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1. Introduction

Today, the majority of color cameras are equipped with alsi@CD (Charge-
Coupled Device) sensor. The surface of such a sensor isembbgra color filter array
(CFA), which consists in a mosaic of spectrally selectiverfd, so that each CCD ele-
ment samples only one of the three color components Redxreen G) or Blue B).
The Bayer CFA is the most widely used one to provide the CFAjenahere each pixel
is characterized by only one single color component. Toregg the colorR,G,B) of
each pixel in a true color image, one has to determine theegaifithe two missing co-
lor components at each pixel in the CFA image. This processrigmonly referred to
as CFA demosaicing, and its result as the demosaiced imat@slpaper, we propose
to compare the performances reached by the demosaicingdsethanks to specific
quality criteria.

An introduction to the demosaicing issue is given in secfioBesides explaining
why this process is required, we propose a general formdisnt. Then, two ba-
sic schemes are presented, from which are derived the miaicigdes that should be
fulfilled in demosaicing.

In section3, we detail the recently published demosaicing schemeshndrie re-
grouped into two main groups : the spatial methods whichyaeathe image plane
and the methods which examines the frequency domain. Thialspeethods exploit
assumptions about either spatial or spectral correlatewéen colors of neighbors.
The frequency-selection methods apply specific filters @@RA image to retrieve
the color image.

Since these methods intend to produce “perceptually gatggfdemosaiced images,
the most widely used evaluation criteria detailed in secti@re based on the fidelity
to the original images. Generally, the Mean Square EMSBE) and the Peak Signal-
to-Noise Ratio PSNR are used to measure the fidelity between the demosaice@&imag
and the original one. ThESNRcriterion cannot distinguish the case when there are
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a high number of pixels with slight estimation errors frore tase when only a few
pixels have been interpolated with severe demosaicintpetsi However, the latter
case would more significantly affect the result quality obalevel analysis applied
to the estimated image. Therefore, we propose new critedacially designed to de-
termine the most effective demosaicing method for furteatdre extraction.

The performances of the demosaicing methods are compasedtion5 thanks to
the presented measurements. For this purpose, the demgssibemes are applied to
twelve images of the benchmark Kodak database.



2. Color Demosaicing

Digital images or videos are currently a preeminent medinrarnivironment per-
ception. They are today almost always captured directly loljgéal (still) camera,
rather than digitized from a video signal provided by an agalamera as they used to
be several years ago. Acquisition techniquesabr images in particular have invol-
ved much research work and undergone many changes. Desjide advancements,
mass-market color cameras still often use a single sensbreguire subsequent pro-
cessing to deliver color images. This procedure, nadexdosaicingis the key point
of our study and is introduced in the present section. Theodaiing issue is first
presented in detail, and a formalism is introduced for it.

2.1. Introduction to the Demosaicing Issue

The demosaicing issue is here introduced from technolbgassiderations. Two
main types of color digital cameras are found on the marlegtedding on whether they
embed three sensors or a single one. Usually known@as-CCDcameras, the latter
are equipped with spectrally-sensitive filters arrangexeting to a particular pattern.
From such color filter arrays (CFA), an intermediate gragisanage is formed, which
then has to bdemosaicednto a true color image.

In the first subsection are compared the major implemem=sid three-CCD and
mono-CCD technologies. Then are presented the main typedaf filter arrays re-
leased by the various manufacturers. Proposed by Bayeramtak in 1976, the most
widespread CFA is considered in the following, not only tofalize demosaicing but
also to introduce a pioneer method using bilinear intetjgmia This basic scheme ge-
nerates many color artifacts, which are analyzed to demeanain demosaicing rules.
Spectral correlation is one of them, and will be detailedhe last subsection. The
second one, spatial correlation, is at the heart of edgpt@dademosaicing methods,
that will be presented in the next section.

2.1.1. Mono-CCD vs. Three-CCD Color Cameras

Digital area scan cameras are devices able to convert cioulsfrom the ob-
served scene into a color digital image (or image sequehesks to photosensors.
Such an output image is spatially digitized, being formegiofure elementspixels.
With each pixel is generally associated a single photoseglement, which captures
the incident light intensity of the color stimulus.

A digital color imagé can be represented as a matrix of pixels, each of them being
denoted a®(x,y), wherex andy are the spatial coordinates of piXeivithin the image
plane of sizeX x Y, hence(x,y) € N2 and 0< x < X —1, 0< y <Y — 1. With each
pixel P is associated a color point, denoted @sy) or |y. This color point is defined
in the RGB three-dimensional color space by its three coordind{tgsk € {RG,B},
which represent the levels of the trichromatic componehta® corresponding color
stimulus.

The color imagd may also be split into threeomponent planesr images ¥,

k € {R,G,B}. In each component imagdé, the pixelP is characterized by levék(P)
for the single color componekt Thus, three component imagés | © andI B, must be
acquired in order to form any digital color image.
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(b) Relative spectral sensitivity of the Kodak KLI-(c) CIE 1931 RGB color matching functionfR;],
2113 sensor. [Gc] and[Bc] are the monochromatic primary colors.

FIG. 1: Three-CCD technology.

The two main technology families available for the desigdigftal camera photo-
sensors are CCDCharge-Coupled Devigeand CMOS Complementary Metal-Oxide
Semiconductgrtechnologies, the former being the most widespread onaytothe
CCD technology uses the photoelectric effect of the silisobstrate, while CMOS is
based on a photodetector and an active amplifier. Both pbiososs overall convert
the intensity of the light reaching each pixel into a projuordl voltage. Additional
circuits then converts this analog voltage signal intotdigilata. For illustration and
explanation purposes, the following text relates to the G&tbnology.

The various digital color cameras available on the market aiso be distingui-
shed according to whether they incorporate only a singleaesr three. In accordance
with the trichromatic theory, three-CCD technology inamngtes three CCD sensors,
each one being dedicated to a specific primary color. In mesicds, the color sti-
mulus from the observed scene is split onto the three sebgargeans of a trichroic
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filter (Lyon and Hubel2002).

FIG. 2: Foveon X3 technology.

prism assembly, made of two dichroic prisms (see figwé yon, 2000. Alternately,
the incident beam may be dispatched on three sensors, eadbhedng covered with
a spectrally selective filter. The three component imded® and B are simulta-
neously acquired by the three CCD sensors, and their comdninizads to the final
color image. Each digital three-CCD camera is charactéfigets own spectral sensi-
tivity functionsR(A ), G(A) andB(A) (see figurelbfor an example), which differ from
the CIE color matching functions of the standard obsenes {gjurelb).

Since 2005, Foveon Inc. has been developing the X3 sensahwbkes a multi-
layer CMOS technology. This new sensor is based on threeisypased layers of pho-
tosites embedded in a silicon substrate. It takes advautape fact that lights of dif-
ferent wavelengths penetrate silicon to different depghe figure2a)(Lyon and Hubel
2002. Each layer hence captures one of the three primary calaragly blue, green
and red, in the light incidence order. The three photositse@ated with each pixel



thus provide signals from which the three component valveslarived. Any camera

equipped with this sensor is able to form a true color imagemfthree full component

images, as do three-CCD-based cameras. This sensor hafirbeesed commercially

in 2007 within the Sigma SD14 digital still camera. Accogliio its manufacturer, its

spectral sensitivity (see figuizb) better fits with the CIE color matching functions
than those of three-CCD cameras, providing images that are nonsistent with hu-

man perception.

Although three-CCD and Foveon technologies yield highitpmhages, the manu-
facturing costs of the sensor itself and of the optical deai® high. As a consequence,
cameras equipped with such sensors have not been so fatadfferto everyone, nor
widely distributed.

In order to overcome these cost constraints, a technolomg s single sensor
has been developed. The solution suggested by Bayer frortKdtlak company in
1976 Bayer, 19769 is still the most widely used in commercial digital cameiaday. It
uses a CCD or CMOS sensor covered by a fil@ol6r Filter Array, or CFA) designed
as a mosaic of spectrally selective color filters, each ofitheing sensitive to a specific
wavelength range. At each element of the CCD sensor, onlypahef the three color
components is sampled, Rd®)(Green G) or Blue B) (see figure8a). Consequently,
only one color component is available at each pixel of thegeyarovided by the CCD
charge transfer circuitry. This image if often related toreesaw image, buCFA image
is preferred hereafter in our specific context. In order tiba color image from the
latter, two missing levels must be estimated at each pixahkb to ademosaicing
algorithm (sometimes spellattmosaicking

As shown in figuredb, many other processing tasks are classically achievednwith
a mono-CCD color camera(kac and Plataniotj2007). They consist for instance in
raw sensor data correction or, after demosaicing, in cohprovement, image shar-
pening and noise reduction, so as to provide a “visuallygdieg color image to the
user. These processing tasks are essential to the quallitg pfovided image and, as a
matter of fact, discriminate the various models of digi@ineras, since manufacturers
and models of sensors are not so numerous. The related yindeslgorithms have
common features or basis, and parameter tuning is often atkpyleading to more or
fewer residual errors. Together with noise charactessticthe imaging sensor, such
artifactsmay incidentally be used to typify each camera moBelfama et aJ.2008.

2.1.2. Color Filter Arrays

Several configurations may be considered for the CFA, andefigshows some
examples found in the literature. A few mono-CCD camerasauSEA based on com-
plementary color components (Cyan, Magenta and Yellowt)y w2x 2 pattern which
also sometimes includes a filter sensitive to the green.|Bjtthe very large majority
of cameras are equipped with filter arrays basedRp@ and B primary color com-
ponents. Regardless of their arrangement and design, dneses often include twice
as many filters sensitive to the green primary as filters fe@sdb blue or red light.
This stems from Bayer's observation that the human eye hasaiey resolving po-
wer for green light. Moreover, the photogieminous efficiency functioof the human
retina — also known as tHaminosity function- is similar to the CIE 1931 green mat-
ching functionG¢(A ), with a maximum reached in the same spectral domain. Bayer
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FiG. 3: Internal structure of a mono-CCD color camera.



(a) Vertical stripes (b) Bayer (c) Pseudo-random

S

(d) Complementary colors (e) “Panchromatic”, or (f) “Burtoni” CFA
CFA2.0 (Kodak)

FiG. 4: Configuration examples for the mosaic of color filtersclEaquare depicts a
pixel in the CFA image, and its color is that of the monochraofiiter covering the
associated photosite.

therefore both makes the assumption that green photosereoture luminance, whe-
reas red and blue ones capture chrominance, and suggestshe €FA with more
luminance-sensitive (green) elements than chrominaensits/e (red and blue) ele-
ments (see figuréb).

The CFA using alternating vertical stripes (see figdgp of the RGB primaries
has been released first, since it is well suited to the inteddelevision video signal.
Nevertheless, considering the Nyquist limits for the greemponent plane?arulski
(1985 shows that the Bayer CFA has larger bandwidth than ther l&itehorizontal
spatial frequencies. The pseudo-random filter array (seeefidr) has been inspired
by the human eye physiology, in an attempt to reproduce thgaspepartition of the
three cone cell types on the retina surfacek@c and Plataniotj20053. Its irregula-
rity achieves a compromise between the sensitivity to apeadiriations of luminance
in the observed scengigual acuity and the ability to perceive thin objects with dif-
ferent colors Roorda et al.2007). Indeed, optimal visual acuity would require pho-
tosensors with identical spectral sensitivities which emastant over the spectrum,
whereas the perception of thin color objects is better exbwith sufficient local
density of different types of cones. Despite pseudo-randotor filter arrays show
interesting propertiesA{leysson et al. 2008, their design and exploitation have not
much been investigated so far; for some discussions, se€@ngat(2009 or Savard
(2007 about CFA design andapryanov and Nikolov#2009 about demosaicing of
Bayer CFA “pseudo-random” variations. Among other studieswving their inspira-
tion from natural physiology for CFA design, Kréger’'s wotX004) yields a new mo-
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FiG. 5: Relative spectral sensitivity of the JAI CV-S3300P ceanesen-
sor (Jai Corporation2000.

saic which mimics the retina of a cichlid fishstatotilapia burton{Gunther, 1894). It

is shown that this particular arrangement (see figiffewhich includes many spatial
frequencies and different geometries for color componeggserates weak aliasing
artifacts. This complex mosaic configuration efficienthhances the simulated image
quality (Medjeldi et al, 2009, but the effective implementation of such a sensor, and
the demosaicing step of the corresponding CFA images, ane @pd challenging pro-
blems.

Color filter arrays based on complementary primary colove ladso been designed
and used, with two main advantages. First, they own highestsal sensitivity and wi-
der bandwidth than RGB filters, which is of particular inttren noisy environments
and/or when the frame rate imposes low integration petitichkawa 2008. Figure5
shows the spectral sensitivity of the JAI CV-S3300P camenaar, equipped with the
CFA of figure4d. A few years ago, some professional still cameras used @mgsi-
tary color filter arrays to ensure high 1ISO sensitivity, as iodak DCS-620x model
equipped with a CMY filter loble, 2000. As a second advantage, these CFAs make
the generation of television luminance/chroma video dighmost immediate, and are
sometimes embedded in PAL or NTSC color video camesasy Corporation2000.
Their usage is however largely restricted to televisiom;asithe strong mutual overlap-
ping of C,M,Y spectral sensitivity functions makes the conversion R@®,B primaries
unsatisfactory.

New types of CFA have recently been released, and used inraamadels re-
leased by two major manufacturers. Since 1999, Fuji degedopew so-calleGuper
CCD sensor, based on photosites in a 45-degree oriented honbyettice (see fi-
gure6). The HR version of 2003 (see figuéa) allows to optimize the occupancy on
the CCD surface, hence to potentially capture more lightjuéde” pixels are obtai-
ned from octagonal photosites by combining the four neighlio part, so that new
pixels are created and the resolution is doubled. An altemnaersion of this sensor
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FiG. 6: Super CCD technology. For clarity sake, photosites apeessented further
apart from each other than at their actual location.

(SR, see figuréb) has expanded dynamic range, by incorporating both higkibéty
large photodiodes (“S-pixels”) used to capture normal aar#t details, and smaller “R-
pixels” sensitive to bright details. The EXR version (se@ffiebd) takes advantage of
same idea, but extra efforts have been conducted on noiseti@d thanks to pixel
binning, resulting in a new CFA arrangement and its exptioiteby pixel coupling. As

a proprietary technology, little technical detail is agaile on how Super CCD sensors
turn the image into an horizontal/vertical grid withoutdrptolating, or on how demo-
saicing associated with such sensors is achieved. A fews hiayy however be found in
a patent using a similar imaging devidéupo and Sugiura2006.

In 2007, Kodak develops new filter arrayidgmilton and Comptar2007) as ano-
ther alternative to the widely used Bayer CFA. The basicqipie of this so-called
CFA2.0 family of color filters is to incorporate transpardiiter elements (represen-
ted as white squares on figude), those filters being hence also knownRGBWor
“panchromatic” ones. This property makes the underlyingtps$ites sensitive to all
wavelengths of the visible light. As a whole, the sensorsaased with CFA2.0 are
therefore more sensitive to low-energy stimuli than thasiegiBayer CFA. Such in-
crease of global sensitivity leads to better luminanceresdton, but at the expense
of chromatic information estimation. Figufeshows the processing steps required to
estimate a full color image from the data provided by a CFA#a6ed sensor.

By modifying the CFA arrangement, manufacturers primaaiyn at increasing
the spectral sensitivity of the sensbukac and Platanioti§20053 tackled the CFA
design issue by studying the influence of the CFA configunatindemosaicing results.
They considered ten different RGB color filter arrays, thoééhem being shown on
figures4ato 4c. A CFA image is first simulated by sampling one out of the three
color components at each pixel in an original color imagepating to the considered
CFA pattern. A universal demosaicing framework is then iggjtio obtain a full-color
image. The quality of the demosaiced image is finally evaldidty comparing it to the
original image thanks to several objective error critefiae authors conclude that the
CFA design is critical to demosaicing quality results, bammot advise any CFA that
would yield best results in all cases. Indeed, the relatgréopmance of filters is highly
dependent on the tested image.

10
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FIG. 7: Processing steps of the raw image provided by a CFAZ@¢aensor. “Pan-
chromatic pixels” are those associated with photositesma/with transparent filters.

All in all, the Bayer CFA achieves a good compromise betweerizbntal and
vertical resolutions, luminance and chrominance selitsithyy and therefore remains
the favorite CFA in industrial applications. As this CFA fleetmost commonly used
and has inspired some more recent ones, it will be considastcand foremost in
the following text. Demosaicing methods presented hegeafie notably based on the
Bayer CFA.

2.1.3. Demosaicing Formalization

Estimated colors have less fidelity to color stimuli from thteserved scene than
those provided by a three-CCD camera. Improving the qualitplor images acquired
by mono-CCD cameras is still a highly relevant topic, inigesed by researchers and
engineersl(ukac 2008. In this paper, we focus on the demosaicing step and examine
its influence on the estimated image quality.

In order to set a formalism for the demosaicing process,detampare the acqui-
sition process of a color image in a three-CDD camera and im@orCCD camera.
Figure 8a outlines a three-CCD camera architecture, in which thercohage of a
scene is formed by combining the data from three sensorstesudting color imagé
is composed of three color component platfek € {R,G,B}. In each plané¥, a gi-
ven pixelP is characterized by the level of the color comporie three-component
vector defined asxy = (Rxy,Gxy,Bxy) is therefore associated with each pixel — lo-
cated at spatial coordinatésy) in imagel. In a color mono-CCD camera, the color
image generation is quite different, as shown in figine the single sensor delivers a
raw image, hereafter call€dFA imageand denoted“™. If the Bayer CFA is consi-
dered, to each pixel with coordinatésy) in imagel“F is associated a single color

11
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FiG. 8: Color image acquisition outline, according to the caartgpe.

componenR, G or B (see figure9) :

Ry  if xis odd andyis even, (1a)
ISR =14 Bxy if xis even ang is odd, (1b)
Gxy  oOtherwise. (1c)

The color component levels range from 0 to 255 when they asmtiped with
8 bits.

The demosaicing schem#, most often implemented as an interpolation proce-
dure, consists in estimating a color imaggom ICFA, At each pixel of the estimated
image, the color component availablel fif* at the same pixel location is picked up,
whereas the other two components are estimated :

(Rx,y,éx.y,éxyy> if xis odd andy is even, (2a)
N 2z Ixy=14 (Ray,Gxy:Bxy) if xis even angis odd, (2b)
(Ray,Gxy,Bxy)  otherwise. (2c)

Each triplet in equation2] stands for a color, whose color component available
at pixel P(x,y) in 17 is denotedRyy, Gxy or By, and whose other two components
amongRyy, Gxy andBy are estimated foi .

Before we get to the heart of the matter, let us still precifevanotations that
will be most useful later in this section. In the CFA imagee(figure9), four different

12



Fic. 9: CFA image from the Bayer filter. Each pixel is artificiatplorized with the
corresponding filter main spectral sensitivity, and thesprtéed arrangement is the most
frequently encountered in the literature (@andR levels available for the first two

row pixels).

(@) {GRG} (b) {GBG}
() {RGR (d) {BGB}

FiIG. 10: 3x 3 neighborhood structures of pixels in the CFA image.
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structures are encountered for the 3 spatial neighborhood, as shown on figtfe
For each of these structures, the pixel under considerfdroiemosaicing is the cen-
tral one, at which the two missing color components shouldgtienated thanks to the
available components and their levels at the neighborirglgi Let us denote the afo-
rementioned structures by the color components availabka® middle row, namely
{GRG}, {GBG}, {RGR and{BGB}. Notice that{ GRG} and{GBG} are structurally
similar, apart from the slight difference that compondRendB are exchanged. The-
refore, they can be analyzed in the same way, ag B&BR} and{BGB} structures. A
generic notation is hence used in the following : the cenitezljis considered having
(0,0) spatial coordinates, and its neighbors are referred tayubieir relative coordi-
nates(dx,dy). Whenever this notation bears no ambiguif0) coordinates are omit-
ted. Moreover, we also sometimes use a letter @.tp generically refer to a pixel, its
color components being then denoted?B), G(P) andB(P). The notatiorP(dx,dy)
allows to refer to a pixel thanks to its relative coordinattsscolors components being
then denote®sy 5y, Gsy 5y andBsy 5y, as in figurelO.

2.1.4. Demosaicing Evaluation Outline

Demosaicing objective is to generate an estimated colmje'arﬁas close as possible
to the original image. Even this image is unavailable effectivelyis generally used
as a reference to evaluate the demosaicing quality. Thergitimer strive to obtain as a
low value as possible for an error criterion, or as a higheals possible for a quality
criterion comparing the estimated image and the original énclassical evaluation
procedure for the demosaicing result quality consistsee (gjurell) :

1. simulating a CFA image provided by a mono-CCD camera framolar original
image provided by a three-CCD camera. This is achieved bylsagna single
color componenR, G or B at each pixel, according to the considered CFA arran-
gement (Bayer CFA of figur®, in our case) ;

2. demosaicing this CFA image to obtain an estimated colagen

3. comparing the original and estimated color images, so dighlight artifacts
affecting the latter.

There is no general agreement on the demosaicing qualitpitilefi, which is
highly dependent upon the estimated color image exploitatias will be detailed in
the next sections. In a first time, we will rely on visual exaation, or else on the most
used guantitative criterion (signal-to-noise ratio) fayuality result evaluation, which
both require a reference image. As in most works relatedtmodaicing, we will here
use the Kodak image database (Kodak, 1991) as a benchmaplerformance com-
parison of the various methods, as well as for illustratiarppses. More precisely, to
avoid overloaded results, a representative subset of énaflthese images has been
picked up as the most used set in literature. These natueglémcontain rich colors
and textural regions, and are fully reproduced in figireso that they can be referred
to in the text.

14
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FiG. 11: Classical evaluation procedure for the demosaicisglrguality (example of
bilinear interpolation on an extract from the Kodak benchoiamage “Lighthouse”).

2.2. Basic Schemes and Demosaicing Rules

2.2.1. Bilinear Interpolation

The first solutions for demosaicing were proposed in theyeaghties. They pro-
cess each component plane separately and find the misselg tgvapplying linear in-
terpolation on the available ones, in both main directidris®@image plane. Such a bi-
linear interpolation is traditionally used to resize gtayel imagesGribbon and Bailey
2004). Considering thd GRG} structure, the missing blue and green values at the cen-
ter pixel are respectively estimated by bilinear interfiolathanks to the following
equations :

(Bo1,-1+B1_1+B_11+B11), (3)

o>
I
[ S

2 (Go-1+G_10+G10+GCoy1). 4)

As for the{RGR: structure, the missing red and blue component levels areast
ted as follows :

>
I

(R10+Ru0), (5)

o>
I

(Bo,—1+Bo,1)- (6)

NI NI

Alleysson et al(2008 notice that such interpolation is achievable by convoluti
For that purpose, consider the three planes formed of tleeleatls of componerk,
k € {R,G,B}, available in the CFA image, other component levels beihtpseero. Let
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(@)1°F (d) ¢8 (1CFA)

FiG. 12: Definition of planeg® (1°FA) by sampling the CFA image according to each

color componenk, k € {R,G,B}. The CFA image and plangs‘ (I°7*) are here colo-
rized for illustration sake.

us denotapX(l) the function sampling a gray-level imageaccording to the locations
of the available color componekin the CFA :

I(x,y) if componenk is available at pixeP(x.y) in ICFA,
¢k<l><x,y>{( V) feomp Pep(xy) @

0 otherwise.

Figure12illustrates the special cases of plagésl ©) obtained by applying func-
tions ¢k to ICFA,
Let us also consider the convolution filters defined by thimfdhg kernels :

010
14 1]. (9
10

In order to determine the color imag]eeach color component plari€ can now be
estimated by applying the convolution filter of kerméf on the planepk (1FA), res-
pectively :

o1t 21 .
HR=HB=>|2 4 2| (8 and HC =
121

Bl

4

% = HK« ¥ (1) ke {RG,B} . (10)

Bilinear interpolation is easy to be implemented and notessing time consu-
ming, but generates severe visible artifacts, as also showigure 11. The above
scheme provides satisfying results in image areas with lgemeous colors, but many
false colors in areas with spatial high frequencies — agt@fénce bars in this extract.
Following Chang and Ta2006), a deep study of the causes of theses artifacts can be
achieved by simulating their generation on a synthetic en@ge figurel39g. In this
original image, two homogeneous areas are separated byieal/#ransition, which
recreates the boundary between two real objects with diftegray levels. At each
pixel, the levels of all three color components are then kdyeaels of pixels depicting
the darker left object (labeled &% are lower than those of pixels depicting the lighter
right object (labeled as). Figure13bshows the CFA imagE-™ yielded by sampling
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(a) Original image (b) CFA image (c) Estimated image

(d) Rplane (e) G plane (f) B plane

FiG. 13: Demosaicing by bilinear interpolation of an gray-leweage with a vertical
transition. The CFA image and, G andB planes are here colorized for illustration
sake.

a single color component per pixel according to the Bayer CH#e result of bilinear
interpolation demosaicing applied to this image is giverfigare 13c Figures13d

to 13f give details on the three estimated color plaRe§ andB. On R andB planes,
this demosaicing algorithm generates a column of interatedevel pixels, whose va-
lue is the average of the two object levels. On the green plapeoduces a jagged
pattern on both edge sides, formed of pixels alternatingydet two intermediate le-
vels — a low ong3b+ h)/4 and a high on¢3h+ b)/4. As a whole, the edge area is
formed of a square 2 2 pattern of four different colors repeated alongside tha-tr
sition (see the estimated image in figdr&d). This demosaicing procedure has hence
generated two types of artifacts : erroneously estimatem¢hereafter referred to as
“false colors”), and an artificial jagged pattern (so-adlteipper effect”), which are
both studied in sectiod.2 According to the horizontal transition location relatie
the CFA mosaic, the generated pattern may be either orasigeed as in figurd. 3cor
with bluish colors as in figur&4c These two dominant-color patterns may be actually
observed in the estimated image of figlte

2.2.2. Main Demosaicing Rules

Let us examine the component-wise profiles of the middlel powe in the original
imagel3aand its corresponding estimated imaggx Dissimilarities between these
profiles onR, G and B planes are underlined on figulé : the transition occurs at
identical horizontal locations on the three original imau@nes, but this is no more
the case for the estimated image. Such inconsistency arhendetmosaicing results
for different components generates false colors in theneééid image formed from
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(a) Refrence image (b) CFA image (c) Estimated image

FIG. 14: Variant version of imag&3a demosaiced by bilinear interpolation as well.

their combination. It can also be noticed that the transidorresponds, in each color
plane of the original image, to a local change of homogeraityg the horizontal
direction. Bilinear interpolation averages the levels ixefs located on both sides of
the transition, which makes the latter less sharp.

In accordance with the previous observations, we can statéwo main rules have
to be enforced so as to improve demosaicing results : sgatiedlation and spectral
correlation.

— Spectral correlation.

The transition profiles plotted in figurks are identical for the original image
component planes, which conveys strict correlation betm@emponents. For
a natural imageGunturk et al.(2002 show that the three color components
are also strongly correlated. The authors apply a bidinoasifilter built on

a low-pass filtehy = [1 2 1]/4 and a high-pass orlg = [1 — 2 1]/4, so as to
split each color component plane into four subbands reguftom row and co-
lumn filtering : (LL) both rows and columns are low-pass féier (LH) rows
are low-pass and columns high-pass filtered ; (HL) rows agb-pass and co-
lumns low-pass filtered ; (HH) both rows and columns are lgghs filtered. For
each color component, four subband planes are obtaineisiwdly, respectively
representing data in rather homogeneous areas (low-fineguieformation), ho-
rizontal detail (high-frequency information in the hontal direction), vertical
detail (high-frequency information in the vertical diriget) and diagonal detail
(high-frequency information in both main directions). Tahehors then compute
a correlation coefficient?© between red and green components over each sub-
band according to the following formula :

X-1Y-1

2 2 (Rey = 1) (Gxy — 1°)
rRC = i , (11)

X—1Y-1 B2 X—1Y-1 o2
> Y (Ryy—HM% ) 3 3 (Gxy—H®)
x=0 y=0 x=0y=0

in which R,y (respectivelyGy ) is the level atx,y) pixel in the red (respectively
green) component plane within the same subbafihndu® being the average
of Ryy andGyy levels over the same subband planes. The correlation deeffic
between the blue and green components is similarly compiitsd results on
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(a) Original image (b) Estimated image

FiG. 15: Component-wise profiles of middle pixel row levels A#Athe original and
estimated images. Black dots stand for available leveld, vetmite dots for estimated
levels.
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twenty natural images show that those coefficients are awagater than.Q

in subbands carrying spatial high frequencies at least endirection (i.e. LH,
HL and HH). As for the subband carrying low frequencies (Lddefficients are
lower but always greater than& This reveals a very strong correlation bet-
ween levels of different color components in a natural imageecially in areas
with high spatial frequencied.ian et al. (2006 confirm, using a wavelet coef-
ficient analysis, that high-frequency information is notyostrongly correlated
between the three component planes, but almost identigeh spectral corre-
lation between components should be taken into account to rettievenissing
components at a given pixel.

— Spatial correlation.

A color image can be viewed as a set of adjacent homogenegizmsevhose
pixels have similar levels for each color component. In oitdeestimate the
missing levels at each considered pixel, one thereforeldheyploit the levels
of neighboring pixels. However, this task is difficult at ix near the border
between two distinct regions due to high local variation alioc components.
As far as demosaicing is concerned, thfmtial correlationproperty avoids to
interpolate missing components at a given pixel thanks ightser levels which
do not belong to the same homogeneous region.

These two principles are generally taken into account sedlly by the demo-
saicing procedure. In the first step, demosaicing oftenistmi estimating the green
component using spatial correlation. According to Bayassumption, the green com-
ponent has denser available data within the CFA image, grdsents the luminance
of the image to be estimated. Estimation of red and blue comps (assimilated to
chrominance) is only achieved in a second step, thanks teréagously interpola-
ted luminance and using the spectral correlation prop&tgh a way of using both
correlations is used by a large number of methods in thetitee. Also notice that, al-
though red and blue component interpolation is achievext tfe green plane has been
fully populated, spectral correlation is also often usethmfirst demosaicing step to
improve the green plane estimation quality.

2.2.3. Spectral Correlation Rules

In order to take into account the strong spectral corraiatietween color com-
ponents at each pixel, two main hypotheses are proposec ifitéhature. The first
one assumes a coleoatio constancy and the second one is based on abffarence
constancy. Let us examine the underlying principles of eddhese assumptions be-
fore comparing both.

Interpolation based on color hue constancy, suggest€bky1987), is historically
the first one based on spectral correlation. According to, Bokis understood as the
ratio between chrominance and luminance,REG or B/G. His method proceeds in
two steps. In the first step, missing green values are estthist bilinear interpolation.
Red (and blue) levels are then estimated by weighting thengeyel at the given pixel
with the hue average of neighboring pixels. For instanderjolation of the blue level
at the center pixel of GRG} CFA structure (see figur&0g uses the four diagonal
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neighbors where this blue component is available :

g_g t|Bas Bia Bas B (12)
4G 11 G 1 Gai1 G

This bilinear interpolation between color component i® based on the local
constancy of this ratio within an homogeneous regiimmel (1999 justifies the co-
lor ratio constancy assumption thanks to a simplified apgrdhat models any color
image as aambertianobject surface observation. According to the Lambertiadeho
such a surface reflects the incident light to all directiofith wqual energy. The inten-
sity |1 (P) received by the photosensor element associated to eadhPpiseherefore
independent of the camera position, and can be represented a

+

1(P)=p (N(P)T), (13)

wherep is the albedo (or reflection coefficienlf\)(P) is the normal vector to the surface
element which is projected on pixe) andl is the incident light vector. As the albego
characterizes the object material, this quantity is d#ferfor each color component
(pR +# p® # pB), and the three color components may be written as :

IR(P) = PR (N(P)T), (14)
19(P) = p® (N(P)T), (15)
1B(P) = pB<N(P),F>. (16)

Assuming that any object is composed of one single matedaificientspR, p®
andp® are then constant at all pixels representing an objectH@aatio between two
color components is also constant :

" Pk (N(P).I k
KKK _ *(P) _ < > _r = constant (17)

S K(pP) P (N(P)T) P

where(k,K') € {R,G,B}2. Although this assumption is simplistic, it is locally véknd
can be used within the neighborhood of the considered pixel.

Another simplified and widely used model of correlation bextw components re-
lies on the colodifferenceconstancy assumption. At a given pixel, this can be written
as:

DKK = 1k(P) — 1K (P) = pk<N(P),T> —p¥ <N(P),F> —constant  (18)
where(k,k') € {R,G,B}2. As the incident light direction and amplitude are assunoed t

be locally constant, the color component difference is atswstant within the consi-
dered pixel neighborhood.
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As a consequence, the chrominance interpolation step irs@o&thod may be
rewritten by using componenifferenceaverages, for instance :
B=G+ L [(Boy—1— G11)+(B11-G1 1)+(B11-G 11)+(Br1— GA1,1)} \

19)

instead of equationl@). The validity of this approach is also justified hyan et al.
(2007 on the ground of spatial high frequency similarity betweelor components.

The color difference constancy assumption is globally istest with the ratio rule
used in formula 12). By considering the logarithmic non-linear transforroati the
differenceD§7k/,(k7k’) € {RG,B}?, can be expressed as :

4

D;’k/ = |0910 <||kk/((PP))> = IOglO (Ik(P)) - |Oglo (l kl(P)) ' (20)

Furthermore, we propose to compare those two assumptigessed by equa-
tions (17) and (18). In order to take into account spectral correlation for dsaicing,
it turns out that the difference of color components pressnme benefits in compa-
rison to their ratio. The latter is indeed error-prone whisndienominator takes low
values. This happens for instance when saturated red dpld@icomponents lead to
comparatively low values of green, making the ratios in ¢éigng12) very sensitive to
red and/or blue blue small variations. Figurgais a natural image example which is
highly saturated in red. Figurd$6c and16d show the images where each pixel value
is, respectively, the component raR3G and differencdk — G (pixel levels being nor-
malized by linear dynamic range stretching). It can be metithat these two images
actually carry out less high-frequency information thaa tireen component plane
shown on figurel6h.

A Sobel filter is then applied to these two images, so as toligighthe high-
frequency information location. The Sobel filter output mleds shown on figures6e
and 16f. In the right-hand parrot plumage area where red is satlirttie component
ratio plane contains more high-frequency information thtiesmcomponent difference
plane, which makes it more artifact-prone when demosaigddtbrpolation. Moreo-
ver, high color ratio values may yield to estimated compoharels beyond the data
bounds, which is undesirable for the demosaicing resulitgua

To overcome these drawbacks, a linear translation modédikeaipgn all three color
components is suggested hykac and Platanioti$2004a 2004h. Instead of equa-
tion (17), the authors reformulate the color ratio rule by addingedpfined constant
value 3 to each component. The new constancy assumption, whichistent with
equation 17) in homogeneous areas, now relies on the ratio :

KK _ I*+B
2 _Ik/+By

where(k,K') € {R,G,B}?, and wherg3 € N is a ratio normalization parameter. Under
this new assumption on the normalized ratio, the blue leatelpolation formulated in

(21)
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(a) Original image (b) G plane

(c) R/G ratio plane (d) R— G difference plane

(e) Sobel filter output on thR/G plane (f) Sobel filter output on th&®— G plane

FIG. 16: Component ratio and difference planes on a same im&gerfts” from the
Kodak database).
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equation {2) under the ratio rule now becontes

1 [By1+B Bra+tB Bai+B Buitp
4 |G.11+B Gio1+B Go11+B Gui+B

B=-B+(G+B)- (22)

In order to avoid too different values for the numerator ardaininator, Lukac
and Plataniotis advise to $8t= 256, so that the normalized ratiB¢G andB/G range
from 0.5 to 2. They claim that this assumption improves the intexfiah quality in
areas of transitions between objects and of thin details.

In our investigation of the two main assumptions used for asaiting, we finally
compare the estimated image quality in both cases. Thegwmoeeepicted on figurél
is applied on twelve natural images selected from Kodakldesta : the demosaicing
schemes presented above, respectively using componenainat difference, are ap-
plied to the simulated CFA image. To evaluate the estimatéor dmage quality in
comparison with the original image, we then compute an dlcriterion, namely
the peak signal-to-noise rati®ENR derived from the mean square errE) bet-
ween the two images. On the red plane for instance, theseitiemare defined as :

1 X-1Y-1

_ R _R\2
MSER_WX;y;(w—lX,y) : (23)
PSNF = 10-log;o (52?;) : (24)

As the green component is bilinearly interpolated withosihg spectral correla-
tion, only red and blue estimated levels vary according ¢odbnsidered assumption.
The PSNRIis hence computed on these two planes. Results displayedhlilt show
that using the color difference assumption yields bettsults than using the simple
ratio rule K, which is particularly noticeable for image “Parrots” ofdig 16a The
normalized ratid<y, which is less prone to large variations théin areas with spatial
high frequencies, leads to higher values RBNFR and PSNF. However, the color
difference assumption generally outperforms ratio-basts according to thBSNR
criterion, and is most often used to exploit spectral catreh in demosaicing schemes.

1The authors use, in this interpolation formula, extra wéightactors depending on the local pattern and
dropped here for conciseness.
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PSNR PSNFE

Image D K Ky D K Ky
T (Parrots’) || 38922 | 36850 | 38673 || 38931 | 38678 | 38.936
2 (‘Sailboats”) || 31321 | 31152 | 31311 || 31154 | 30.959 | 31129
3 ("Windows”) || 37.453 | 36598 | 37.348 || 37.093 | 36.333 | 36676
Z4 ("Houses") || 27.118 | 26985 | 27.146 || 27.007 | 26.889 | 27.008
5 (‘Race’) 36.085 | 35838 | 36073 || 35999 | 35819 | 35836
6 (‘Pier’) 32597 | 31911 | 32563 || 32570 | 32178 | 32217
7 Cisland’) 34.481 | 34376 | 34470 || 34402 | 34208 | 34399
8 (‘Lighthouse”) || 31.740 | 31415 | 31696 || 31.560 | 31.093 | 31289
9 (‘Plane’) 35382 | 35058 | 35347 || 34.750 | 34324 | 34411
10 (‘Cape’) 32137 | 31863 | 32118 || 31.842 | 31532 | 31693
11 ("Bar) 34.182 | 33669 | 34143 || 33474 | 33193 | 33363
12 (‘Chalet’) || 30.581 | 30413 | 30565 || 29517 | 29.263 | 29.364
Average 33500 | 33011 | 33454 || 33.192 | 32872 | 33027

TAB. 1: Peak signal-to-noise ratios (in decibels) for re®KR) and blue PSNF)
planes of twelve Kodak image&déstman Kodak and various photographdr@91),
demosaiced under the color differenDe(see equationl@®) and interpolation for-
mula (19)), under the color rati& (see equationl(7) and interpolation formulal))
and under the normalized rati® (8 = 256) (see equatior2() and interpolation for-
mula @2)) constancy rules. For each color component and image afoe printed in
bold typeface highlights the best result.
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3. Demosaicing Schemes

In this section, the main demosaicing schemes proposeé iitéhature are descri-
bed. We distinguish two main procedures families, accgrttimwhether they scan the
image plane or chiefly use the frequency domain.

3.1. Edge-adaptive Demosaicing Methods

Estimating the green plane befdReandB ones is mainly motivated by the double
amount ofG samples in the CFA image. A fully populat&tomponent plane will sub-
sequently make thR andB plane estimation more accurate. As a consequencé; the
component estimation quality becomes critical in the dideanosaicing performance,
since any error in th& plane estimation is propagated in the following chromimanc
estimation step. Important efforts are therefore devatecthprove the estimation qua-
lity of the green component plane — usually assimilated toihance —, especially in
high-frequency areas. Practically, when the considereel fies on an edge between
two homogeneous areas, missing components should be estialang the edge rather
than across it. In other words, neighboring pixels to bertak# account for interpola-
tion should not belong to distinct objects. When exploiting $patial correlation, a key
issue is to determine the edge direction from CFA samplesiehsosaicing methods
presented in the following text generally use specific dioexs and neighborhoods in
the image plane, some useful notations are introduced irefigu

3.1.1. Gradient-based Methods

Gradient computation is a general solution to edge direciiglection. Hibbard’s
method (995 uses horizontal and vertical gradients, computed at eae where
the G component has to be estimated, in order to select the direethich provides
the best green level estimation. Let us conside{tBRG} CFA structure for instance
(see figurel0g. Estimating the green levéd at the center pixel is achieved in two
successive steps :

1. Approximate the gradient module (hereafter simply meféito asgradientfor
simplicity) according to horizontal and vertical direct®) as :

N =|G_10— Gy, (25)
N = |G0",1 — G071| . (26)

2. Interpolate the green level as :

(G_10+G1,0)/2 if A% < A, (27a)
G={ (Go-1+Goy1)/2 if &% > 4, (27b)
(Go,-1+G_10+G10+Go1)/4 A =4V, (27c)

Laroche and Prescotl993 suggest to consider a>x65 neighborhood for partial
derivative approximations thanks to available surrougdavels, for instancé* =
|2R—R_20 — Rz 0|. MoreoverHamilton and Adam$1997) combine both approaches.
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FiG. 17: Notations for the main spatial directions and congidgiixel neighborhoods.

FIG. 18: 5x 5 neighborhood with centrdlGRG} structure in the CFA image.
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To select the interpolation direction, these authors tak@account both gradient and
Laplacian second-order values by using the green levellabi@at nearby pixels and
red (or blue) samples located 2 pixels apart. For instamcestimate the green le-
vel at {GRG CFA structure (see figurg8), Hamilton and Adams use the following
algorithm :

1. Approximate the horizontdl* and verticaldy gradients thanks to absolute dif-
ferences as:

N =1|G_10—G10|+[2R—R 20— Rool, (28)
O =|Gg_1—Go1|+[2R—Ro—2—Ro2|. (29)

2. Interpolate the green level as :

(G_10+G10)/24+ (2R—R 20— Rep) /4 if A< DY, (30a)

G (GO,—l + GO-,l) /2—|— (2R— Ro,—2— Roz) /4 if AX >N, (30b)
(Go-1+G-10+G10+GCoy1) /4

+ (4R— Ro,,z — R,270 — R270 — R072) /8 if AX =/, (30C)

This proposal outperforms Hibbards’ method. Indeed, pregiis gained not only
by combining two color component data in partial deriva@ypgproximations, but also
by exploiting spectral correlation in the green plane eatiam. It may be noticed that
formula 09 for the horizontal interpolation of green component magblé into one
left G9 and one righéd side parts :

GY = G_10+(R-R20)/2, (31)
G! = Gio+(R—Re0)/2, (32)
& - (GG+G“)/2. (33)

Such interpolation is derived from the color difference stancy assumption, and
hence exploits spectral correlation for green componeithason. Also notice that,
in these equations, horizontal gradients are assumed imblardor both red and blue
components. A complete formulation has been giveihimnd Randhaw#2009. As
these authors show besides, the green component may maealyeie estimated
by a Taylor series as long as green levels are considered astiaupus functiorg
which is differentiable in both main directions. The abovpiaions 81) and @2)
may then be seen as first-order approximations of this serideed, inG? case for
instance, the horizontal approximation is written %) = g(x— 1) + g’ (x— 1) =~
0(x—1)+(g(x) —g(x—2)) /2. Using the local constancy property of color component
difference yieldsGy, — Gy_» = Ry — Rc_», from which expression3(l) is derived. Li
and Randhawa suggest an approximation based on the seaterdderivative GY es-
timation becoming :

GY=G 10+ (R—R 20)/24+(R-R 20)/4— (G 10— G 30) /4,  (34)
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for which a neighborhood size of<?7 pixels is required. The additional term compa-
red to B1) enables to refine the green component estimation. Singksaning may
be used to select the interpolation direction. Accordintheauthors, increasing the
approximation order in such a way improves estimation tesuider the mean square
error MSE) criterion.

Another proposal comes froBu (2006, namely to interpolate the green level as a
weighted sum of values defined by equatidd@g and BOb). Naming the latter respec-
tively G* = (G_10+G1,0) /2+ (2R—R_20—Ryp) /4 andG = (Gg_1+Go1) /2+
(2R—Ro 2 —Ro2) /4, horizontal and vertical interpolations are combined as :

é_{ Wi -G rwy-GY i A< A, (35a)

WG fwa-GXif A > AY, (35b)

wherew; andw, are the weighting factors. Expressid@0¢) remains unchanged (i.e.
G = (G*+ @) /2if &% = V). The smallest level variation term must be weighted by
the highest factor (i.ev; > wp) ; expressions3i0g and @0b) incidentally correspond to
the special case1 = 1, w, = 0. Incorporating terms associated to high level variations
allows to undertake high-frequency information in the greemponent interpolation
expression itself. Su setg to 0.87 andw, to 0.13, since these weighting factor va-
lues yield the minimal averagd SE (for the three color planes) over a large series of
demosaiced images.

Other researchers, likdirakawa and Park&005 or Menon et al(2007), use the
filterbank approach in order to estimate missing green $ewrfore selecting the ho-
rizontal or vertical interpolation direction 6RG} and{GBG} CFA structures. This
enables to design five-element mono-dimensional filter<hviare optimal towards
criteria specifically designed to avoid interpolationfartts. The proposed optimal fil-
ters (e.ghopt = [—0.2569 04339 05138 04339 — 0.2569 for Hirakawa and Parks’
scheme) are close to the formulation of Hamilton and Adams

3.1.2. Component-consistent Demosaicing

Hamilton and Adam’s method selects the interpolation dioacmn the basis of ho-
rizontal and vertical gradient approximations. But thisyrha inappropriate, and unsa-
tisfying results may be obtained in areas with textures iorabjects. Figurd9 shows
an example where horizontal and vertically gradient approximations do not allow
to take the right decision for the interpolation directigvu and Zhand2004) propose
a more reliable way to select this direction, still by usingpeal neighborhood. Two
candidate levels are computed to interpolate the missiegrgvalue at a given pixel :
one using horizontal neighbors, the second using vertiighioring pixels. Then, the
missingR or B value is estimated in both horizontal and vertical dirediavith each
of theseG candidates. A final step consists in selecting the most @pjate interpola-
tion direction, namely that minimizing the gradient sum be tolor difference planes
(R— G andB — G) in the considered pixel neighborhood. This interpolatimection

2No detail will be here given about hoR andB components are estimated by the above methods, for
their originality mainly lies in theé5 component estimation.
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Fic. 19: Direction selection issue in Hamilton and Adams’ iptdation
scheme 1997, on an extract of the original image “Lighthouse” contagnithin de-
tails. Plots highlight théR and G component values used for horizontal and vertical
gradient computations : color dots represent availablel$em the CFA image, whe-
reas white dots are levels to be estimated Ms< A, horizontal neighboring pixels
are wrongly used it estimation. This is shown on the lower right subfigure, thget
with the erroneous demosaicing result (at center pixel)only
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allows to select the levels — computed beforehand — to bentaite account for the
missing component estimation.
More precisely, Wu and Zhang’s approach proceeds in theviiallg steps :

1. At each pixel where the green component is missing, compub candidate
levels : one denoted &5 by using the horizontal direction (according to equa-
tion (309), and anothefY by using the vertical direction (according t80()).
For other pixels, seb* = GY = G.

2. At each pixel where the green component is available, coenfpivo candidate
levels (one horizontal and one vertical) for each of the mgsed and blue com-
ponents. A{RGR} CFA structure these levels are expressed as (see fifare

R = G+ %(FLLO —G*1p+Rio—GXp), (36)
R = GtoR10-&o+Rio- Gy (37)
B* = G+ %(80,71—é)é’_l-ﬁ-Bo,l_é)é,l)’ (38)
B = G+E(BO,,l—6%771—5—8071—63671). (39)

3. At each pixel with missing green component, compute twalittate levels for
the missing chrominance component (Beat R samples, and conversely). At
{GRG} CFA structure, the blue levels are estimated as (see fitflge

g = Gt Y (BP)-GP), (40)
PeNy

B — &4l S (B(P)-G'(P)), (41)
PeNy

whereN, is composed of the four diagonal pixels (see figlire).

4. Achieve the final estimation at each pi¥xeby selecting one component triplet
out of the two candidates computed beforehand in both hatét@nd vertical
directions. So as to use the direction for which variatioh@n- G) and 8 — G)
component differences are minimal, the authors suggegoltiogving selection
criterion :

X AX BX i AX
(RGB) :{ (Ii?‘,g ,I?) ff DA< Y, (42a)
(RL,GVBY) if &A% >, (42b)
whereA* and VY are, respectively, the horizontal and vertical gradiemtshe
difference plane of estimated colors. More precisely, ghgmdients are com-
puted by considering all distin¢Q,Q’) pixel pairs, respectively row-wise and
column-wise, within the X 3 window centered at P (see figur&e :
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po= 3 IRQ-GQ)-(RQ)-GQ)
YQYQ)

g :(QQ’)ZN N [(R(Q-G(Q) - (R(Q)-F(Q))|

X(Q=x(Q)
+(BQ-6Q) - (FQ)-FQ))]. (44

This method uses the same expressions as Hamilton and Adaes'in order to
estimate missing color components, but improves the iotatipn direction decision
by using a 3« 3 window — rather than a single row or column — in which the gratof
color differencesR— G andB — G) is evaluated so as to minimize its local variation.

Among other attempts to refine the interpolation directiglestion Hirakawa and Parks
(2005 propose a selection criterion which uses the number ofipiwih homoge-
neous colors in a local neighborhood. The authors competditances between the
color point of the considered pixel and those of its neigbknrthe CIEL*a*b* co-
lor space (defined in sectioh3.2, which better fits with the human perception of
colors thanRGBspace. They design an homogeneity criterion with adaptireshol-
ding which reduces color artifacts due to incorrect setectf the interpolation di-
rection. Chung and Chai2006 nicely demonstrate that green plane interpolation is
critical to the estimated image quality, and suggest touatal the local variance of
color difference as an homogeneity criterion. The selediettion corresponds to mi-
nimal variance, which yields green component refinemereaafly in textured areas.
Omer and Wermai2004) use a similar way to select the interpolation direction, ex
cept that the local coloratio variance is used. These authors also propose a crite-
rion based on a local corner score. Under the assumptiordémabdsaicing generates
artificial corners in the estimated image, they apply theridasorner detection fil-
ter (Harris and Stephend 988, and select the interpolation direction which provides
the fewest detected corners.

3.1.3. Template Matching-based Methods

This family of methods aims at identifying a template-bafsature in each pixel
neighborhood, in order to interpolate according to thellpeacountered feature. Such
strategy has been first implemented by Cok in a patent datiy b 1986 Cok,
1986(Cok, 1994, in which the author classifiesx33 neighborhoods into edge, stripe
or corner features (see figug®). The algorithm original part lies in the green com-
ponent interpolation at each pixelwhere it misses (i.e. at center pixel fBRG} or
{GBG} CFA structures) :

1. Compute the average green level available at the foueseaeighbor pixels of
P (i.e. belonging td\4, as defined on figurgé7b). Examine whether each of these
four green levels is lowebj, higher ), or equal to their average. Sort these four
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values in descending order, I8f > G, > Gz > G4, and compute their median
M= (Gz—‘rG3)/2.

2. ClassifyP neighborhood as :
(a) edgeif 3 hand 1b are present, or lh and 3b (see figure209) ;
(b) stripeif 2 hand 2b are present and opposite by pairs (see fiQig ;
(c) cornerif 2 hand 2b are present and adjacent by pairs (see fiQ0@.

In the special case when two values are equal to the avetagentountered
feature is taken as :

(a) a stripe if the other two pixelsandh are opposite ;
(b) an edge otherwise.

3. Interpolate the missing green level according to theiptely identified feature :
(a) for an edgeG =M

(b) for a stripeG = CLIP§32 (M — (S—M)), whereSis the average green level
over the eight neighboring pixels labeled@#n figure 20d;

(c) for a cornerG = CLIP§32 (M —(S—M)), whereS is the average green
level over the four neighboring pixels labeled@n figure 20 which are
located on both sides of the borderline betwbemdh pixels.

FunctionCLIPge‘2 simply limits the interpolated value to ranff@;,G;] :

o ifG3<a<Gy,
Va R, CLIPS2(a) = G; if a > Gy, (45)
Gz ifa<Gas.

This method, which classifies neighborhood features inteetlgroups, encom-
passes three possible cases in an image. But the criteahtaslistinguish the three
features is still too simple, and comparing green level$ Witir average may not be
sufficient to determine the existing feature adequatelyrddeer, in case of atripe
feature, interpolation does not take into account thipstdirection.

Chang and Tarf2006 also implement a demosaicing method based on template-
matching, but apply it on the color difference plan&—-G andB — G) in order to
interpolateR and B color componentsG being estimated beforehand thanks to Ha-
milton and Adams’ scheme described above. The underlyirgesty consists in si-
multaneously exploiting the spatial and spectral cori@hat and relies on a local edge
information which causes fewer color artifacts than Coklsesne. Although color dif-
ference planes carry less high-frequency information twdor component planes (see
figure 16), they can provide relevant edge information in areas wigjh Ispatial fre-
guencies.

3.1.4. Adpative Weighted-Edge Method

Methods described above, as template-based or gradisatilomes, achieve inter-
polation according to the local context. They hence reqpirer neighborhood clas-
sification. The adaptive weighted-edge linear interpoftatfirst proposed b¥iKimmel
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(a) Edge (b) Stripe (c) Corner
Q Q Q
Q b Q Q
P | P
Q b Q Q
Q Q Q
(d) Stripe neighborhood (e) Corner neighborhood

FIG. 20: Feature templates proposed by Cok to interpolate thengcomponent at
pixel P. These templates, which are defined modu}@, provide four possibl&dge
andCornerfeatures, and two possib&ripefeatures.

(1999, is a method which merges these two steps into a single trengists in weigh-
ting each locally available level by a normalized factor daraction of a directional
gradient. For instance, interpolating the green level atargixel of{ GRG} or { GBG}
CFA structures is achieved as :

Wo,—1-Go—1+W_10-G_10+W10-Gro+Wo1-Goz
Wp,—1+W_10+W10+Wp,1

wherews, s, coefficients are the weighting factors. In order to explpatsal correla-
tion, these weights are adjusted according to the localtpentered pattern.

Kimmel suggests to use local gradients to achieve weightpedation. In a first
step, directional gradients are approximated at a CFA irpage P by using the levels
of its neighbors. Gradients are respectively defined inZoottal, vertical X -diagonal
(top-right to bottom-left) and/-diagonal (top-right to bottom-right) directions (see
figure 179 over a 3x 3 neighborhood by the following generic expressions :

G= (46)

A(P) = (PLo—P-10)/2, (47)
NP = (R-1-Pa1)/2 (48)

b

, { max(‘(Gl,fl—G)/\@ (G’l’l_G)/\sz atGlocations,  (49a)

M (P) =
(PL_1—P.11)/2V2 elsewhere, (49b)
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AY(p):{ max()(Gflfl—G)/\/é(7‘(61.1—6)/\/5‘) atGlocations,  (50a)

(Py_1—Pi1)/2V2 elsewhere, (50b)

wherePs, 5, stands for the neighboring pixel Bf with relative coordinategdx,dy), in
the CFA image. HereR, G or B is not specified, since these generic expressions apply
to all CFA image pixels, whatever the considered availablamonent. However, we
notice that all differences involved in equatiod&Y and @8) imply levels of a same
color component.

The weightwg, sy in directiond, d € {x,y,x,y'}, is then computed from directional
gradients as :

1
Wsx sy =
/1 29(P)2 + 9 (P, 5,2

: (51)

where directiond used to compute the gradieaf is defined by the center pixé
and its neighboPs, 5,. At the right-hand pixel dx,0y) = (1,0) as an example, the
horizontal directiorx is used ford ; A9(P) andA%(Py ) are therefore both computed
by expression47) definingA*, and the weight is expressed as :

1
1+ (P10 Pro)2/4+ (Poo— P)2/4

Definition of weightws, 5y is built so that a local transition in a given direction
yields a high gradient value in the same direction. Conseltyyeveightws, s, is close
to O for the neighboP;, 5, and does not contribute much to the final estimated green
level according to equatio€). On the opposite, weights, 5, is equal to 1 when the
directional gradients are equal to O.

Adjustments in weightv computation are proposed thy and Tan(2003, who
use a Sobel filter to approximate the directional gradierd,the absolute — instead of
square — value of gradients in order to boost computatioadspguch a strategy is also
implemented by ukac and Platanioti€2005h.

Once then green plane has been fully populated thanks tdiequyd6), red and
blue levels are estimated by using component ra&kjS andB,/G among neighboring
pixels. Interpolating the blue component is for instand@eed according to two steps
(the red one being processed in a similar way) :

W10 (52)

1. Interpolation at red locations (i.e. ffGRG} CFA structure) :

B(P)

W By B_1_1 By _1 B_11 Bi1
SR wa g w2
B=G- =G — — — :

> w(P) Wo1_1+Wi_1+W_11+Wi1

PeNy

(53)
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2. Interpolation at other CFA locations with missing blued(i.e. at{RGR and
{BGB]} structures) :

B(P) Bo._ B_ B B
> W(P)- &5 Boa B0 .Bio . Boy
B=G. "™ e = .Wo’il Go,—1 W10 G_10 TWLor g, TWor Goa
PZMW(P) Wo,—1+W_1,0+W1,0+Wo1
S
(54)

Once all missing levels have been estimated, Kimmel's #lyor(1999 achieves
green plane refinement by using the color ratio constan®y fthis iterative refine-
ment procedure is taken up bjuresan et al(2000 with a slight modification : ins-
tead of using alNg neighboring pixels in step 1 below, only neighboring pixeith
green available component are considered. The followegsstiescribe this refinement
scheme :

1. Correct the estimated green levels with the average ofstimations (one on
the blue plane, the other on the red one), so that the cornstalecis locally
enforced for color rati@s/R:

~ 1 ~
G=3 (GR+G®) , (55)
where : . -
. ~ ;\‘ W(P)~W . ~ P%ﬂ W(P)'TBTP)
GRAR. M and GB2pB. P
PE;MW(P) Pe;MMP)

§and§standing either for an estimated level or an available CHAeyaaccor-
ding to the considered CFA structufg3RG} or {GBG}).

2. Correct then red and blue estimated levels at green to=atby using weighted
R/G andB/G ratios at the eight neighboring pixels :

> w(p)- 22 w(p)- 20
5 _ . PNg 5. PENg
R=G 5 (56)  and B=G w6
PENg PENg

3. Repeat the two previous steps twice.

This iterative correction procedure gradually enforceserand more homoge-
neousG/R andG/B color ratios, whereas the green component is estimatediby us
spectral correlation. Its convergence is however not awgyaranteed, which may
cause trouble for irrelevant estimated values. When a lea@lroing in any color ratio
denominator is very close or equal to zero, the associatéghtvenay not cancel the
resulting bias. Figur@1cshows some color artifacts which are generated in this case.
In pure yellow areas, quasi-zero blue levels cause a saraft the estimated green
component aR andB locations, which then alternate with original green levels

Smith(2009 suggests to compute adaptive weighte/gssy = AP +14‘ N Pyay)
in order to reduce the division bias and contribution of fExen both edge sides.

36



(a) Original image (b) Estimated image before cor- (c) Estimated image after cor-
rection rection

FiGc. 21: Demosaicing result achieved by Kimmel's meth@899, before and after
the iterative correction steps. Generated artifacts airggubout on imagéc).

Lukac et al (2006 choose to apply adaptive weighting on califfferenceplanes folR
andB component estimations, which avoids the above-mentionti#das during the
iterative correction stefl.sai and Son@2007) take up the latter idea, but enhance the
green plane interpolation procedure : weights are adaptttetlocal topology thanks
to a preliminary distinction between homogeneous and edegesa

3.1.5. Local Covariance-based Methods

In his PhD dissertatiori,i (2000 presents an interpolation scheme to increase the
resolution of a gray-level image. Classical interpolatinathods (bilinear and bicu-
bic), based on spatial invariant models, tend to blur ttaors and generate artifacts in
high-frequency areas. Li's approach exploits spatialedation by computing a local
level covariance, without relying on directional gradeas do the above-mentioned
methods in this section. Beyond resolution enhancemeatatihor applies this ap-
proach to demosaicind-{and Orchard 200J). In the CFA image, each &R, G or
B color component plane may be viewed as a sub-sampled vesbitg respective,
fully-populated estimated color plane. According to thessideration, a missing level
in a given color plane is interpolated by using local covace preliminarily estimated
from neighboring levels available in the same plane.

The underlying principle of this method may be better unied by considering
the resolution enhancement problem first. More precisgyyé22 illustrates how the
resolution of a gray-level image can be doubled thanks tongéxic duality, in a two-
step procedure. The first step consists in interpola®ng »j 1 level (represented by a
white dot in figure22g) from availablePy ) »(j11) levels (black dots). The following
linear combination oN} neighbors is used here :

1 1

Poit12j+1 = Ak 41 Pk 2(j41)» (58)
i+1,2j+ kZOI; H2(i+k),2(j+!)

in which ay, coefficients, 0< m < 3, of @ are computed as follows (see justification
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22 g 2 g NG
2j-2- ° :
2j-1 A a
3
1 hs
2 @ .
2j+1
‘ ‘ a
‘ | Y
2j+2-¢ 2j+2-@ i ® L 3
(a) Interpolating latticePy12j4+1 from lattice (b) Interpolating lattice? j (i 4 j odd) from lattice
Poi 2j P.j (i+ ] even)

FiG. 22: Geometric duality between the low-resolution covar& and the high-
resolution covariance. Black dots are the available legelow resolution, and the
white dot is the considered pixel to be interpolated. In gubé (b), diamonds re-
present pixels estimated in the previous step.

Aoz
A2 gy A gy 242 B o Y N A
2j2-Q—1 /V"* """"" - 2j—2 2j-2
2j-1 2j-1 2j-1
2j 2j O 2j
2j+1 2j+1 2j+1
i a2
T &t 2j+28 ‘ 2j42 |
oG eR oG B eReR oG B
(a) InterpolatingG atR or B lo- (b) InterpolatingR at B loca- (c) InterpolatingR at G loca-
cations tions tions

FiG. 23: Geometric duality between covariances used in deriagaiColor dots are
the available components in the CFA image, and the whitestita considered pixel
to be interpolated. In subfigurés) and(c), diamonds represent pixels estimated in the
previous step, and spatial coordinates are shifted oné nixpke:.
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and details irLi and Orchard2007) :

g=A‘a (59)

This expression incorporates the local covariance ma&téx[Amn], 0 < mn < 3 bet-
ween the four neighboring levels considered pair-wise @gin figure223, and the
covariance vectai £ [anm], 0 < m< 3 between the pixel level to be estimated and those
of its four available neighbors (see figu289°3. The main issue is to get these cova-
riances for the high-resolution image from levels whicharailable at low resolution.
This is achievable by using treeometric dualityprinciple : once covariance is com-
puted in a local neighborhood of the low-resolution imagje, équivalent covariance
at high resolution is estimated by geometric duality whiohgiders pixel pairs in the
same direction at both resolutions. Under this duality @ple, ag is for instance esti-
mated bya, Aoz being replaced byos (see figure22). The underlying assumption to
approximateam, by am andAmn by Amn, is that the local edge direction is invariant to

image resolution.
The second step consists in estimating remaining unalaikaels, as for the white

dot on figure22hb. Interpolation then relies on exactly the same principlelgve,
except that the available pixel lattice is now the previons mtated byt/4.

Applying this method to demosaicing is rather straightfaryv;

1. Fill out the green plane &andB locations by using :

G= P;4G(P)G(P), (60)

wherea coefficients are computed according to expressi@ &nd figure23a
2. Fill out the two other color planes, by exploiting the amption of color diffe-
rence R— G andB — G) constancy. For the red plane as example :

(a) AtB locations, interpolate the missing red level as :

R=G+ 5 a(P)(RP)-E(P)), (61)
PeNj

wherea coefficients are computed according to figa&h.
(b) At G locations, interpolate the missing red level as :

ﬁe:G+P;4a<P) (ﬁ(P)-é(P)), (62)

wherea coefficients are computed according to figd8e, R being a value
either available in®™ or estimated.

3Notations used here differ from those in the original puitiisn (i.e.R andF for covariances) in order
to avoid any confusion.
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Although this method yields satisfying results (see nekissation), some limits
may be pointed out. First, it requires the covariance mairie be invertible so that
a coefficients can be computed. Li shows that this conditioy mat be verified in
homogeneous areas of the image. Second, computing cosaniaatrices is a greedy
processing task. To overcome those drawbacks, the autbpoges a hybrid approach
by using covariance-based interpolation only in edge agasa simple method (like
bilinear interpolation) in homogeneous areas. This schavo@ls the covariance ma-
trix invertibility issue, while decreasing computatiomg — since edge areas generally
take up a small part of the whole image.

Leitéo et al(2003 observe that this method performs worse in textured ateas t
edge areas. They advise, for covariance estimation, ta amisidering pixels which
are too far from the pixel to be interpolatefsuni and Giachett{2008 refine the de-
tection scheme of areas in which the covariance estimasiappropriate for inter-
polation. These authors also improve the covariance matmditioning by adding
a constant to pixel levels where they reach very low valdasn et al.(2009 raise
the covariance mismatch problem, which occurs when the geanduality property
is not satisfied, and solve it by extending the covariancechiag into multiple di-
rections. Multiple low-resolution training windows arensidered, and the one that
yields the highest covariance energy is retained to apglyitiear interpolation accor-
ding to generic equatiorb8). Lukin and Kubasog2004) incorporate covariance-based
interpolation for the green plane estimation, in a demasgialgorithm combining
several other techniques — notably Kimmel's. In additidts suggested to split non-
homogeneous areas into textured and edge ones. The irBopdtep is then achieved
specifically to each kind of high-frequency contents.

3.1.6. Comparison Between Edge-adaptive Methods.

Finally, it is relevant to compare results achieved by thexreaposed propositions
which exploit spatial correlation. The key objective ofshenethods is to achieve the
best estimation of green plane as possible, on which raliesegjuent estimation of red
and blue ones. Hence, we propose to examine the peak signaide ratioPSNFE
(see expressior2f)) of the estimated green plane, according to the experimhend-
cedure described on figufiel. Table2 shows the corresponding results, together with
those achieved by bilinear interpolation for comparisticah be noticed that all me-
thods based on spatial correlation provide significant owpment in regard to bilinear
interpolation. Among the six tested methods, Col'886 and Li's (200]) estimate
missing green levels by using only available green CFA samjtke bilinear interpo-
lation ; all three generally provide the worst results. Theeg plane estimation may
therefore be improved by using information fréd@andB components. In Kimmel's al-
gorithm for instanceX999, green plane quality is noticeably enhanced, for 10 images
out of 12, thanks to corrective iterations based on spectnaklation (see results of
columnsKimme}p andKimmel}).

From these results may be asserted that any efficient decmgganethod should
take advantage of both spatial and spectral correlatiamsiitaneously and for each
color plane interpolation. Both methods proposedaynilton and Adam$1997) and
by Wu and Zhand2004) use the same expression to interpolate green levels, but di
ferent rules to select the interpolation direction. A congmn of respective results
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Image Bilinear | Hamilton | Kimmelg | Kimmely Wu Cok Li
1 38.982 44.451 40.932 28244 | 44985 | 39.320 | 39.999
2 32129 37.179 33991 37.947 | 39.374 | 32984 | 34.305
3 37477 43161 39.870 38207 | 43419 | 38161 | 38780
4 28.279 34.360 31643 34.673 | 35.352 | 30.420 | 30.705
5 36.709 42.603 39.291 41477 | 43515 | 38103 | 38.849
6 33168 38148 34.913 38659 | 39.176 | 33762 | 34.354
7 35.682 40.650 37.605 40978 | 43.121 | 36.734 | 38356
8 32.804 39434 36.261 39514 | 40.193 | 35073 | 35747
9 35.477 40.544 37.470 39.603 | 41.013 | 36.219 | 36.656
10 32512 37.367 34.224 38.342 | 38125 | 33117 | 36.656
11 34.308 38.979 35934 38321 | 39.194 | 34.837 | 35107
12 30.251 34.451 31.248 35145 | 35.943 | 30.150 | 30.173
Average || 33981 39.277 36.115 37592 | 40.284 | 34.907 | 35807

TaB. 2: Peak Signal-to-Noise Ratio (in decibels) of the greeam@l PSNFP), es-
timated by various interpolation methods. For each imalge,test result is prin-
ted in bold typeface. Tested methods are here referred &flghiy their first au-
thor's name : 1. Bilinear interpolation — 2. Hamilton and Aus gradient-based
method (997 — 3 and 4. Kimmel's adaptive weighted-edge methd@99, before
(Kimmelp) and after (Kimmel) corrective iterations — 5. Wu and Zhang's component-
consistent schem&Q04 — 6. Cok’s method based on template matchibh§8g —

7. Li's covariance-based metho2i001).

show that careful selection of the interpolation direci®important for overall perfor-
mance. This is all the most noticeable that, compared ta aigerithms, computation
complexity is rather low for both Hamilton and Adams’ and Wid&hang’s methods.
Indeed, they do not require any corrective iteration stapcowariance matrix estima-
tion step, which are computation-expensive operations.

3.2. Estimated Color Correction

Once the two missing components have been estimated atigatagpost-processing
step of color correction is often applied to remove artgactthe demosaiced image. To
remove false colors in particular, a classical approackistsin strengthening spectral
correlation between the three estimated color compon8atsh a goal may be reached
first by median filtering, as described below. An iterativelage of initial interpolated
colors is also sometimes achieved, as Kimmel's correctee @999 presented in sub-
section3.1.4 A still more sophisticated algorithm proposed Gynturk et al.(2002
is described in detail in the second part of this section. Agnother correction tech-
niques of estimated colorkj (2005 builds a demosaicing scheme by using a iterative
approximation strategy with a spatially-adaptive stogpiriterion ; he also studies the
influence of the number of corrective iteration steps on stemated image quality.
Let us also mention here regularization schemes based @etfesian framework, as
Markov Random Fields (see e.glukherjee et al.2001), which are however poorly
adapted to real-time implementation.
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3.2.1. Median Filtering

One of the most widespread techniques in demosaiced imagjgmressing is
median filtering. Such a filter has been used for years to rermpulse noise in gray-
level images, but also efficiently removes color artifactthaut damaging local color
variations.Freeman(1988 was the first person to take advantage of the median filter
to remove demosaicing artifacts. Applied to the estimatadgs of color differences
R— G andB — G, this filter noticeably improves the estimation providedii§near
interpolation. As shown on figuré6d, these planes contain little high-frequency in-
formation. False estimated colors, which result from irgistency between the local
interpolation and those achieved in a neighborhood, magené&e more efficiently
corrected on these planes while preserving object edges.

Median filtering is implemented in several works of the deaiciag literature.
For instanceHirakawa and Park§2009 propose to iterate the following correction
— without giving more details about the number of iteratiteps nor the filter kernel
size —, defined at each pixel as :

R = G+MRC (63)
¢ = %(§+MGR+I§+MGB), (64)
B = G+MEBC (65)

whereR, G’ andB’ denote the filtered estimated components, if{ is the output
value of the median filter applied on estimated planes ofrcdifferencesi® — i
(k,K) € {RG,B}2. Lu and Tan(2003 use a slig