwvas in the case where
the notch is represented by a material which is totally dadadror material points
close to the notch, the strain in this damage zone is so laageother contributions
in the averaging process become negligible. Boundary tsfieannot, however, be
treated by removing boundaries and placing fictitious dadagaterial outside the
boundaries of the solid. From a practical and computatipoait of view, adding
material where there is none is cumbersome. Furthermoree asll see, this is not
consistent with results from micromechanics.

Capturing existing and evolving boundaries in nonlocal elasl still a pending
issue. In integral models, the weight function involved e non local average is
chopped off and normalized (Pijaudier-Cabbal.,1987). In gradient enhanced mod-
els, the free boundary condition on the non local variabthéssame as the condition
that would be induced by an axis of symmetry (no normal fluxhefriegularised vari-
able). Therefore, the non local interactions nearby a bayynaf the solid are the same
as the non local interactions that would be observed nearlaxs of symmetry. In
damage models with nonlocal displacements, the localatigphents are taken equal
to the nonlocal displacements at the boundary (RodrigweraRet al.,2005). This
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condition is rather arbitrary but it is the only case wheris itonsistent with the as-
sertion of locality of the material response on the boundidrgyani and co-workers
(Krayaniet al.,2009) proposed some madifications of the integral non loaaiabe
model aimed at accounting for the locality of the materiapanse on the boundary.
In order to evaluate the pertinence of the modification ofrtbe local model numer-
ical simulations of size effect were considered. The issas tw analyse size effect
in specimen geometries where the crack initiates from almotdrom a flat surface
(unnotched specimens). It was demonstrated that the atigam local model was not
capable to describe size effect in both cases with a singlef seaterial parameters.
On the contrary, the modified model which accounts for a lbehlaviour at the sur-
face of the specimen (where the crack initiates in unnotdpetimens) provided a
more consistent description of size effect in both georestri

The purpose of this paper is twofold: first we provide soméfjaation based on
micromechanics of interacting cracks to the fact that thestitutive model should be
local at the boundary of the solid. Second we consider hoatiegi and emerging
boundary effects (crack surfaces) can be folded into a nevilonal damage formu-
lation. A crack is composed of two free surfaces facing edbkro In a continuum
damage setting, a crack is represented by a band of intenszgda When damage is
almost maximum, close to 1 at material failure reproducirgra-crack formation, a
local response should be recovered and non local interectibould vanish. A one
dimensional example illustrates the capabilities of tle/model to describe progres-
sive failure and also complete failure with a view to therastie of crack opening.

2. Interactions in an elastic solid with micro-cracks

In this section, we are going to look at the material at a sehlere the microstruc-
ture can be described in details. We will discuss the casedafh@ageable material,
viewed as an elastic material which contains a distributibdefects. The purpose
is to exhibit the various interactions which develops ad tavel, between cracks and
between cracks and the boundary of the solid. We are goingtosk the case where
the distance between the micro-cracks is not very small eoetpto their length (of
the same order of magnitude). Under this assumption, ictierais the same as if the
cracks were two voids. The spatial distribution of the iattion forces is the same,
exceptthat the prefactor may differ between cracks ands\@édzant, 1994, Pijaudier-
Cabotet al.,1991). Thus we will speak about cracks or voids indiffengntl

2.1. Infinite body

Let us consider for the sake of simplicity the case of an ielasaterial containing
two voids and subjected to a remote stress field (Figure 1). The two voids denoted
asS; and S, are of diameter; anda, respectively and the distance between their
center is denoted as We may compute the state of stress in the solid, accounting f
the presence of the voids and their interaction, accordirg superposition scheme
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that is similar to the technique devised by Kachanov forkiateraction (Kachanov,
1987, Fonckt al., 1995). We decompose this problem into two sub-problems:

— Sub-problem I: the solid is considered without any void iadled by the remote
boundary condition correspondingdQ,.

- Sub-problem II: the remote tractien, is transformed into distributed forcé;
= P, = —0 .7 acting inside each void whose inner surface is defined by dheal
vectorri.

a;r'Tz‘
i

e
cYOO
Sub-problem I Sub-problem 11

Figure 1. Infinite elastic body containing two voids.

Consider now sub-problem Il. Again, we can apply the prilecgd superposition
(Figure 2), in order to compute the interaction stress field t the presence of the
voids.

In sub-problem II-1, the void; is considered alone loaded by a force distribution
p1 onits inner surface. These surface forces generate on #ggnary contour of void
S, stress vectors denoted gig . Similar considerations are performed for vaiglin
sub-problem I1-2. Superposition of these sub-problemélidg:
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P = p1+pi2 [1]

Py= P21 +D1
élz éz + 33[;2 E:;E
Bl P21 T P,

P12

Sub-problem II-1 Sub-problem II-2
Figure 2. Superposition scheme in sub-problem 1.

The difficulty is now that the distributions of the forgésacting inside voids; and
of the influence pressugg; on the imaginary contours of vois; are not known. Usu-
ally, these distributions are approximated. A possibibityo consider the distribution
of each component to be piecewise linear on the contour ofdius (Pijaudier-Cabot
et al., 1991). The distribution of each component can be also exgzhimdo Fourier
series with constant and periodic terms (Kachanov, 19879.1&8vel of approximation
required for a proper representation depends on the coitptéxhe interactions.

The resulting state of stress (stress tensor) in the bodwiat p in the infinite
solid is the sum of the remote stress, and the interacti@ssts due to the force
distributionsp; inside voidS; denoted agr () ,.4:

N
(@) =00 + Za(m)mi [2]

i=1

where we have extended the results to the cag€ wbids, each void being located
at pointx;. In the very simplistic case of an elastic medium subjected temote
isotropic stress containing two weakly interacting voitlhe states of stress(x);
are proportional to the remote stress field and depend oratleeaf the diameter of
the void to the distance to the voig/r(x, i) (Pijaudier-Cabogt al.,2004).
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2.2. Semi-infinite body

The same infinite elastic body is now cut into two pieces (Fé@). The two voids
have the same radius and are symmetrically located witleod $pthis new boundary.
We shall be interested in the body containing vSidonly. The objective is the same
as in the previous problem - we want to compute the elastinsin the body - but
now we have to deal with a free boundaty

Figure 3. Semi-infinite body with a single inclusion.

In sub-problem I, the solid without voifl; is subjected to the remote stress field.
The corresponding distribution of stress satisfies the dannconditions on the free
surfacel™:

Ooo =0 [3]

In the new sub-problem I, the interaction between the vaid the free surface is
computed. A formulation that is similar to the previous oneséction 2.1 may be
followed. The surface forces, acting on the inner surface of voig} generate on
I' surface forces denoted gg ;. Surface forces acting dn are introduced and they
generate surface forcgs r on the inner contour of;. Superposition yields:

= pi1+pr
~ iy 4
= pra+pr [41

o=t

Compared to Eq. (1-b), the left handside term in Eq. (4-b)eiodbecause of the
condition of free surface oR. The resulting interaction stress vectors on this surface
should vanish.

Within the context of an approximate interaction scheme,ititroduction of the
surface forces ot may not be necessary and a new sub-problem Il may be consid-
ered: we imagine that the two semi-infinite pieces in Fig.c@)taining voidsS; and
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S, are glued again. Inside voifl, the pressure distribution is known, it ig}; the
opposite of the pressure inside vdig. applied. Equation (1-a) becomes:

151 =p1 + P2 (5]

p1o IS proportional to—p; because-p; is applied inside voidbs. Sinceﬁl is known
from sub-problem I, the distribution of forc@$ inside voidsS; is the solution of this
equation. The stress distribution at any pairtue to the distribution of forces inside
the two voids is

o(x) = o(2)z1 + ()2 (6]

Because of the symmetry of the problem and because Sid loaded by a distri-
bution of forces that is the opposite of that in vaig, we have on the free surface
I

. (0(x) g1 + 0(T)z2) 1= 0 [7]

The normal component of the resulting interaction strestoveranishes. The sum of
the tangential component ovierassumed to be infinitely long, vanishes too (this is for
the stress fields due to the voids taken separately in fab8refore, the conditions of
free boundary are verified pointwise brior the normal component, and in an average
form for the tangential component.

In this new sub-problem Il, an infinite body is consideretialtgh the aim is the
stress distribution in a semi-infinite body. The stress feldition of this sub-problem
is such that surface forces cancel on the imaginary locatidhe free surface (for
the shear component, the average over the surface cantelsturn, it generates
a specific state of stress, that is due to the interactiondmiwoidsS; andSs, or
equivalently between the bounddryand the defecs,.

In the case of a semi-infinite body containifgvoids, the resulting state of stress
(stress tensor) in the body at poinis the sum of the remote stress, the interaction
stresses due to the force distributigns inside voidS; denoted a# ()1, and the
interaction stresses due to the force distributigindnside the symmetric of void;
with respect to the boundary of the solid denoted és) ;i2:

N N
o(x) =000 + Z o (T) e + Z o (T)z, (8]
i=1 i=1

Obviously, the difficulties that are involved in the praaticalculation of the distri-
bution of surface forces inside void (and on the free surface) remains the same
as for the infinite body and the same approximation techisiquay be devised. It is
important to notice, however, that whatever the approxonatf the distributions of
forcesp;, Eq. (7) still holds and that the condition of free surfacd dn still satisfied

(in an average format for the tangential component).
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The same type of reasoning can be extended without diffesutt any type of
boundary condition at the limit of the solid. Whatever th@r=pximation of the sur-
face forces in the interaction schemes, the interacti@sstvectors should vanish on
the free boundary of a solid. Far from this boundary, theestéstress induced by the
surface forcegr vanishes and the influence of the free boundary disappkarsn-
locality of the constitutive response is due to the presafitkese interaction terms,
nonlocality vanishes on the free surface, in the normaladiom to this surface

3. Upscaling and consequences in continuum modelling

The equivalent homogeneous material which is the macrés@munterpart of
the above solid with micro-cracks is a continuum with an ailestiffness which is
a function of the density, size and shape of the micro-créaks e.g. (Budianskegt
al., 1976)). The present issue is not to define accurately whatigte the function
relating the distribution of micro-cracks to the overalffaess but rathehow the
variable which defines the growth of damage in the continuaaieihcan be obtained
from upscaling technique#\s opposed to standard homogenisation theories, we are
not looking at a frozen state of micro-cracking and at theesponding continuum
state-related quantities but at the evolution problem hadefore at evolution-related
quantities. Still, it is important to see how state-relagedntities are defined because
most probably it is a combination of those variables whiclhegintrol damage growth
in the end.

As suggested in the constitutive relationship proposedédmeBt, (Bazant, 1994),
the interaction stresses computed in the previous sect®atahe origin of non lo-
cality in a continuum description. Another framework baseda generalisation of
Hashin-Shtrikman variational principles (Haslihal., 1962) was discussed by Dru-
gan and co-workers (Drugaat al.,1996, Monetteet al.,1962) and it is quite instruc-
tive as it discusses RVE sizes and nonlocal effects.

In the case of a two phase composite with isotropic and statily uniform dis-
tribution of phases, Drugan and Willis arrived to a nonlamaistitutive relation in the
elastic regime relating the average stress > to the average straia € >:

<o>=L:i<e>-T:V*(<e>) [9]

where the average strain e > is defined as:
<e>= eo—l—/l"(w,ﬁ')dﬁ [10]
Q

FunctionT (x, €)) is a measure of the local interactions derived with the hélp o
Green'’s functions and, is the strain in the homogeneous comparison solid (equal
to the strain in the matrix if inclusions are very dilute). eThbove equation is very
similar to Eq. (2), except that it is expressed in term ofistrather than stress. Since
the material is elastic, the difference is not really fundatal.
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In the approach by Drugan (Druganhal.,1996), there is an evaluation of the size
of the representative volume element (RVE) in the homogehisaterial. The size
of the RVE is such that the second order gradient appearikg)in(9) becomes neg-
ligible. In other words, the constitutive equations becdoal, relating the average
stress to the average strain. This definition of the RVE wsas abed by Delaplace
and co-workers (Delaplact al., 1996) in order to compute a correlation length in
a lattice model. According to Drugan and Willis, the size lué RVE for a material
containing voids with a volume fraction less thafA3 is about two times the diameter
of the void. As pointed out in the same paper, this size of Rvaich less than what
is commonly expected in heterogeneous materials. A ratiivefto ten times the
size of the voids or cracks is usually used for defining the sizthe RVE needed in
order to average in a statistical sense the fluctuationseddttiess or strain. Hence, the
stress-strain relation may be defined locally as nonloaarse order gradient terms
are negligible but at the same size of RVE, averages of steaid stresses may not be
statistically representative.

We expect that the variable which controls the growth of dgertze a function of
the average stress or the average strain computed accooditg (10). The issue is
now whether averaging results into a nonlocal quantity drat¢he scale defined by
the size of the RVE where constitutive relations becomelloca

There is at least one instance where the average strainabvibatever the inter-
action terms, it is the case of a uniform distribution of \willvhen the distribution of
micro-cracks remains homogeneous, the integral of thedatien terms in Eq. (10)
becomes independent of

<e@) >=eofe) + [ T@.8dé = exl@) + [ T(©)de [11]
Q Q

Interactions induce a corrective term which is homogenewasthe solid containing

micro-cracks. Obviously, the average of the strain becdoe in this case, what-

ever the magnitude of the interactions. We might expect tdabwhen the second
order gradient of the average variable remains small, mahkeffect remain negligi-

ble. For this, variation of the strain and of the interactiontside the RVE should be
negligible:

< €(x) >=eg(x) +/

Q

I (@.8) dé = e (@) + / &)de  [12)

RVE
or

[r@ed=[ reede 13
Q RV E

Equation (13) is a sort of insulation condition: at the centef a RVE, a variation
of the interactions due to micro-crack growth outside théeR¥ay not be felt or be
negligible.

The size of the RVE is about two times the size of the voidsacks. If the spacing
between the micro-cracks/voids is of the same order as thmrorack length or the
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void radii, interactions cannot be neglected. Accordiniteli (Xueli et al.,1999),
interactions between two voids become sensitive when tkkitive distance is less
than twice their diameter. This corresponds to volume ivastof voids higher that
0.18 approximately. For volume fraction closeé)t83, interactions induce a change of
the hoop stress on the voids surfacelbypercent. Interactions are even more sensi-
tive when cracks are considered instead of voids. Accorttingachanov (Kachanov

et al., 1989, Gorbatiktet al., 2000) the stress distribution may change by as much
as20 percent in the case of colinear cracks or stacked crackstaletions are much
more sensitive for stacked cracks with crack densities fdcdhto 0.3. Therefore, if a
(micro-)crack next to a considered RVE grows, the intecmdtibetween micro-cracks
inside and outside the RVE will change, more specificallyitifleence pressure quan-
titiesp;; computed in sectio2 will change. Hence, the average strain in RVE centered
at pointz should change although the configuration of micro-crackhéRVE does
not change. This is clearly non local effect which is getStrgnger as micro-cracking
develops. To summarise, as stated in (Kachanov, 1994)asttens may vanish when
considering the deterioration of the elastic stiffnessflald variables such as stresses
or strain, and local stress intensity factors which corttrelprocess of failure are still
sensitive to these interactions. This provides a justificaor introducing a non local
variable in the equation governing the growth of damage.

Another point of view to the same problem is that the intecacbetween voids or
cracks may not be necessarily symmetric. This is importdr@nistrong gradients of
the crack/void density is encountered. The influence presguantities;; computed
in the previous section are not symmetrjg; # pj; if the micro-crack is not the
same as micro-crackor if the remote state of stress in the solid without cracks or
voids is non homogeneous. A small micro-crack sitting nbardrack tip of a large
crack is influenced by this one, whereas the large crack ismfloenced by the small
one alot. In the equivalent homogeneous material, the Gondiof growth of damage
of a material point sitting nearby the tip of a damage zonekhfeel the damage zone
but the damage zone may not feel the state of damage of a aladennt outside it
as much. This is typical of a non local effect. The conditibmlamage growth at a
material point sitting in a homogeneous distribution of dgmshould not be the same
as the conditions of damage growth of the same material gitirtg nearby a zone
that is completely damaged. This is also the case of theaictiens between a free
boundary and a micro-crack. A free boundary may be viewedlagya crack face
and results into a strong gradient in the distribution ofnmcracking.

Crack interaction at the microstructural scale resulis itn locality at the macro
scale in the presence of strong gradients which does noslvaipion upscaling. This
non locality vanishes only in three cases: (i) when theithistion of micro-craking is
uniform and the solid is subjected to a homogeneous reneteat stress, local quan-
tities are equal to non local ones; (ii) at the boundary oflasaon locality should
vanish in the direction normal to the boundary; (iii) upon aam-crack formation,
non locality should also vanish on the macro-crack faceth@ir normal direction).
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4. Non local damage model

We are going to examine now how such results can be incogmbiata contin-
uum formulation and extended to the case of evolving bouesiamacro-crack sur-
faces described by a zone in which damage is equhlaiccording to the continuum
model (Mazarst al., 1996). Although the constitutive relations are discussed i
full 3D format, we will restrict applications of the modifietbn local model to the
one-dimensional case which is simple but not entirely regméative of full boundary
effects (no tangential effects on the boundary). 2D and 3iegisation are left for
further developments.

4.1. Isotropic (scalar) damage model

The classical stress-strain relation for this type of modatls:
oij = (1 = D)Cijricm [14]

whereo;; andey; are the components of the stress and strain tensors, reghect
(i,7,k,1 € [1,3]) and C;;1; are the components of the fourth-order elastic stiffness
tensor. The damage variahie represents a measure of material degradation which
grows from zero (undamage material with the virgin stifs)es one (at complete loss

of integrity). The material is isotropic, with andv the initial Young’s modulus and
Poisson’s ratio respectively.

For the purpose of defining damage growth, a scalar equivatein e, is in-
troduced, which quantifies the local deformation state enrtfaterial in terms of its
effect on damage. In this contribution, Mazars’ definitidrttee equivalent strain is
used (Mazars, 1984):

(15]

where (¢;) . are the positive principal strains. Damage growth is goseroy the
loading function:

g(&, k) = ecq(e) — K (16]

k equals the damage threshald, initially, and during the damage process it is the
largest ever reached value&f,. The evolution of damage is governed by the Kuhn-
Tucker loading-unloading condition:

gle,k) <0, k>0, kg(e,k)=0 [17]

The damage variablP is determined as a linear combination of two damage vasable
D, andD., that represent tensile damage and compressive damagetiesly, by the
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help of two coefficientsy, anda,. which depend on the type of stress state (Mazars,
1984):

D = OétDt + OLCDC [18]
1— A A
Dio=1- b b [19]
' Eeq exp(Bt,c (€eq — €Dy))

Standard values of the model parameters in the damage ham dieen in
Ref. (Mazars, 1984).

4.2. Original non local formulation

Inthe integral-type non local damage models, the locahedgmt strain is replaced
by its weighted average:

o (@) = /Q T (2,€) ey (€) de [20]

with Q2 the volume of the structure anld(x, £) the weight function. It is required that
the non local operator does not alter the uniform field, whmeans that the weight
function must satisfy the condition:

/ U (x,&)dé =1 vV € ) [21]
Q

For this reason, the weight function is recast in the follayiorm (Pijaudier-Cabatt
al., 1987):

_ Yo (z—-¢)
Q, (z)
where(),. (x) is a representative volume aldg (x — £) is the basic non local weight

function which is often taken as the polynomial bell-shafetttion (BaZzantt al.,
2002), or here as the Gauss distribution function:

W (,€) with €. (@) = [ W (@ - €) de [22]

Q

2
Uy (z — &) :exp<—%> [23]

l. is the internal length of the non local continuum. Preseayihe uniform field
in the vicinity of the boundary makes the averaging in Eq) (@& symmetric with
respect to its argumenisand¢. This lack of symmetry leads to the non-symmetry of
the tangent operator (BaZagttal., 1988, Pijaudier-Cabot, 1995, Jirasetkal.,2002).
A symmetric non local formulation exists also (Boriabal.,2003).
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4.3. Modified non local formulation

The goals of the modified non local formulation are twofolt): 4t the boundary of
the solid, non locality should vanish; (2) when a crack haméd - i.e. when a band
of damage close to 1 has been created, the constitutiveoredahould again be local
in this band. By comparison to the modifications discussdtiayaniet al.,2009)
which dealt with a boundary effect only, here we try to acdalso for boundary
effects occurring when a new free surface has formed in tbegss of cracking. We
are going to rely on a simple argument: in the process of angckthe quantity of
information that can be transmitted between two neighbegsedds on the state of
damage. The argumentis rather similar to that of DesmorhGatuingt (Desmorat
al., 2007). Some internal time is introduced in the constitutelation which induces
a decrease of the internal length upon damage growth. Hegeartalogy with the
propagation of wave is used but the weight function is regadrds an attenuation
function in the transmission of information from one poimits neighbor.

Let us denote as the distance appearing in Eq. (23), defined|as- £||. This
distance is now modified according to the following incretaérelation:

ds _ |l@ — d€||
v(€) v(€)

wherey(&) is a function of the state of damage at point of coordigatin the com-
putation of the average centered at paintve use now the distaneeinstead of the
distances:

ds

In this remapping of the neighborhood around point of camatéx, each point of
coordinatet is now defined by the new coordinaie In a spherical coordinate system
centered at point, the distance is defined by the above equation and the twesngl
are kept the same, they are invariant through the mappingtibm The weighted
average in Eq. (20) becomes:

du =

(24]

Eeq (@) = /Q\IJ(u)seq(w + u)du [26]

~(¢) should be equal td when the material is not damaged at pdirand it decreases
when damage grows. As a consequence, the distance betweerose neighbors
will be increased as damage grows and in the weighted averagess, the nonlocal
effect of pointg will decrease.

Functionvy(&) remains to be defined completely. We use for this an analoty wi
the attenuation during the propagation of waves. In the poallaverage defined in
Eq. (20) the weight functio® (x — &) is seen as the attenuation applied to a wave of
amplitudee., generated at poirg and propagating toward poiat. ¥ (x — §) .€¢4
is the interaction of poing on pointzx. It is attenuated as the information is prop-
agated in the solid. We may now consider that the wave spegeehds on the state
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of damage: the time needed for the interaction effect to icdigtances is going to
increase if the material on the path of propagation of theaimgetting damaged. In a
one-dimensionnal setting, the wave speed \/E/p becomeg,; = /(1 — D).E/p
wherec, is the velocity of the damaged material. This increase oétfor the in-
formation to be transmitted in the damaged medium betweetwh pointsé andx

is converted into a fictitious increase of distance betwbesd two points. The time
needed for the interaction to propagate between the twapErkept the same, but
since we consider now that the interaction is propagated imaamaged medium the
distance between the points is increased. When this disianncreased, the attenu-
ation is increased accordingly. Let us consider Eq. (24)divide both terms by the
wave speed:

du_ _ds__ds

[27]

¢ y(E)*c

This equation states that the time needed for an informatiggnopagate over a dis-
tancedu in an undamaged medium is the same as the time needed foroamatfon

to propagate over the lengifs in the damaged medium. Upon damage, the distance
between these two points is increased, which is equivateatdlower wave propa-
gation and consequently, it is more attenuated than in tke wédere damage is not
observed. From this equation we have:

1) = [28]

This qualitative reasoning implies that damage entersariuhctiony. The difficulty
is that the formulation becomes implicit. In order to keep #implicity of the ap-
proach, we substitute to the non local value of damage tha B@ression and we
take:

=

V(&) = (1 = Fleeg(£)))

whereF (e.,) is the function defined in Eq. (19F (e.,) is the local value of damage
computed at the considered point. This definition of furrctids rather arbitrary. In
fact, it fulfills the requirements stated above: when theemal is not damaged, this
function is equal to 1 and it becomes equal to zero if the natsrtotally damaged
locally. At this stage, the incremental value of the modifiistance between two
points becomes infinite and the nonlocal interaction in leetwthem vanishes. The
exponent /2 has been chosen by analogy to wave propagation. This nevitdefiof
the nonlocal averaging needs also to fulfill the conditiomghe free boundary demon-
strated in the previous section. This can be performed bgidering that on a free
boundary local damage is set equal to 1. According to Eq., @dlose neighbor to a
point located on the boundary of the solid is located at aadis#du which becomes
infinite. Consequently, the nonlocal effect of this neightwbthe nonlocal average
centered at the boundary is equal to zero.

(29]
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5. One-dimensional example

In order to compare the original and the modified nonlocatiaation, we are
going to use the simple one-dimensionnal example devis@@ijmudier-Cabogt al.,
1987). A bar of lengti2L, in which two constant strain waves converge toward its
center is considered. The amplitude of the wave.Tstimes the deformation at the
peak load in tension. When the two waves meet at the cengestithin amplitude is
doubled, the material enters the softening regime suddardyfailure occurs.

e
U(-Lt) = -vt U(Lt) = vt

- | =
| : -

Figure 4. Principle of the one dimensional computation.

The bar length is taken equal 30 cm. The parameters used in this example are:
the volumic masg = 1 kg/m3, the Young’s modulugZ = 1 MPa and the velocity
boundary conditiom = 0.7 cm/s applied at the bar ends. The other model parameters
ared; =1, By = 2,ep, = 1 and the internal length is 2 cm (there is no damage in
compression). A fixed mesh 69 constant strain elements is used. Time integration
is performed according to an explicit, central differenchesme. The time step is
At = 1s.

Figures 5 present the evolution with time of the profiles ahdge and non local
strain. The two waves meet at the center of the bar at time 50s. Note that
damage develops over a band of finite — non zero — width. Caedgarcomputations
with the original damage model shown in Fig. 6, the profile afmédge is almost
triangular instead of being almost rectangular, formingadof damage equal to 1
according to the original formulation. This difference isedto the modification of
the weight function as damage develops. This is illustratefigs. 7. The weight
function centered in the middle element where completerfaiis expected to occur
(e.g. where damage is equalipshrinks progressively as damage develops. When
damage is equal td in this element, it is a Dirac delta function and the material
response becomes local. When damage is equilitas as if the bar would be cut
into two pieces. At this point, the material response isllaca this is in agreement
with micromechanics of crack interaction as demonstratetis paper.

In neighboring elements, however, the weight function essldifferently. We
have computed the weight function nearby the element in lwfddure occurs, two
elements farther on the left. Figure (7) shows that the wédighomes cut at the center
of the bar. Information coming from material points locabethind the point at which
failure occurs is screened by damage. This is again a diféeraith the original non-
local damage formulation in which nonlocal interactiongights) is transmitted even
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Figure 5. Evolution of the damage (top) and nonlocal strain (bottomafifes with time (in s)
over the bar.

across a macro-crack. We have also checked in Fig. (8) thaliskribution of damage
is not subject to spurious mesh dependency. For the finiteeziemeshes used which
are already quite refined, the largest element size is snibl@ the internal length
used in the computations, the profiles of damage are almestaime. Convergence
of the damage profiles with respect to mesh refinement meaogt#t the energy
dissipated at failure is a constant. It is the sum of the gneigsipated due to damage
at each material point in the damage band.

The damage profiles are not dependent on the finite element 3ilze issue is
now whether the strain distribution should be also indepehdf the finite element
size or not. Before complete failure, this result is expgctéithout this property,
the damage band which is a function of the maximum nonlocalrstecorded in
each finite element over the history of loading would not bpeexed to be mesh
independent. When damage is equal to one in the middle eteomvergence of the
strain with respect to the size of this element may be quesstio



Boundary effects with nonlocal damage 17

1,0 -
0,8
g 064 i oM 0 t=100
©
£ —t=90
©
8 04 1 —1=80
- -t=70
0,2 ---t=60
0,0 T
0 5 10 15 20 25 30
X(cm)

Figure 6. Evolution of the damage profile with time (in s) over the baraading to the original
damage model.

Indeed, in the finite element located in the middle of the megdiere complete
failure occurs, the stress is vanishing and the relativpla@igment at the extremity
of the finite element should be equal to the crack opening.okting to the finite
element discretisation however, there is no displacemahstain discontinuity and
the crack opening is smeared over the element. Let us desatéhe length of this
finite element, the crack opening is:

[u] = exh (30]

If the finite element calculation has converged with respeotesh refinement, upon
complete failure the crack opening should be independetheflement size and
therefore that the strain in the element located in the midfithe mesh evolves as a
function ofh~!. We have checked this in Fig. (9). According to the modifiedlaoal
model, the maximum strain is indeed a power law of the finiengnt size. Exponent
—1 is recovered. At the same time, the crack opening displaneimeneasured. We
obtain[u] = 4, 81em. Interestingly, the same crack opening displacement, cbedp
according to the technique proposed by Dufour and co-weri@ufouret al., 2008)

is rather closéu] = 5,07¢m. For this calculation, we have chosen a constant weight
function for the computation of the estimate of the crackripg. It is important to
remark that the original nonlocal formulation is far fromhébiting the same property.
The maximum strain is constant and therefore, in this simplgication it may not
provide the displacement discontinuity properly.

6. Conclusions

Boundary effects are difficult issues in nonlocal modelseither integral or gra-
dient formulations, boundary conditions are rather aabyjtr In this paper, we have
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Figure 7. Evolution of weight function with damage: weight centeredhie middle element
(top), weight centered near the middle element (bottom).

demonstrated first that on a free boundary non local intier@eshould vanish. Some
qualitative argument had already been discussed in the(Kesyaniet al., 2009),
here we provide a more rigorous mathematical derivation.

In the course of failure, when a macro-crack is formed, neunldary surfaces are
appearing. This should also be taken into account in nor focaulation, with the
same requirements as for an initial boundary in the solicas8lrand Jirasek (Grassl
et al.,2006) showed that these boundaries had an influence on trgyefdracture.
We have proposed here a prototype damage model that acdoutiie progressive
shielding effect induced by a crack appearing in the mdtefihis is achieved by a
remapping of the non local averaging, in the same spirit §Kiayaniet al.,2009),
but with a different mathematical formulation.

One dimensionnal finite element calculations show that tleeified non local
model still describes failure with a finite non zero fractereergy, that the damage
profiles are triangular and not rectangular as observeddrothiginal formulation,
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and that at complete failure, the model is capable of apphingca discontinuous
formulation, whereas the original formulation is not cdpatf reaching this limit
case.

This modified non local model should be seen as a first steprtbwaompre-
hensive modelling of boundaries and interface effect inlocal damage models. A
two dimensional implementation is required at least in otdeheck the capabilities
of this new model. For instance, a description of size effeat is consistent with
Bazant's universal size effect law for notched and unotcdmetimens needs to be
checked (Krayanrét al.,2009).
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