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1. Introduction

Today, the majority of color cameras are equipped with alsi@CD (Charge-
Coupled Device) sensor. The surface of such a sensor isembbgra color filter array
(CFA), which consists in a mosaic of spectrally selectiverfd, so that each CCD ele-
ment samples only one of the three color components Redxreen G) or Blue B).
The Bayer CFA is the most widely used one to provide the CFAjenahere each pixel
is characterized by only one single color component. Toregg the colorR,G,B) of
each pixel in a true color image, one has to determine theegaifithe two missing co-
lor components at each pixel in the CFA image. This processrigmonly referred to
as CFA demosaicing, and its result as the demosaiced imat@slpaper, we propose
to compare the performances reached by the demosaicingdsethanks to specific
quality criteria.

An introduction to the demosaicing issue is given in secfioBesides explaining
why this process is required, we propose a general formdisnt. Then, two ba-
sic schemes are presented, from which are derived the miaicigdes that should be
fulfilled in demosaicing.

In section3, we detail the recently published demosaicing schemeshndrie re-
grouped into two main groups : the spatial methods whichyaeathe image plane
and the methods which examines the frequency domain. Thialspeethods exploit
assumptions about either spatial or spectral correlatewéen colors of neighbors.
The frequency-selection methods apply specific filters @@RA image to retrieve
the color image.

Since these methods intend to produce “perceptually gatggfdemosaiced images,
the most widely used evaluation criteria detailed in secti@re based on the fidelity
to the original images. Generally, the Mean Square EMSBE) and the Peak Signal-
to-Noise Ratio PSNR are used to measure the fidelity between the demosaice@&imag
and the original one. ThESNRcriterion cannot distinguish the case when there are
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a high number of pixels with slight estimation errors frore tase when only a few
pixels have been interpolated with severe demosaicintpetsi However, the latter
case would more significantly affect the result quality obalevel analysis applied
to the estimated image. Therefore, we propose new critedacially designed to de-
termine the most effective demosaicing method for furteatdre extraction.

The performances of the demosaicing methods are compasedtion5 thanks to
the presented measurements. For this purpose, the demgssibemes are applied to
twelve images of the benchmark Kodak database.



2. Color Demosaicing

Digital images or videos are currently a preeminent medinrarnivironment per-
ception. They are today almost always captured directly loljgéal (still) camera,
rather than digitized from a video signal provided by an agalamera as they used to
be several years ago. Acquisition techniquesabr images in particular have invol-
ved much research work and undergone many changes. Desjide advancements,
mass-market color cameras still often use a single sensbreguire subsequent pro-
cessing to deliver color images. This procedure, nadexdosaicingis the key point
of our study and is introduced in the present section. Theodaiing issue is first
presented in detail, and a formalism is introduced for it.

2.1. Introduction to the Demosaicing Issue

The demosaicing issue is here introduced from technolbgassiderations. Two
main types of color digital cameras are found on the marlegtedding on whether they
embed three sensors or a single one. Usually known@as-CCDcameras, the latter
are equipped with spectrally-sensitive filters arrangexeting to a particular pattern.
From such color filter arrays (CFA), an intermediate gragisanage is formed, which
then has to bdemosaicednto a true color image.

In the first subsection are compared the major implemem=sid three-CCD and
mono-CCD technologies. Then are presented the main typedaf filter arrays re-
leased by the various manufacturers. Proposed by Bayeramtak in 1976, the most
widespread CFA is considered in the following, not only tofalize demosaicing but
also to introduce a pioneer method using bilinear intetjgmia This basic scheme ge-
nerates many color artifacts, which are analyzed to demeanain demosaicing rules.
Spectral correlation is one of them, and will be detailedhe last subsection. The
second one, spatial correlation, is at the heart of edgpt@dademosaicing methods,
that will be presented in the next section.

2.1.1. Mono-CCD vs. Three-CCD Color Cameras

Digital area scan cameras are devices able to convert cioulsfrom the ob-
served scene into a color digital image (or image sequehesks to photosensors.
Such an output image is spatially digitized, being formegiofure elementspixels.
With each pixel is generally associated a single photoseglement, which captures
the incident light intensity of the color stimulus.

A digital color imagé can be represented as a matrix of pixels, each of them being
denoted a®(x,y), wherex andy are the spatial coordinates of piXeivithin the image
plane of sizeX x Y, hence(x,y) € N2 and 0< x < X —1, 0< y <Y — 1. With each
pixel P is associated a color point, denoted @sy) or |y. This color point is defined
in the RGB three-dimensional color space by its three coordind{tgsk € {RG,B},
which represent the levels of the trichromatic componehta® corresponding color
stimulus.

The color imagd may also be split into threeomponent planesr images ¥,

k € {R,G,B}. In each component imagdé, the pixelP is characterized by levék(P)
for the single color componekt Thus, three component imagés | © andI B, must be
acquired in order to form any digital color image.
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(b) Relative spectral sensitivity of the Kodak KLI-(c) CIE 1931 RGB color matching functionfR;],
2113 sensor. [Gc] and[Bc] are the monochromatic primary colors.

FIG. 1: Three-CCD technology.

The two main technology families available for the desigdigftal camera photo-
sensors are CCDCharge-Coupled Devigeand CMOS Complementary Metal-Oxide
Semiconductgrtechnologies, the former being the most widespread onaytothe
CCD technology uses the photoelectric effect of the silisobstrate, while CMOS is
based on a photodetector and an active amplifier. Both pbiososs overall convert
the intensity of the light reaching each pixel into a projuordl voltage. Additional
circuits then converts this analog voltage signal intotdigilata. For illustration and
explanation purposes, the following text relates to the G&tbnology.

The various digital color cameras available on the market aiso be distingui-
shed according to whether they incorporate only a singleaesr three. In accordance
with the trichromatic theory, three-CCD technology inamngtes three CCD sensors,
each one being dedicated to a specific primary color. In mesicds, the color sti-
mulus from the observed scene is split onto the three sebgargeans of a trichroic
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filter (Lyon and Hubel2002).

FIG. 2: Foveon X3 technology.

prism assembly, made of two dichroic prisms (see figwé yon, 2000. Alternately,
the incident beam may be dispatched on three sensors, eadbhedng covered with
a spectrally selective filter. The three component imded® and B are simulta-
neously acquired by the three CCD sensors, and their comdninizads to the final
color image. Each digital three-CCD camera is charactéfigets own spectral sensi-
tivity functionsR(A ), G(A) andB(A) (see figurelbfor an example), which differ from
the CIE color matching functions of the standard obsenes {gjurelb).

Since 2005, Foveon Inc. has been developing the X3 sensahwbkes a multi-
layer CMOS technology. This new sensor is based on threeisypased layers of pho-
tosites embedded in a silicon substrate. It takes advautape fact that lights of dif-
ferent wavelengths penetrate silicon to different depghe figure2a)(Lyon and Hubel
2002. Each layer hence captures one of the three primary calaragly blue, green
and red, in the light incidence order. The three photositse@ated with each pixel



thus provide signals from which the three component valveslarived. Any camera

equipped with this sensor is able to form a true color imagemfthree full component

images, as do three-CCD-based cameras. This sensor hafirbeesed commercially

in 2007 within the Sigma SD14 digital still camera. Accogliio its manufacturer, its

spectral sensitivity (see figuizb) better fits with the CIE color matching functions
than those of three-CCD cameras, providing images that are nonsistent with hu-

man perception.

Although three-CCD and Foveon technologies yield highitpmhages, the manu-
facturing costs of the sensor itself and of the optical deai® high. As a consequence,
cameras equipped with such sensors have not been so fatadfferto everyone, nor
widely distributed.

In order to overcome these cost constraints, a technolomg s single sensor
has been developed. The solution suggested by Bayer frortKdtlak company in
1976 Bayer, 19769 is still the most widely used in commercial digital cameiaday. It
uses a CCD or CMOS sensor covered by a fil@ol6r Filter Array, or CFA) designed
as a mosaic of spectrally selective color filters, each ofitheing sensitive to a specific
wavelength range. At each element of the CCD sensor, onlypahef the three color
components is sampled, Rd®)(Green G) or Blue B) (see figure8a). Consequently,
only one color component is available at each pixel of thegeyarovided by the CCD
charge transfer circuitry. This image if often related toreesaw image, buCFA image
is preferred hereafter in our specific context. In order tiba color image from the
latter, two missing levels must be estimated at each pixahkb to ademosaicing
algorithm (sometimes spellattmosaicking

As shown in figuredb, many other processing tasks are classically achievednwith
a mono-CCD color camera(kac and Plataniotj2007). They consist for instance in
raw sensor data correction or, after demosaicing, in cohprovement, image shar-
pening and noise reduction, so as to provide a “visuallygdieg color image to the
user. These processing tasks are essential to the quallitg pfovided image and, as a
matter of fact, discriminate the various models of digi@ineras, since manufacturers
and models of sensors are not so numerous. The related yindeslgorithms have
common features or basis, and parameter tuning is often atkpyleading to more or
fewer residual errors. Together with noise charactessticthe imaging sensor, such
artifactsmay incidentally be used to typify each camera moBelfama et aJ.2008.

2.1.2. Color Filter Arrays

Several configurations may be considered for the CFA, andefigshows some
examples found in the literature. A few mono-CCD camerasauSEA based on com-
plementary color components (Cyan, Magenta and Yellowt)y w2x 2 pattern which
also sometimes includes a filter sensitive to the green.|Bjtthe very large majority
of cameras are equipped with filter arrays basedRp@ and B primary color com-
ponents. Regardless of their arrangement and design, dneses often include twice
as many filters sensitive to the green primary as filters fe@sdb blue or red light.
This stems from Bayer's observation that the human eye hasaiey resolving po-
wer for green light. Moreover, the photogieminous efficiency functioof the human
retina — also known as tHaminosity function- is similar to the CIE 1931 green mat-
ching functionG¢(A ), with a maximum reached in the same spectral domain. Bayer
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FiG. 3: Internal structure of a mono-CCD color camera.



(a) Vertical stripes (b) Bayer (c) Pseudo-random

S

(d) Complementary colors (e) “Panchromatic”, or (f) “Burtoni” CFA
CFA2.0 (Kodak)

FiG. 4: Configuration examples for the mosaic of color filtersclEaquare depicts a
pixel in the CFA image, and its color is that of the monochraofiiter covering the
associated photosite.

therefore both makes the assumption that green photosereoture luminance, whe-
reas red and blue ones capture chrominance, and suggestshe €FA with more
luminance-sensitive (green) elements than chrominaensits/e (red and blue) ele-
ments (see figuréb).

The CFA using alternating vertical stripes (see figdgp of the RGB primaries
has been released first, since it is well suited to the inteddelevision video signal.
Nevertheless, considering the Nyquist limits for the greemponent plane?arulski
(1985 shows that the Bayer CFA has larger bandwidth than ther l&itehorizontal
spatial frequencies. The pseudo-random filter array (seeefidr) has been inspired
by the human eye physiology, in an attempt to reproduce thgaspepartition of the
three cone cell types on the retina surfacek@c and Plataniotj20053. Its irregula-
rity achieves a compromise between the sensitivity to apeadiriations of luminance
in the observed scengigual acuity and the ability to perceive thin objects with dif-
ferent colors Roorda et al.2007). Indeed, optimal visual acuity would require pho-
tosensors with identical spectral sensitivities which emastant over the spectrum,
whereas the perception of thin color objects is better exbwith sufficient local
density of different types of cones. Despite pseudo-randotor filter arrays show
interesting propertiesA{leysson et al. 2008, their design and exploitation have not
much been investigated so far; for some discussions, se€@ngat(2009 or Savard
(2007 about CFA design andapryanov and Nikolov#2009 about demosaicing of
Bayer CFA “pseudo-random” variations. Among other studieswving their inspira-
tion from natural physiology for CFA design, Kréger’'s wotX004) yields a new mo-
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FiG. 5: Relative spectral sensitivity of the JAI CV-S3300P ceanesen-
sor (Jai Corporation2000.

saic which mimics the retina of a cichlid fishstatotilapia burton{Gunther, 1894). It

is shown that this particular arrangement (see figiffewhich includes many spatial
frequencies and different geometries for color componeggserates weak aliasing
artifacts. This complex mosaic configuration efficienthhances the simulated image
quality (Medjeldi et al, 2009, but the effective implementation of such a sensor, and
the demosaicing step of the corresponding CFA images, ane @pd challenging pro-
blems.

Color filter arrays based on complementary primary colove ladso been designed
and used, with two main advantages. First, they own highestsal sensitivity and wi-
der bandwidth than RGB filters, which is of particular inttren noisy environments
and/or when the frame rate imposes low integration petitichkawa 2008. Figure5
shows the spectral sensitivity of the JAI CV-S3300P camenaar, equipped with the
CFA of figure4d. A few years ago, some professional still cameras used @mgsi-
tary color filter arrays to ensure high 1ISO sensitivity, as iodak DCS-620x model
equipped with a CMY filter loble, 2000. As a second advantage, these CFAs make
the generation of television luminance/chroma video dighmost immediate, and are
sometimes embedded in PAL or NTSC color video camesasy Corporation2000.
Their usage is however largely restricted to televisiom;asithe strong mutual overlap-
ping of C,M,Y spectral sensitivity functions makes the conversion R@®,B primaries
unsatisfactory.

New types of CFA have recently been released, and used inraamadels re-
leased by two major manufacturers. Since 1999, Fuji degedopew so-calleGuper
CCD sensor, based on photosites in a 45-degree oriented honbyettice (see fi-
gure6). The HR version of 2003 (see figuéa) allows to optimize the occupancy on
the CCD surface, hence to potentially capture more lightjuéde” pixels are obtai-
ned from octagonal photosites by combining the four neighlio part, so that new
pixels are created and the resolution is doubled. An altemnaersion of this sensor
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FiG. 6: Super CCD technology. For clarity sake, photosites apeessented further
apart from each other than at their actual location.

(SR, see figuréb) has expanded dynamic range, by incorporating both higkibéty
large photodiodes (“S-pixels”) used to capture normal aar#t details, and smaller “R-
pixels” sensitive to bright details. The EXR version (se@ffiebd) takes advantage of
same idea, but extra efforts have been conducted on noiseti@d thanks to pixel
binning, resulting in a new CFA arrangement and its exptioiteby pixel coupling. As

a proprietary technology, little technical detail is agaile on how Super CCD sensors
turn the image into an horizontal/vertical grid withoutdrptolating, or on how demo-
saicing associated with such sensors is achieved. A fews hiayy however be found in
a patent using a similar imaging devidéupo and Sugiura2006.

In 2007, Kodak develops new filter arrayidgmilton and Comptar2007) as ano-
ther alternative to the widely used Bayer CFA. The basicqipie of this so-called
CFA2.0 family of color filters is to incorporate transpardiiter elements (represen-
ted as white squares on figude), those filters being hence also knownRGBWor
“panchromatic” ones. This property makes the underlyingtps$ites sensitive to all
wavelengths of the visible light. As a whole, the sensorsaased with CFA2.0 are
therefore more sensitive to low-energy stimuli than thasiegiBayer CFA. Such in-
crease of global sensitivity leads to better luminanceresdton, but at the expense
of chromatic information estimation. Figufeshows the processing steps required to
estimate a full color image from the data provided by a CFA#a6ed sensor.

By modifying the CFA arrangement, manufacturers primaaiyn at increasing
the spectral sensitivity of the sensbukac and Platanioti§20053 tackled the CFA
design issue by studying the influence of the CFA configunatindemosaicing results.
They considered ten different RGB color filter arrays, thoééhem being shown on
figures4ato 4c. A CFA image is first simulated by sampling one out of the three
color components at each pixel in an original color imagepating to the considered
CFA pattern. A universal demosaicing framework is then iggjtio obtain a full-color
image. The quality of the demosaiced image is finally evaldidty comparing it to the
original image thanks to several objective error critefiae authors conclude that the
CFA design is critical to demosaicing quality results, bammot advise any CFA that
would yield best results in all cases. Indeed, the relatgréopmance of filters is highly
dependent on the tested image.

10
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FIG. 7: Processing steps of the raw image provided by a CFAZ@¢aensor. “Pan-
chromatic pixels” are those associated with photositesma/with transparent filters.

All in all, the Bayer CFA achieves a good compromise betweerizbntal and
vertical resolutions, luminance and chrominance selitsithyy and therefore remains
the favorite CFA in industrial applications. As this CFA fleetmost commonly used
and has inspired some more recent ones, it will be considastcand foremost in
the following text. Demosaicing methods presented hegeafie notably based on the
Bayer CFA.

2.1.3. Demosaicing Formalization

Estimated colors have less fidelity to color stimuli from thteserved scene than
those provided by a three-CCD camera. Improving the qualitplor images acquired
by mono-CCD cameras is still a highly relevant topic, inigesed by researchers and
engineersl(ukac 2008. In this paper, we focus on the demosaicing step and examine
its influence on the estimated image quality.

In order to set a formalism for the demosaicing process,detampare the acqui-
sition process of a color image in a three-CDD camera and im@orCCD camera.
Figure 8a outlines a three-CCD camera architecture, in which thercohage of a
scene is formed by combining the data from three sensorstesudting color imagé
is composed of three color component platfek € {R,G,B}. In each plané¥, a gi-
ven pixelP is characterized by the level of the color comporie three-component
vector defined asxy = (Rxy,Gxy,Bxy) is therefore associated with each pixel — lo-
cated at spatial coordinatésy) in imagel. In a color mono-CCD camera, the color
image generation is quite different, as shown in figine the single sensor delivers a
raw image, hereafter call€dFA imageand denoted“™. If the Bayer CFA is consi-
dered, to each pixel with coordinatésy) in imagel“F is associated a single color

11



R sensor

optical device \i G sensor

B sensor

Rimage

Gimage color image
|

(a) Three-CCD camera

optical device M demosaicin?-».

CFA filter CFA image estimated color
CFA imagel
(b) Mono-CCD color camera

FiG. 8: Color image acquisition outline, according to the caartgpe.

componenR, G or B (see figure9) :

Ry  if xis odd andyis even, (1a)
ISR =14 Bxy if xis even ang is odd, (1b)
Gxy  oOtherwise. (1c)

The color component levels range from 0 to 255 when they asmtiped with
8 bits.

The demosaicing schem#, most often implemented as an interpolation proce-
dure, consists in estimating a color imaggom ICFA, At each pixel of the estimated
image, the color component availablel fif* at the same pixel location is picked up,
whereas the other two components are estimated :

(Rx,y,éx.y,éxyy> if xis odd andy is even, (2a)
N 2z Ixy=14 (Ray,Gxy:Bxy) if xis even angis odd, (2b)
(Ray,Gxy,Bxy)  otherwise. (2c)

Each triplet in equation2] stands for a color, whose color component available
at pixel P(x,y) in 17 is denotedRyy, Gxy or By, and whose other two components
amongRyy, Gxy andBy are estimated foi .

Before we get to the heart of the matter, let us still precifevanotations that
will be most useful later in this section. In the CFA imagee(figure9), four different

12



Fic. 9: CFA image from the Bayer filter. Each pixel is artificiatplorized with the
corresponding filter main spectral sensitivity, and thesprtéed arrangement is the most
frequently encountered in the literature (@andR levels available for the first two

row pixels).

(@) {GRG} (b) {GBG}
() {RGR (d) {BGB}

FiIG. 10: 3x 3 neighborhood structures of pixels in the CFA image.
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structures are encountered for the 3 spatial neighborhood, as shown on figtfe
For each of these structures, the pixel under considerfdroiemosaicing is the cen-
tral one, at which the two missing color components shouldgtienated thanks to the
available components and their levels at the neighborirglgi Let us denote the afo-
rementioned structures by the color components availabka® middle row, namely
{GRG}, {GBG}, {RGR and{BGB}. Notice that{ GRG} and{GBG} are structurally
similar, apart from the slight difference that compondRendB are exchanged. The-
refore, they can be analyzed in the same way, ag B&BR} and{BGB} structures. A
generic notation is hence used in the following : the cenitezljis considered having
(0,0) spatial coordinates, and its neighbors are referred tayubieir relative coordi-
nates(dx,dy). Whenever this notation bears no ambiguif0) coordinates are omit-
ted. Moreover, we also sometimes use a letter @.tp generically refer to a pixel, its
color components being then denoted?B), G(P) andB(P). The notatiorP(dx,dy)
allows to refer to a pixel thanks to its relative coordinattsscolors components being
then denote®sy 5y, Gsy 5y andBsy 5y, as in figurelO.

2.1.4. Demosaicing Evaluation Outline

Demosaicing objective is to generate an estimated colmje'arﬁas close as possible
to the original image. Even this image is unavailable effectivelyis generally used
as a reference to evaluate the demosaicing quality. Thergitimer strive to obtain as a
low value as possible for an error criterion, or as a higheals possible for a quality
criterion comparing the estimated image and the original énclassical evaluation
procedure for the demosaicing result quality consistsee (gjurell) :

1. simulating a CFA image provided by a mono-CCD camera framolar original
image provided by a three-CCD camera. This is achieved bylsagna single
color componenR, G or B at each pixel, according to the considered CFA arran-
gement (Bayer CFA of figur®, in our case) ;

2. demosaicing this CFA image to obtain an estimated colagen

3. comparing the original and estimated color images, so dighlight artifacts
affecting the latter.

There is no general agreement on the demosaicing qualitpitilefi, which is
highly dependent upon the estimated color image exploitatias will be detailed in
the next sections. In a first time, we will rely on visual exaation, or else on the most
used guantitative criterion (signal-to-noise ratio) fayuality result evaluation, which
both require a reference image. As in most works relatedtmodaicing, we will here
use the Kodak image database (Kodak, 1991) as a benchmaplerformance com-
parison of the various methods, as well as for illustratiarppses. More precisely, to
avoid overloaded results, a representative subset of énaflthese images has been
picked up as the most used set in literature. These natueglémcontain rich colors
and textural regions, and are fully reproduced in figireso that they can be referred
to in the text.

14
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FiG. 11: Classical evaluation procedure for the demosaicisglrguality (example of
bilinear interpolation on an extract from the Kodak benchoiamage “Lighthouse”).

2.2. Basic Schemes and Demosaicing Rules

2.2.1. Bilinear Interpolation

The first solutions for demosaicing were proposed in theyeaghties. They pro-
cess each component plane separately and find the misselg tgvapplying linear in-
terpolation on the available ones, in both main directidris®@image plane. Such a bi-
linear interpolation is traditionally used to resize gtayel imagesGribbon and Bailey
2004). Considering thd GRG} structure, the missing blue and green values at the cen-
ter pixel are respectively estimated by bilinear interfiolathanks to the following
equations :

(Bo1,-1+B1_1+B_11+B11), (3)

o>
I
[ S

2 (Go-1+G_10+G10+GCoy1). 4)

As for the{RGR: structure, the missing red and blue component levels areast
ted as follows :

>
I

(R10+Ru0), (5)

o>
I

(Bo,—1+Bo,1)- (6)

NI NI

Alleysson et al(2008 notice that such interpolation is achievable by convoluti
For that purpose, consider the three planes formed of tleeleatls of componerk,
k € {R,G,B}, available in the CFA image, other component levels beihtpseero. Let
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(@)1°F (d) ¢8 (1CFA)

FiG. 12: Definition of planeg® (1°FA) by sampling the CFA image according to each

color componenk, k € {R,G,B}. The CFA image and plangs‘ (I°7*) are here colo-
rized for illustration sake.

us denotapX(l) the function sampling a gray-level imageaccording to the locations
of the available color componekin the CFA :

I(x,y) if componenk is available at pixeP(x.y) in ICFA,
¢k<l><x,y>{( V) feomp Pep(xy) @

0 otherwise.

Figure12illustrates the special cases of plagésl ©) obtained by applying func-
tions ¢k to ICFA,
Let us also consider the convolution filters defined by thimfdhg kernels :

010
14 1]. (9
10

In order to determine the color imag]eeach color component plari€ can now be
estimated by applying the convolution filter of kerméf on the planepk (1FA), res-
pectively :

o1t 21 .
HR=HB=>|2 4 2| (8 and HC =
121

Bl

4

% = HK« ¥ (1) ke {RG,B} . (10)

Bilinear interpolation is easy to be implemented and notessing time consu-
ming, but generates severe visible artifacts, as also showigure 11. The above
scheme provides satisfying results in image areas with lgemeous colors, but many
false colors in areas with spatial high frequencies — agt@fénce bars in this extract.
Following Chang and Ta2006), a deep study of the causes of theses artifacts can be
achieved by simulating their generation on a synthetic en@ge figurel39g. In this
original image, two homogeneous areas are separated byieal/#ransition, which
recreates the boundary between two real objects with diftegray levels. At each
pixel, the levels of all three color components are then kdyeaels of pixels depicting
the darker left object (labeled &% are lower than those of pixels depicting the lighter
right object (labeled as). Figure13bshows the CFA imagE-™ yielded by sampling
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(a) Original image (b) CFA image (c) Estimated image

(d) Rplane (e) G plane (f) B plane

FiG. 13: Demosaicing by bilinear interpolation of an gray-leweage with a vertical
transition. The CFA image and, G andB planes are here colorized for illustration
sake.

a single color component per pixel according to the Bayer CH#e result of bilinear
interpolation demosaicing applied to this image is giverfigare 13c Figures13d

to 13f give details on the three estimated color plaRe§ andB. On R andB planes,
this demosaicing algorithm generates a column of interatedevel pixels, whose va-
lue is the average of the two object levels. On the green plapeoduces a jagged
pattern on both edge sides, formed of pixels alternatingydet two intermediate le-
vels — a low ong3b+ h)/4 and a high on¢3h+ b)/4. As a whole, the edge area is
formed of a square 2 2 pattern of four different colors repeated alongside tha-tr
sition (see the estimated image in figdr&d). This demosaicing procedure has hence
generated two types of artifacts : erroneously estimatem¢hereafter referred to as
“false colors”), and an artificial jagged pattern (so-adlteipper effect”), which are
both studied in sectiod.2 According to the horizontal transition location relatie
the CFA mosaic, the generated pattern may be either orasigeed as in figurd. 3cor
with bluish colors as in figur&4c These two dominant-color patterns may be actually
observed in the estimated image of figlte

2.2.2. Main Demosaicing Rules

Let us examine the component-wise profiles of the middlel powe in the original
imagel3aand its corresponding estimated imaggx Dissimilarities between these
profiles onR, G and B planes are underlined on figulé : the transition occurs at
identical horizontal locations on the three original imau@nes, but this is no more
the case for the estimated image. Such inconsistency arhendetmosaicing results
for different components generates false colors in theneééid image formed from
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(a) Refrence image (b) CFA image (c) Estimated image

FIG. 14: Variant version of imag&3a demosaiced by bilinear interpolation as well.

their combination. It can also be noticed that the transidorresponds, in each color
plane of the original image, to a local change of homogeraityg the horizontal
direction. Bilinear interpolation averages the levels ixefs located on both sides of
the transition, which makes the latter less sharp.

In accordance with the previous observations, we can statéwo main rules have
to be enforced so as to improve demosaicing results : sgatiedlation and spectral
correlation.

— Spectral correlation.

The transition profiles plotted in figurks are identical for the original image
component planes, which conveys strict correlation betm@emponents. For
a natural imageGunturk et al.(2002 show that the three color components
are also strongly correlated. The authors apply a bidinoasifilter built on

a low-pass filtehy = [1 2 1]/4 and a high-pass orlg = [1 — 2 1]/4, so as to
split each color component plane into four subbands reguftom row and co-
lumn filtering : (LL) both rows and columns are low-pass féier (LH) rows
are low-pass and columns high-pass filtered ; (HL) rows agb-pass and co-
lumns low-pass filtered ; (HH) both rows and columns are lgghs filtered. For
each color component, four subband planes are obtaineisiwdly, respectively
representing data in rather homogeneous areas (low-fineguieformation), ho-
rizontal detail (high-frequency information in the hontal direction), vertical
detail (high-frequency information in the vertical diriget) and diagonal detail
(high-frequency information in both main directions). Tahehors then compute
a correlation coefficient?© between red and green components over each sub-
band according to the following formula :

X-1Y-1

2 2 (Rey = 1) (Gxy — 1°)
rRC = i , (11)

X—1Y-1 B2 X—1Y-1 o2
> Y (Ryy—HM% ) 3 3 (Gxy—H®)
x=0 y=0 x=0y=0

in which R,y (respectivelyGy ) is the level atx,y) pixel in the red (respectively
green) component plane within the same subbafihndu® being the average
of Ryy andGyy levels over the same subband planes. The correlation deeffic
between the blue and green components is similarly compiitsd results on
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(a) Original image (b) Estimated image

FiG. 15: Component-wise profiles of middle pixel row levels A#Athe original and
estimated images. Black dots stand for available leveld, vetmite dots for estimated
levels.
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twenty natural images show that those coefficients are awagater than.Q

in subbands carrying spatial high frequencies at least endirection (i.e. LH,
HL and HH). As for the subband carrying low frequencies (Lddefficients are
lower but always greater than& This reveals a very strong correlation bet-
ween levels of different color components in a natural imageecially in areas
with high spatial frequencied.ian et al. (2006 confirm, using a wavelet coef-
ficient analysis, that high-frequency information is notyostrongly correlated
between the three component planes, but almost identigeh spectral corre-
lation between components should be taken into account to rettievenissing
components at a given pixel.

— Spatial correlation.

A color image can be viewed as a set of adjacent homogenegizmsevhose
pixels have similar levels for each color component. In oitdeestimate the
missing levels at each considered pixel, one thereforeldheyploit the levels
of neighboring pixels. However, this task is difficult at ix near the border
between two distinct regions due to high local variation alioc components.
As far as demosaicing is concerned, thfmtial correlationproperty avoids to
interpolate missing components at a given pixel thanks ightser levels which
do not belong to the same homogeneous region.

These two principles are generally taken into account sedlly by the demo-
saicing procedure. In the first step, demosaicing oftenistmi estimating the green
component using spatial correlation. According to Bayassumption, the green com-
ponent has denser available data within the CFA image, grdsents the luminance
of the image to be estimated. Estimation of red and blue comps (assimilated to
chrominance) is only achieved in a second step, thanks teréagously interpola-
ted luminance and using the spectral correlation prop&tgh a way of using both
correlations is used by a large number of methods in thetitee. Also notice that, al-
though red and blue component interpolation is achievext tfe green plane has been
fully populated, spectral correlation is also often usethmfirst demosaicing step to
improve the green plane estimation quality.

2.2.3. Spectral Correlation Rules

In order to take into account the strong spectral corraiatietween color com-
ponents at each pixel, two main hypotheses are proposec ifitéhature. The first
one assumes a coleoatio constancy and the second one is based on abffarence
constancy. Let us examine the underlying principles of eddhese assumptions be-
fore comparing both.

Interpolation based on color hue constancy, suggest€bky1987), is historically
the first one based on spectral correlation. According to, Bokis understood as the
ratio between chrominance and luminance,REG or B/G. His method proceeds in
two steps. In the first step, missing green values are estthist bilinear interpolation.
Red (and blue) levels are then estimated by weighting thengeyel at the given pixel
with the hue average of neighboring pixels. For instanderjolation of the blue level
at the center pixel of GRG} CFA structure (see figur&0g uses the four diagonal
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neighbors where this blue component is available :

g_g t|Bas Bia Bas B (12)
4G 11 G 1 Gai1 G

This bilinear interpolation between color component i® based on the local
constancy of this ratio within an homogeneous regiimmel (1999 justifies the co-
lor ratio constancy assumption thanks to a simplified apgrdhat models any color
image as aambertianobject surface observation. According to the Lambertiadeho
such a surface reflects the incident light to all directiofith wqual energy. The inten-
sity |1 (P) received by the photosensor element associated to eadhPpiseherefore
independent of the camera position, and can be represented a

+

1(P)=p (N(P)T), (13)

wherep is the albedo (or reflection coefficienlf\)(P) is the normal vector to the surface
element which is projected on pixe) andl is the incident light vector. As the albego
characterizes the object material, this quantity is d#ferfor each color component
(pR +# p® # pB), and the three color components may be written as :

IR(P) = PR (N(P)T), (14)
19(P) = p® (N(P)T), (15)
1B(P) = pB<N(P),F>. (16)

Assuming that any object is composed of one single matedaificientspR, p®
andp® are then constant at all pixels representing an objectH@aatio between two
color components is also constant :

" Pk (N(P).I k
KKK _ *(P) _ < > _r = constant (17)

S K(pP) P (N(P)T) P

where(k,K') € {R,G,B}2. Although this assumption is simplistic, it is locally véknd
can be used within the neighborhood of the considered pixel.

Another simplified and widely used model of correlation bextw components re-
lies on the colodifferenceconstancy assumption. At a given pixel, this can be written
as:

DKK = 1k(P) — 1K (P) = pk<N(P),T> —p¥ <N(P),F> —constant  (18)
where(k,k') € {R,G,B}2. As the incident light direction and amplitude are assunoed t

be locally constant, the color component difference is atswstant within the consi-
dered pixel neighborhood.
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As a consequence, the chrominance interpolation step irs@o&thod may be
rewritten by using componenifferenceaverages, for instance :
B=G+ L [(Boy—1— G11)+(B11-G1 1)+(B11-G 11)+(Br1— GA1,1)} \

19)

instead of equationl@). The validity of this approach is also justified hyan et al.
(2007 on the ground of spatial high frequency similarity betweelor components.

The color difference constancy assumption is globally istest with the ratio rule
used in formula 12). By considering the logarithmic non-linear transforroati the
differenceD§7k/,(k7k’) € {RG,B}?, can be expressed as :

4

D;’k/ = |0910 <||kk/((PP))> = IOglO (Ik(P)) - |Oglo (l kl(P)) ' (20)

Furthermore, we propose to compare those two assumptigessed by equa-
tions (17) and (18). In order to take into account spectral correlation for dsaicing,
it turns out that the difference of color components pressnme benefits in compa-
rison to their ratio. The latter is indeed error-prone whisndienominator takes low
values. This happens for instance when saturated red dpld@icomponents lead to
comparatively low values of green, making the ratios in ¢éigng12) very sensitive to
red and/or blue blue small variations. Figurgais a natural image example which is
highly saturated in red. Figurd$6c and16d show the images where each pixel value
is, respectively, the component raR3G and differencdk — G (pixel levels being nor-
malized by linear dynamic range stretching). It can be metithat these two images
actually carry out less high-frequency information thaa tireen component plane
shown on figurel6h.

A Sobel filter is then applied to these two images, so as toligighthe high-
frequency information location. The Sobel filter output mleds shown on figures6e
and 16f. In the right-hand parrot plumage area where red is satlirttie component
ratio plane contains more high-frequency information thtiesmcomponent difference
plane, which makes it more artifact-prone when demosaigddtbrpolation. Moreo-
ver, high color ratio values may yield to estimated compoharels beyond the data
bounds, which is undesirable for the demosaicing resulitgua

To overcome these drawbacks, a linear translation modédikeaipgn all three color
components is suggested hykac and Platanioti$2004a 2004h. Instead of equa-
tion (17), the authors reformulate the color ratio rule by addingedpfined constant
value 3 to each component. The new constancy assumption, whichistent with
equation 17) in homogeneous areas, now relies on the ratio :

KK _ I*+B
2 _Ik/+By

where(k,K') € {R,G,B}?, and wherg3 € N is a ratio normalization parameter. Under
this new assumption on the normalized ratio, the blue leatelpolation formulated in

(21)
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(a) Original image (b) G plane

(c) R/G ratio plane (d) R— G difference plane

(e) Sobel filter output on thR/G plane (f) Sobel filter output on th&®— G plane

FIG. 16: Component ratio and difference planes on a same im&gerfts” from the
Kodak database).
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equation {2) under the ratio rule now becontes

1 [By1+B Bra+tB Bai+B Buitp
4 |G.11+B Gio1+B Go11+B Gui+B

B=-B+(G+B)- (22)

In order to avoid too different values for the numerator ardaininator, Lukac
and Plataniotis advise to $8t= 256, so that the normalized ratiB¢G andB/G range
from 0.5 to 2. They claim that this assumption improves the intexfiah quality in
areas of transitions between objects and of thin details.

In our investigation of the two main assumptions used for asaiting, we finally
compare the estimated image quality in both cases. Thegwmoeeepicted on figurél
is applied on twelve natural images selected from Kodakldesta : the demosaicing
schemes presented above, respectively using componenainat difference, are ap-
plied to the simulated CFA image. To evaluate the estimatéor dmage quality in
comparison with the original image, we then compute an dlcriterion, namely
the peak signal-to-noise rati®ENR derived from the mean square errE) bet-
ween the two images. On the red plane for instance, theseitiemare defined as :

1 X-1Y-1

_ R _R\2
MSER_WX;y;(w—lX,y) : (23)
PSNF = 10-log;o (52?;) : (24)

As the green component is bilinearly interpolated withosihg spectral correla-
tion, only red and blue estimated levels vary according ¢odbnsidered assumption.
The PSNRIis hence computed on these two planes. Results displayedhlilt show
that using the color difference assumption yields bettsults than using the simple
ratio rule K, which is particularly noticeable for image “Parrots” ofdig 16a The
normalized ratid<y, which is less prone to large variations théin areas with spatial
high frequencies, leads to higher values RBNFR and PSNF. However, the color
difference assumption generally outperforms ratio-basts according to thBSNR
criterion, and is most often used to exploit spectral catreh in demosaicing schemes.

1The authors use, in this interpolation formula, extra wéightactors depending on the local pattern and
dropped here for conciseness.
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PSNR PSNFE

Image D K Ky D K Ky
T (Parrots’) || 38922 | 36850 | 38673 || 38931 | 38678 | 38.936
2 (‘Sailboats”) || 31321 | 31152 | 31311 || 31154 | 30.959 | 31129
3 ("Windows”) || 37.453 | 36598 | 37.348 || 37.093 | 36.333 | 36676
Z4 ("Houses") || 27.118 | 26985 | 27.146 || 27.007 | 26.889 | 27.008
5 (‘Race’) 36.085 | 35838 | 36073 || 35999 | 35819 | 35836
6 (‘Pier’) 32597 | 31911 | 32563 || 32570 | 32178 | 32217
7 Cisland’) 34.481 | 34376 | 34470 || 34402 | 34208 | 34399
8 (‘Lighthouse”) || 31.740 | 31415 | 31696 || 31.560 | 31.093 | 31289
9 (‘Plane’) 35382 | 35058 | 35347 || 34.750 | 34324 | 34411
10 (‘Cape’) 32137 | 31863 | 32118 || 31.842 | 31532 | 31693
11 ("Bar) 34.182 | 33669 | 34143 || 33474 | 33193 | 33363
12 (‘Chalet’) || 30.581 | 30413 | 30565 || 29517 | 29.263 | 29.364
Average 33500 | 33011 | 33454 || 33.192 | 32872 | 33027

TAB. 1: Peak signal-to-noise ratios (in decibels) for re®KR) and blue PSNF)
planes of twelve Kodak image&déstman Kodak and various photographdr@91),
demosaiced under the color differenDe(see equationl@®) and interpolation for-
mula (19)), under the color rati& (see equationl(7) and interpolation formulal))
and under the normalized rati® (8 = 256) (see equatior2() and interpolation for-
mula @2)) constancy rules. For each color component and image afoe printed in
bold typeface highlights the best result.
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3. Demosaicing Schemes

In this section, the main demosaicing schemes proposeé iitéhature are descri-
bed. We distinguish two main procedures families, accgrttimwhether they scan the
image plane or chiefly use the frequency domain.

3.1. Edge-adaptive Demosaicing Methods

Estimating the green plane befdReandB ones is mainly motivated by the double
amount ofG samples in the CFA image. A fully populat&tomponent plane will sub-
sequently make thR andB plane estimation more accurate. As a consequencé; the
component estimation quality becomes critical in the dideanosaicing performance,
since any error in th& plane estimation is propagated in the following chromimanc
estimation step. Important efforts are therefore devatecthprove the estimation qua-
lity of the green component plane — usually assimilated toihance —, especially in
high-frequency areas. Practically, when the considereel fies on an edge between
two homogeneous areas, missing components should be estialang the edge rather
than across it. In other words, neighboring pixels to bertak# account for interpola-
tion should not belong to distinct objects. When exploiting $patial correlation, a key
issue is to determine the edge direction from CFA samplesiehsosaicing methods
presented in the following text generally use specific dioexs and neighborhoods in
the image plane, some useful notations are introduced irefigu

3.1.1. Gradient-based Methods

Gradient computation is a general solution to edge direciiglection. Hibbard’s
method (995 uses horizontal and vertical gradients, computed at eae where
the G component has to be estimated, in order to select the direethich provides
the best green level estimation. Let us conside{tBRG} CFA structure for instance
(see figurel0g. Estimating the green levéd at the center pixel is achieved in two
successive steps :

1. Approximate the gradient module (hereafter simply meféito asgradientfor
simplicity) according to horizontal and vertical direct®) as :

N =|G_10— Gy, (25)
N = |G0",1 — G071| . (26)

2. Interpolate the green level as :

(G_10+G1,0)/2 if A% < A, (27a)
G={ (Go-1+Goy1)/2 if &% > 4, (27b)
(Go,-1+G_10+G10+Go1)/4 A =4V, (27c)

Laroche and Prescotl993 suggest to consider a>x65 neighborhood for partial
derivative approximations thanks to available surrougdavels, for instancé* =
|2R—R_20 — Rz 0|. MoreoverHamilton and Adam$1997) combine both approaches.
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FiG. 17: Notations for the main spatial directions and congidgiixel neighborhoods.

FIG. 18: 5x 5 neighborhood with centrdlGRG} structure in the CFA image.
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To select the interpolation direction, these authors tak@account both gradient and
Laplacian second-order values by using the green levellabi@at nearby pixels and
red (or blue) samples located 2 pixels apart. For instamcestimate the green le-
vel at {GRG CFA structure (see figurg8), Hamilton and Adams use the following
algorithm :

1. Approximate the horizontdl* and verticaldy gradients thanks to absolute dif-
ferences as:

N =1|G_10—G10|+[2R—R 20— Rool, (28)
O =|Gg_1—Go1|+[2R—Ro—2—Ro2|. (29)

2. Interpolate the green level as :

(G_10+G10)/24+ (2R—R 20— Rep) /4 if A< DY, (30a)

G (GO,—l + GO-,l) /2—|— (2R— Ro,—2— Roz) /4 if AX >N, (30b)
(Go-1+G-10+G10+GCoy1) /4

+ (4R— Ro,,z — R,270 — R270 — R072) /8 if AX =/, (30C)

This proposal outperforms Hibbards’ method. Indeed, pregiis gained not only
by combining two color component data in partial deriva@ypgproximations, but also
by exploiting spectral correlation in the green plane eatiam. It may be noticed that
formula 09 for the horizontal interpolation of green component magblé into one
left G9 and one righéd side parts :

GY = G_10+(R-R20)/2, (31)
G! = Gio+(R—Re0)/2, (32)
& - (GG+G“)/2. (33)

Such interpolation is derived from the color difference stancy assumption, and
hence exploits spectral correlation for green componeithason. Also notice that,
in these equations, horizontal gradients are assumed imblardor both red and blue
components. A complete formulation has been giveihimnd Randhaw#2009. As
these authors show besides, the green component may maealyeie estimated
by a Taylor series as long as green levels are considered astiaupus functiorg
which is differentiable in both main directions. The abovpiaions 81) and @2)
may then be seen as first-order approximations of this serideed, inG? case for
instance, the horizontal approximation is written %) = g(x— 1) + g’ (x— 1) =~
0(x—1)+(g(x) —g(x—2)) /2. Using the local constancy property of color component
difference yieldsGy, — Gy_» = Ry — Rc_», from which expression3(l) is derived. Li
and Randhawa suggest an approximation based on the seaterdderivative GY es-
timation becoming :

GY=G 10+ (R—R 20)/24+(R-R 20)/4— (G 10— G 30) /4,  (34)
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for which a neighborhood size of<?7 pixels is required. The additional term compa-
red to B1) enables to refine the green component estimation. Singksaning may
be used to select the interpolation direction. Accordintheauthors, increasing the
approximation order in such a way improves estimation tesuider the mean square
error MSE) criterion.

Another proposal comes froBu (2006, namely to interpolate the green level as a
weighted sum of values defined by equatidd@g and BOb). Naming the latter respec-
tively G* = (G_10+G1,0) /2+ (2R—R_20—Ryp) /4 andG = (Gg_1+Go1) /2+
(2R—Ro 2 —Ro2) /4, horizontal and vertical interpolations are combined as :

é_{ Wi -G rwy-GY i A< A, (35a)

WG fwa-GXif A > AY, (35b)

wherew; andw, are the weighting factors. Expressid@0¢) remains unchanged (i.e.
G = (G*+ @) /2if &% = V). The smallest level variation term must be weighted by
the highest factor (i.ev; > wp) ; expressions3i0g and @0b) incidentally correspond to
the special case1 = 1, w, = 0. Incorporating terms associated to high level variations
allows to undertake high-frequency information in the greemponent interpolation
expression itself. Su setg to 0.87 andw, to 0.13, since these weighting factor va-
lues yield the minimal averagd SE (for the three color planes) over a large series of
demosaiced images.

Other researchers, likdirakawa and Park&005 or Menon et al(2007), use the
filterbank approach in order to estimate missing green $ewrfore selecting the ho-
rizontal or vertical interpolation direction 6RG} and{GBG} CFA structures. This
enables to design five-element mono-dimensional filter<hviare optimal towards
criteria specifically designed to avoid interpolationfartts. The proposed optimal fil-
ters (e.ghopt = [—0.2569 04339 05138 04339 — 0.2569 for Hirakawa and Parks’
scheme) are close to the formulation of Hamilton and Adams

3.1.2. Component-consistent Demosaicing

Hamilton and Adam’s method selects the interpolation dioacmn the basis of ho-
rizontal and vertical gradient approximations. But thisyrha inappropriate, and unsa-
tisfying results may be obtained in areas with textures iorabjects. Figurd9 shows
an example where horizontal and vertically gradient approximations do not allow
to take the right decision for the interpolation directigvu and Zhand2004) propose
a more reliable way to select this direction, still by usingpeal neighborhood. Two
candidate levels are computed to interpolate the missiegrgvalue at a given pixel :
one using horizontal neighbors, the second using vertiighioring pixels. Then, the
missingR or B value is estimated in both horizontal and vertical dirediavith each
of theseG candidates. A final step consists in selecting the most @pjate interpola-
tion direction, namely that minimizing the gradient sum be tolor difference planes
(R— G andB — G) in the considered pixel neighborhood. This interpolatimection

2No detail will be here given about hoR andB components are estimated by the above methods, for
their originality mainly lies in theé5 component estimation.
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Fic. 19: Direction selection issue in Hamilton and Adams’ iptdation
scheme 1997, on an extract of the original image “Lighthouse” contagnithin de-
tails. Plots highlight théR and G component values used for horizontal and vertical
gradient computations : color dots represent availablel$em the CFA image, whe-
reas white dots are levels to be estimated Ms< A, horizontal neighboring pixels
are wrongly used it estimation. This is shown on the lower right subfigure, thget
with the erroneous demosaicing result (at center pixel)only
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allows to select the levels — computed beforehand — to bentaite account for the
missing component estimation.
More precisely, Wu and Zhang’s approach proceeds in theviiallg steps :

1. At each pixel where the green component is missing, compub candidate
levels : one denoted &5 by using the horizontal direction (according to equa-
tion (309), and anothefY by using the vertical direction (according t80()).
For other pixels, seb* = GY = G.

2. At each pixel where the green component is available, coenfpivo candidate
levels (one horizontal and one vertical) for each of the mgsed and blue com-
ponents. A{RGR} CFA structure these levels are expressed as (see fifare

R = G+ %(FLLO —G*1p+Rio—GXp), (36)
R = GtoR10-&o+Rio- Gy (37)
B* = G+ %(80,71—é)é’_l-ﬁ-Bo,l_é)é,l)’ (38)
B = G+E(BO,,l—6%771—5—8071—63671). (39)

3. At each pixel with missing green component, compute twalittate levels for
the missing chrominance component (Beat R samples, and conversely). At
{GRG} CFA structure, the blue levels are estimated as (see fitflge

g = Gt Y (BP)-GP), (40)
PeNy

B — &4l S (B(P)-G'(P)), (41)
PeNy

whereN, is composed of the four diagonal pixels (see figlire).

4. Achieve the final estimation at each pi¥xeby selecting one component triplet
out of the two candidates computed beforehand in both hatét@nd vertical
directions. So as to use the direction for which variatioh@n- G) and 8 — G)
component differences are minimal, the authors suggegoltiogving selection
criterion :

X AX BX i AX
(RGB) :{ (Ii?‘,g ,I?) ff DA< Y, (42a)
(RL,GVBY) if &A% >, (42b)
whereA* and VY are, respectively, the horizontal and vertical gradiemtshe
difference plane of estimated colors. More precisely, ghgmdients are com-
puted by considering all distin¢Q,Q’) pixel pairs, respectively row-wise and
column-wise, within the X 3 window centered at P (see figur&e :
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po= 3 IRQ-GQ)-(RQ)-GQ)
YQYQ)

g :(QQ’)ZN N [(R(Q-G(Q) - (R(Q)-F(Q))|

X(Q=x(Q)
+(BQ-6Q) - (FQ)-FQ))]. (44

This method uses the same expressions as Hamilton and Adaes'in order to
estimate missing color components, but improves the iotatipn direction decision
by using a 3« 3 window — rather than a single row or column — in which the gratof
color differencesR— G andB — G) is evaluated so as to minimize its local variation.

Among other attempts to refine the interpolation directiglestion Hirakawa and Parks
(2005 propose a selection criterion which uses the number ofipiwih homoge-
neous colors in a local neighborhood. The authors competditances between the
color point of the considered pixel and those of its neigbknrthe CIEL*a*b* co-
lor space (defined in sectioh3.2, which better fits with the human perception of
colors thanRGBspace. They design an homogeneity criterion with adaptireshol-
ding which reduces color artifacts due to incorrect setectf the interpolation di-
rection. Chung and Chai2006 nicely demonstrate that green plane interpolation is
critical to the estimated image quality, and suggest touatal the local variance of
color difference as an homogeneity criterion. The selediettion corresponds to mi-
nimal variance, which yields green component refinemereaafly in textured areas.
Omer and Wermai2004) use a similar way to select the interpolation direction, ex
cept that the local coloratio variance is used. These authors also propose a crite-
rion based on a local corner score. Under the assumptiordémabdsaicing generates
artificial corners in the estimated image, they apply theridasorner detection fil-
ter (Harris and Stephend 988, and select the interpolation direction which provides
the fewest detected corners.

3.1.3. Template Matching-based Methods

This family of methods aims at identifying a template-bafsature in each pixel
neighborhood, in order to interpolate according to thellpeacountered feature. Such
strategy has been first implemented by Cok in a patent datiy b 1986 Cok,
1986(Cok, 1994, in which the author classifiesx33 neighborhoods into edge, stripe
or corner features (see figug®). The algorithm original part lies in the green com-
ponent interpolation at each pixelwhere it misses (i.e. at center pixel fBRG} or
{GBG} CFA structures) :

1. Compute the average green level available at the foueseaeighbor pixels of
P (i.e. belonging td\4, as defined on figurgé7b). Examine whether each of these
four green levels is lowebj, higher ), or equal to their average. Sort these four
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values in descending order, I8f > G, > Gz > G4, and compute their median
M= (Gz—‘rG3)/2.

2. ClassifyP neighborhood as :
(a) edgeif 3 hand 1b are present, or lh and 3b (see figure209) ;
(b) stripeif 2 hand 2b are present and opposite by pairs (see fiQig ;
(c) cornerif 2 hand 2b are present and adjacent by pairs (see fiQ0@.

In the special case when two values are equal to the avetagentountered
feature is taken as :

(a) a stripe if the other two pixelsandh are opposite ;
(b) an edge otherwise.

3. Interpolate the missing green level according to theiptely identified feature :
(a) for an edgeG =M

(b) for a stripeG = CLIP§32 (M — (S—M)), whereSis the average green level
over the eight neighboring pixels labeled@#n figure 20d;

(c) for a cornerG = CLIP§32 (M —(S—M)), whereS is the average green
level over the four neighboring pixels labeled@n figure 20 which are
located on both sides of the borderline betwbemdh pixels.

FunctionCLIPge‘2 simply limits the interpolated value to ranff@;,G;] :

o ifG3<a<Gy,
Va R, CLIPS2(a) = G; if a > Gy, (45)
Gz ifa<Gas.

This method, which classifies neighborhood features inteetlgroups, encom-
passes three possible cases in an image. But the criteahtaslistinguish the three
features is still too simple, and comparing green level$ Witir average may not be
sufficient to determine the existing feature adequatelyrddeer, in case of atripe
feature, interpolation does not take into account thipstdirection.

Chang and Tarf2006 also implement a demosaicing method based on template-
matching, but apply it on the color difference plan&—-G andB — G) in order to
interpolateR and B color componentsG being estimated beforehand thanks to Ha-
milton and Adams’ scheme described above. The underlyirgesty consists in si-
multaneously exploiting the spatial and spectral cori@hat and relies on a local edge
information which causes fewer color artifacts than Coklsesne. Although color dif-
ference planes carry less high-frequency information twdor component planes (see
figure 16), they can provide relevant edge information in areas wigjh Ispatial fre-
guencies.

3.1.4. Adpative Weighted-Edge Method

Methods described above, as template-based or gradisatilomes, achieve inter-
polation according to the local context. They hence reqpirer neighborhood clas-
sification. The adaptive weighted-edge linear interpoftatfirst proposed b¥iKimmel
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(a) Edge (b) Stripe (c) Corner
Q Q Q
Q b Q Q
P | P
Q b Q Q
Q Q Q
(d) Stripe neighborhood (e) Corner neighborhood

FIG. 20: Feature templates proposed by Cok to interpolate thengcomponent at
pixel P. These templates, which are defined modu}@, provide four possibl&dge
andCornerfeatures, and two possib&ripefeatures.

(1999, is a method which merges these two steps into a single trengists in weigh-
ting each locally available level by a normalized factor daraction of a directional
gradient. For instance, interpolating the green level atargixel of{ GRG} or { GBG}
CFA structures is achieved as :

Wo,—1-Go—1+W_10-G_10+W10-Gro+Wo1-Goz
Wp,—1+W_10+W10+Wp,1

wherews, s, coefficients are the weighting factors. In order to explpatsal correla-
tion, these weights are adjusted according to the localtpentered pattern.

Kimmel suggests to use local gradients to achieve weightpedation. In a first
step, directional gradients are approximated at a CFA irpage P by using the levels
of its neighbors. Gradients are respectively defined inZoottal, vertical X -diagonal
(top-right to bottom-left) and/-diagonal (top-right to bottom-right) directions (see
figure 179 over a 3x 3 neighborhood by the following generic expressions :

G= (46)

A(P) = (PLo—P-10)/2, (47)
NP = (R-1-Pa1)/2 (48)

b

, { max(‘(Gl,fl—G)/\@ (G’l’l_G)/\sz atGlocations,  (49a)

M (P) =
(PL_1—P.11)/2V2 elsewhere, (49b)
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AY(p):{ max()(Gflfl—G)/\/é(7‘(61.1—6)/\/5‘) atGlocations,  (50a)

(Py_1—Pi1)/2V2 elsewhere, (50b)

wherePs, 5, stands for the neighboring pixel Bf with relative coordinategdx,dy), in
the CFA image. HereR, G or B is not specified, since these generic expressions apply
to all CFA image pixels, whatever the considered availablamonent. However, we
notice that all differences involved in equatiod&Y and @8) imply levels of a same
color component.

The weightwg, sy in directiond, d € {x,y,x,y'}, is then computed from directional
gradients as :

1
Wsx sy =
/1 29(P)2 + 9 (P, 5,2

: (51)

where directiond used to compute the gradieaf is defined by the center pixé
and its neighboPs, 5,. At the right-hand pixel dx,0y) = (1,0) as an example, the
horizontal directiorx is used ford ; A9(P) andA%(Py ) are therefore both computed
by expression47) definingA*, and the weight is expressed as :

1
1+ (P10 Pro)2/4+ (Poo— P)2/4

Definition of weightws, 5y is built so that a local transition in a given direction
yields a high gradient value in the same direction. Conseltyyeveightws, s, is close
to O for the neighboP;, 5, and does not contribute much to the final estimated green
level according to equatio€). On the opposite, weights, 5, is equal to 1 when the
directional gradients are equal to O.

Adjustments in weightv computation are proposed thy and Tan(2003, who
use a Sobel filter to approximate the directional gradierd,the absolute — instead of
square — value of gradients in order to boost computatioadspguch a strategy is also
implemented by ukac and Platanioti€2005h.

Once then green plane has been fully populated thanks tdiequyd6), red and
blue levels are estimated by using component ra&kjS andB,/G among neighboring
pixels. Interpolating the blue component is for instand@eed according to two steps
(the red one being processed in a similar way) :

W10 (52)

1. Interpolation at red locations (i.e. ffGRG} CFA structure) :

B(P)

W By B_1_1 By _1 B_11 Bi1
SR wa g w2
B=G- =G — — — :

> w(P) Wo1_1+Wi_1+W_11+Wi1

PeNy

(53)
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2. Interpolation at other CFA locations with missing blued(i.e. at{RGR and
{BGB]} structures) :

B(P) Bo._ B_ B B
> W(P)- &5 Boa B0 .Bio . Boy
B=G. "™ e = .Wo’il Go,—1 W10 G_10 TWLor g, TWor Goa
PZMW(P) Wo,—1+W_1,0+W1,0+Wo1
S
(54)

Once all missing levels have been estimated, Kimmel's #lyor(1999 achieves
green plane refinement by using the color ratio constan®y fthis iterative refine-
ment procedure is taken up bjuresan et al(2000 with a slight modification : ins-
tead of using alNg neighboring pixels in step 1 below, only neighboring pixeith
green available component are considered. The followegsstiescribe this refinement
scheme :

1. Correct the estimated green levels with the average ofstimations (one on
the blue plane, the other on the red one), so that the cornstalecis locally
enforced for color rati@s/R:

~ 1 ~
G=3 (GR+G®) , (55)
where : . -
. ~ ;\‘ W(P)~W . ~ P%ﬂ W(P)'TBTP)
GRAR. M and GB2pB. P
PE;MW(P) Pe;MMP)

§and§standing either for an estimated level or an available CHAeyaaccor-
ding to the considered CFA structufg3RG} or {GBG}).

2. Correct then red and blue estimated levels at green to=atby using weighted
R/G andB/G ratios at the eight neighboring pixels :

> w(p)- 22 w(p)- 20
5 _ . PNg 5. PENg
R=G 5 (56)  and B=G w6
PENg PENg

3. Repeat the two previous steps twice.

This iterative correction procedure gradually enforceserand more homoge-
neousG/R andG/B color ratios, whereas the green component is estimatediby us
spectral correlation. Its convergence is however not awgyaranteed, which may
cause trouble for irrelevant estimated values. When a lea@lroing in any color ratio
denominator is very close or equal to zero, the associatéghtvenay not cancel the
resulting bias. Figur@1cshows some color artifacts which are generated in this case.
In pure yellow areas, quasi-zero blue levels cause a saraft the estimated green
component aR andB locations, which then alternate with original green levels

Smith(2009 suggests to compute adaptive weighte/gssy = AP +14‘ N Pyay)
in order to reduce the division bias and contribution of fExen both edge sides.
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(a) Original image (b) Estimated image before cor- (c) Estimated image after cor-
rection rection

FiGc. 21: Demosaicing result achieved by Kimmel's meth@899, before and after
the iterative correction steps. Generated artifacts airggubout on imagéc).

Lukac et al (2006 choose to apply adaptive weighting on califfferenceplanes folR
andB component estimations, which avoids the above-mentionti#das during the
iterative correction stefl.sai and Son@2007) take up the latter idea, but enhance the
green plane interpolation procedure : weights are adaptttetlocal topology thanks
to a preliminary distinction between homogeneous and edegesa

3.1.5. Local Covariance-based Methods

In his PhD dissertatiori,i (2000 presents an interpolation scheme to increase the
resolution of a gray-level image. Classical interpolatinathods (bilinear and bicu-
bic), based on spatial invariant models, tend to blur ttaors and generate artifacts in
high-frequency areas. Li's approach exploits spatialedation by computing a local
level covariance, without relying on directional gradeas do the above-mentioned
methods in this section. Beyond resolution enhancemeatatihor applies this ap-
proach to demosaicind-{and Orchard 200J). In the CFA image, each &R, G or
B color component plane may be viewed as a sub-sampled vesbitg respective,
fully-populated estimated color plane. According to thessideration, a missing level
in a given color plane is interpolated by using local covace preliminarily estimated
from neighboring levels available in the same plane.

The underlying principle of this method may be better unied by considering
the resolution enhancement problem first. More precisgyyé22 illustrates how the
resolution of a gray-level image can be doubled thanks tongéxic duality, in a two-
step procedure. The first step consists in interpola®ng »j 1 level (represented by a
white dot in figure22g) from availablePy ) »(j11) levels (black dots). The following
linear combination oN} neighbors is used here :

1 1

Poit12j+1 = Ak 41 Pk 2(j41)» (58)
i+1,2j+ kZOI; H2(i+k),2(j+!)

in which ay, coefficients, 0< m < 3, of @ are computed as follows (see justification
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22 g 2 g NG
2j-2- ° :
2j-1 A a
3
1 hs
2 @ .
2j+1
‘ ‘ a
‘ | Y
2j+2-¢ 2j+2-@ i ® L 3
(a) Interpolating latticePy12j4+1 from lattice (b) Interpolating lattice? j (i 4 j odd) from lattice
Poi 2j P.j (i+ ] even)

FiG. 22: Geometric duality between the low-resolution covar& and the high-
resolution covariance. Black dots are the available legelow resolution, and the
white dot is the considered pixel to be interpolated. In gubé (b), diamonds re-
present pixels estimated in the previous step.

Aoz
A2 gy A gy 242 B o Y N A
2j2-Q—1 /V"* """"" - 2j—2 2j-2
2j-1 2j-1 2j-1
2j 2j O 2j
2j+1 2j+1 2j+1
i a2
T &t 2j+28 ‘ 2j42 |
oG eR oG B eReR oG B
(a) InterpolatingG atR or B lo- (b) InterpolatingR at B loca- (c) InterpolatingR at G loca-
cations tions tions

FiG. 23: Geometric duality between covariances used in deriagaiColor dots are
the available components in the CFA image, and the whitestita considered pixel
to be interpolated. In subfigurés) and(c), diamonds represent pixels estimated in the
previous step, and spatial coordinates are shifted oné nixpke:.
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and details irLi and Orchard2007) :

g=A‘a (59)

This expression incorporates the local covariance ma&téx[Amn], 0 < mn < 3 bet-
ween the four neighboring levels considered pair-wise @gin figure223, and the
covariance vectai £ [anm], 0 < m< 3 between the pixel level to be estimated and those
of its four available neighbors (see figu289°3. The main issue is to get these cova-
riances for the high-resolution image from levels whicharailable at low resolution.
This is achievable by using treeometric dualityprinciple : once covariance is com-
puted in a local neighborhood of the low-resolution imagje, équivalent covariance
at high resolution is estimated by geometric duality whiohgiders pixel pairs in the
same direction at both resolutions. Under this duality @ple, ag is for instance esti-
mated bya, Aoz being replaced byos (see figure22). The underlying assumption to
approximateam, by am andAmn by Amn, is that the local edge direction is invariant to

image resolution.
The second step consists in estimating remaining unalaikaels, as for the white

dot on figure22hb. Interpolation then relies on exactly the same principlelgve,
except that the available pixel lattice is now the previons mtated byt/4.

Applying this method to demosaicing is rather straightfaryv;

1. Fill out the green plane &andB locations by using :

G= P;4G(P)G(P), (60)

wherea coefficients are computed according to expressi@ &nd figure23a
2. Fill out the two other color planes, by exploiting the amption of color diffe-
rence R— G andB — G) constancy. For the red plane as example :

(a) AtB locations, interpolate the missing red level as :

R=G+ 5 a(P)(RP)-E(P)), (61)
PeNj

wherea coefficients are computed according to figa&h.
(b) At G locations, interpolate the missing red level as :

ﬁe:G+P;4a<P) (ﬁ(P)-é(P)), (62)

wherea coefficients are computed according to figd8e, R being a value
either available in®™ or estimated.

3Notations used here differ from those in the original puitiisn (i.e.R andF for covariances) in order
to avoid any confusion.
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Although this method yields satisfying results (see nekissation), some limits
may be pointed out. First, it requires the covariance mairie be invertible so that
a coefficients can be computed. Li shows that this conditioy mat be verified in
homogeneous areas of the image. Second, computing cosaniaatrices is a greedy
processing task. To overcome those drawbacks, the autbpoges a hybrid approach
by using covariance-based interpolation only in edge agasa simple method (like
bilinear interpolation) in homogeneous areas. This schavo@ls the covariance ma-
trix invertibility issue, while decreasing computatiomg — since edge areas generally
take up a small part of the whole image.

Leitéo et al(2003 observe that this method performs worse in textured ateas t
edge areas. They advise, for covariance estimation, ta amisidering pixels which
are too far from the pixel to be interpolatefsuni and Giachett{2008 refine the de-
tection scheme of areas in which the covariance estimasiappropriate for inter-
polation. These authors also improve the covariance matmditioning by adding
a constant to pixel levels where they reach very low valdasn et al.(2009 raise
the covariance mismatch problem, which occurs when the geanduality property
is not satisfied, and solve it by extending the covariancechiag into multiple di-
rections. Multiple low-resolution training windows arensidered, and the one that
yields the highest covariance energy is retained to apglyitiear interpolation accor-
ding to generic equatiorb8). Lukin and Kubasog2004) incorporate covariance-based
interpolation for the green plane estimation, in a demasgialgorithm combining
several other techniques — notably Kimmel's. In additidts suggested to split non-
homogeneous areas into textured and edge ones. The irBopdtep is then achieved
specifically to each kind of high-frequency contents.

3.1.6. Comparison Between Edge-adaptive Methods.

Finally, it is relevant to compare results achieved by thexreaposed propositions
which exploit spatial correlation. The key objective ofshenethods is to achieve the
best estimation of green plane as possible, on which raliesegjuent estimation of red
and blue ones. Hence, we propose to examine the peak signaide ratioPSNFE
(see expressior2f)) of the estimated green plane, according to the experimhend-
cedure described on figufiel. Table2 shows the corresponding results, together with
those achieved by bilinear interpolation for comparisticah be noticed that all me-
thods based on spatial correlation provide significant owpment in regard to bilinear
interpolation. Among the six tested methods, Col'886 and Li's (200]) estimate
missing green levels by using only available green CFA samjtke bilinear interpo-
lation ; all three generally provide the worst results. Theeg plane estimation may
therefore be improved by using information fréd@andB components. In Kimmel's al-
gorithm for instanceX999, green plane quality is noticeably enhanced, for 10 images
out of 12, thanks to corrective iterations based on spectnaklation (see results of
columnsKimme}p andKimmel}).

From these results may be asserted that any efficient decmgganethod should
take advantage of both spatial and spectral correlatiamsiitaneously and for each
color plane interpolation. Both methods proposedaynilton and Adam$1997) and
by Wu and Zhand2004) use the same expression to interpolate green levels, but di
ferent rules to select the interpolation direction. A congmn of respective results

40



Image Bilinear | Hamilton | Kimmelg | Kimmely Wu Cok Li
1 38.982 44.451 40.932 28244 | 44985 | 39.320 | 39.999
2 32129 37.179 33991 37.947 | 39.374 | 32984 | 34.305
3 37477 43161 39.870 38207 | 43419 | 38161 | 38780
4 28.279 34.360 31643 34.673 | 35.352 | 30.420 | 30.705
5 36.709 42.603 39.291 41477 | 43515 | 38103 | 38.849
6 33168 38148 34.913 38659 | 39.176 | 33762 | 34.354
7 35.682 40.650 37.605 40978 | 43.121 | 36.734 | 38356
8 32.804 39434 36.261 39514 | 40.193 | 35073 | 35747
9 35.477 40.544 37.470 39.603 | 41.013 | 36.219 | 36.656
10 32512 37.367 34.224 38.342 | 38125 | 33117 | 36.656
11 34.308 38.979 35934 38321 | 39.194 | 34.837 | 35107
12 30.251 34.451 31.248 35145 | 35.943 | 30.150 | 30.173
Average || 33981 39.277 36.115 37592 | 40.284 | 34.907 | 35807

TaB. 2: Peak Signal-to-Noise Ratio (in decibels) of the greeam@l PSNFP), es-
timated by various interpolation methods. For each imalge,test result is prin-
ted in bold typeface. Tested methods are here referred &flghiy their first au-
thor's name : 1. Bilinear interpolation — 2. Hamilton and Aus gradient-based
method (997 — 3 and 4. Kimmel's adaptive weighted-edge methd@99, before
(Kimmelp) and after (Kimmel) corrective iterations — 5. Wu and Zhang's component-
consistent schem&Q04 — 6. Cok’s method based on template matchibh§8g —

7. Li's covariance-based metho2i001).

show that careful selection of the interpolation direci®important for overall perfor-
mance. This is all the most noticeable that, compared ta aigerithms, computation
complexity is rather low for both Hamilton and Adams’ and Wid&hang’s methods.
Indeed, they do not require any corrective iteration stapcowariance matrix estima-
tion step, which are computation-expensive operations.

3.2. Estimated Color Correction

Once the two missing components have been estimated atigatagpost-processing
step of color correction is often applied to remove artgactthe demosaiced image. To
remove false colors in particular, a classical approackistsin strengthening spectral
correlation between the three estimated color compon8atsh a goal may be reached
first by median filtering, as described below. An iterativelage of initial interpolated
colors is also sometimes achieved, as Kimmel's correctee @999 presented in sub-
section3.1.4 A still more sophisticated algorithm proposed Gynturk et al.(2002
is described in detail in the second part of this section. Agnother correction tech-
niques of estimated colorkj (2005 builds a demosaicing scheme by using a iterative
approximation strategy with a spatially-adaptive stogpiriterion ; he also studies the
influence of the number of corrective iteration steps on stemated image quality.
Let us also mention here regularization schemes based @etfesian framework, as
Markov Random Fields (see e.glukherjee et al.2001), which are however poorly
adapted to real-time implementation.
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3.2.1. Median Filtering

One of the most widespread techniques in demosaiced imagjgmressing is
median filtering. Such a filter has been used for years to rermpulse noise in gray-
level images, but also efficiently removes color artifactthaut damaging local color
variations.Freeman(1988 was the first person to take advantage of the median filter
to remove demosaicing artifacts. Applied to the estimatadgs of color differences
R— G andB — G, this filter noticeably improves the estimation providedii§near
interpolation. As shown on figuré6d, these planes contain little high-frequency in-
formation. False estimated colors, which result from irgistency between the local
interpolation and those achieved in a neighborhood, magené&e more efficiently
corrected on these planes while preserving object edges.

Median filtering is implemented in several works of the deaiciag literature.
For instanceHirakawa and Park§2009 propose to iterate the following correction
— without giving more details about the number of iteratiteps nor the filter kernel
size —, defined at each pixel as :

R = G+MRC (63)
¢ = %(§+MGR+I§+MGB), (64)
B = G+MEBC (65)

whereR, G’ andB’ denote the filtered estimated components, if{ is the output
value of the median filter applied on estimated planes ofrcdifferencesi® — i
(k,K) € {RG,B}2. Lu and Tan(2003 use a slight variant of the latter, but advise to
apply it selectively, since median filtering tends to ategeucolor saturation in the
estimated image. An appropriate strategy is proposed &pta-detection of artifact-
prone areas, where median filtering is then solely appliemvé¥er,Chang and Tan
(2009 notice that median filtering applied to coldifferenceplanes, which still bear
some textures around edges, tends to induce “zipper” etrtifahese areas. In order to
avoid filtering across edges in the color difference plaedgge areas are preliminarily
detected thanks to a Laplacian filter.

Some artifacts may however remain in the median filtered enadpich is mainly
due to separate filtering of color difference planBs-(G andB — G). An alternative
may be to apply a vector median filter on the estimated colagenwhile exploiting
spectral correlation. The local output of such a filter is ¢éor vector which mini-
mizes the sum of distances to all other color vectors in tmsicered neighborhood.
But according td_u and Tan(2003, the vector filter brings out little superiority — if
any — in artifact removal, compared with the median filterleggpto each color diffe-
rence plane. The authors’ justification is that the estiomaérrors may be considered
as additive noise which corrupts each color plane. Thesenactor components are
loosely correlated. In such conditiom&stola et al.(1990 show that vector median
filtering does not achieve better results than marginatrifiigeon the color difference
planes.
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3.2.2. Alternating Projection Method

As previously mentioned in sectidh2.3 pixel levels bear strong spectral corre-
lation in high spatial frequency areas of a natural colorgemarom this observation,
Gunturk et al(2002 aim at increasing the correlation of high-frequency infation
between estimatel, G andB component planes, while keeping the CFA image data.
These two objectives are enforced by using two convex cainstsets, on which the
algorithm alternately projects estimated data. The firsissgamed “Observation” and
ensures that interpolated data are consistent with th@skable in the CFA image. The
second set, named “Detail”, is based on a decompositionabfiReG andB plane into
four frequency subbands thanks tfileerbankapproach. A filterbank is a set of pass-
band filters which decomposar(alyz¢ the input signal into several subbands, each
one carrying the original signal information in a partieui@quency subband. On the
opposite, a signal may be reconstructeghthesizexin a filterbank by recombination
of its subbands.

The algorithm uses an initially estimated image as stagimigt ; it may hence be
considered as a — sophisticated — refinement scheme. Toegititil estimationl o,
any demosaicing method is suitable. The authors suggesetblamilton and Adams’
scheme to estimate the green plaiﬁeand a bilinear interpolation to get the r%’dand
bluel}‘)3 planes. Two main steps are achieved then, as illustratedjorefi4a:

1. Update the green plane by exploiting high-frequencyrmgttion of red and blue
planes. This enhances the initial green component estimati

(a) Use available red levels of the CFA image @) to form a downsampled
planel§ of sizeX /2 x Y /2, as illustrated on figurd4h.

(b) Sample, at the saniRlocations, green levels from the initial estimati%h
to form a downsampled plan?R), also of sizeX/2x Y/2.

(c) Decompose the downsampled plagiénto four subbands :

Bl(xy) = ho(x) [hoy) «1§xy)]. (66)
BH(xy) = ho(x) [haly) «1E(xy)], (67)
5 xy) = () [ho(y) < I5ey)] (©9)
E ey = hu09« [ =15xy)], (69

and do the same with plan?R). In their proposition, Gunturkt al. use
a low-pass filteHp(z) and a high-pass filtef;(z) to analyze each plane
respectively in low and high frequencies, as described alowsubsec-
tion2.2.1

(d) Use the low-frequency subbandL{ of fé;(R) and the three subbands of
|g< with high frequencieslL(H, HL andHH) to synthesize a re-estimated
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green planeﬂf(R) and If(B) at R and B locations -0 Insertion of these planes ini§ (see details on fi-

gure24q). Alternating projection oR andB components £1 Subband analysis of intermediate estimafipn

planes -t Synthesis of re-estimated red and blue plan@sRrojection of these planes onto the “Observation”
constraint set (see details on figurd).
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(b) Extraction of downsam-  (c) Insertion of re-estimated (d) Projection of re-estimated red
pled planes from initial esti-  downsampled green planes and blue planes onto the “Obser-
mation. into I§. vation” set.

FIG. 24: Demosaicing procedure proposeddaynturk et al(2002 from an initial es-
timationl .
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downsampled green plar@@ :

”G(R)(

"G(R),LL
B RILL(

xy) = o0+ [go(y) <l (xy)] +Gox) + [@a(y) <15 (x)|
+0100 * [90(y) * 1FM0xy)] + 600+ [any) 15 () |
(70)
Filters G1(z) and Go(z) used for this synthesis have impulse responses
g1=[12-621/8andgy=[—1262-1]/8, respectively.
(e) Apply above instructions (a)-(d) similarly on the bluamel, which yields
a second re-estimated downsampled green pﬁﬁé

() Insert these two re-estimated downsampled estimabbiise green plane

at their respective locations in plaff (i.e. I}(f‘(R> atRlocations, and"g(B)
at B locations, as illustrated on figuiic). A new full-resolution green
pIaneIAlG is obtained, which forms an intermediate estimated colagieh;
together with plane&} andi§ from the initial estimation.

2. Update red and blue planes by alternating projections.

(a) Projection onto the “Detail” set : this step insures thigh-frequency in-
formation is consistent between the three color planeslewdreserving
as much details as possible in the green plane. To achiev@}tanalyze
the three color planel, I'® andi® of the intermediate imagh into four
subbands by using the same filterbank as previously (cordpafsdy(z)
andH;(2)) ; b) use the low-frequency subband of the red plane and the three
high-frequency subbands of the green plane to synthesezestimated red
pIanerlR, similarly to equation 70). At last, ¢) repeat the same operations
on the blue plane to estimaitg.

(b) Projection onto the “Observation” set : this step insutet estimated va-
lues are consistent with the ones available (“observedthénCFA. The
latter are simply inserted in re-estimated plaf’['éandlﬁ'l3 at corresponding
locations, as illustrated on figugzld

(c) Repeat above instructions (a) and (b) several timesaftitieors suggest to
use eight iterations).

In short, high-frequency subbands at red and blue CFA locatare used first to
refine the initial estimation of green color plane. The higgguency information of
red and blue planes is then determined by using green plaaésdgo as to remove
color artifacts. This method achieves excellent resultsl ia often considered as a
reference in demosaicing benchmarks. However, its cortipataost is rather high,
and its performance depends on the quality of initial ediimnal o. A non-iterative
implementation of this algorithm has been recently progdse et al, 2009, which
achieves the same results as alternating projection aeogence, but at about height
times faster speed.

Chen et al(2008 exploit both subband channel decomposition and media filt
ring : a median filter is applied on the difference plaff®s- — G- and[BLL — [G.LL
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of low-frequency subbands. Components are updated tharfksmulas proposed by
Hirakawa and Parks (see equatiofi8)(to (65)), but on each low-frequency subband.
High-frequency subbands are not filtered, in order to pvesgpectral correlation. The
final estimated image is synthesized from the four frequesutypands, as in the al-
ternating projection scheme of Guntwkal. Compared to the latter, median filtering
mainly improves the demosaicing result on chrominancegddvienon et al.(2006
notice that Gunturlet al.s method tends to generate zipper effect along object boun-
daries. To avoid such artifact, a corrective technique @ppsed, which uses the same
subband decomposition principle but pre-determines tted kedge direction (horizon-
tal or vertical) on the estimated green plane. The authaygest to use this particular
direction to correct green levels by replacing high-fregryecomponents with those
of the available componenR(or B) at the considered pixel. As the same direction is
used to correct estimatdtlandB levels atG locations on the color difference planes,
this technique insures interpolation direction consisydoetween color components,
which has been shown to be important in subsecidrn2

3.3. Demosaicing using the Frequency Domain

Some recent demosaicing schemes rely on a frequency a)dlysiollowing an
approach originated bglleysson et al(2005. The fundamental principle is to use a
frequency representation of the Bayer CFA infade the spatial frequency domain,
such a CFA image may be represented as a combination of adanersignal and two
chrominance signals, all three being well localized. Appiate frequency selection
therefore allows to estimate each of these signals, fronclwtiie demosaiced image
can be retrieved. Notice that frequency-based approachastdise Bayer's assump-
tion that assimilates green levels to luminance, and blder@th levels to chrominance
components.

3.3.1. Frequency Selection Demosaicing

A simplified derivation of Alleyssoet als approach has been proposediybois
(2005, whose formalism is retained here to present the genaraldwork of frequency-
domain representation of CFA images. Let us assume thaéaichh componerk of
a color imagek € {R,G,B}, there exists an underlying signélf. Demosaicing then
consists in computing an estimatidh (coinciding with %) at each pixel. Let us as-
sume similarly that there exists a sigrid™ which underlies the CFA image. This
signal is referred to aSFA signaland coincides with®F at each pixel. The CFA si-
gnal value at each pixel with coordinatesy) may be expressed as the sum of spatially
sampledfX signals :

fCFAXy) = % f*Oxy)mi(xy) , (71)
k=RG,B

4Let us make here clear that frequency (&eatialfrequency), expressed in cycles per pixel, corresponds
to the inverse number of adjacent pixels representing a déxah series according to a particular direction
in the image (classically , the horizontal or vertical direy.
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wheremk(x,y) is the sampling function for the color componénk € {R,G,B}. For
the Bayer CFA of figur®, this set of functions is defined as :

iy = 3 (1- (1) (1+(-2p), 712)
Py = 5 (1D, (73
mP(xy) = %(1+(71)X) (1-(-2). (74)
fL % 1 Z]i fR
With the definition[ fC1 ] 2 [ -1 ; -1 ] [ fC ],the expression ofcFA
fC2 -1 0 1 fB
becomes :
fOAxy) = TH0uy) + FERy) (-1 Y+ 12(xy) (-2 = (- 1))

F(xy) + FCLOxy) 22 4 £C2(xy) (€202  el2m/2) (75)

The CFA signal may therefore be interpreted as the sum of mame component
fL at baseband, a chrominance componiéftmodulated at spatial frequency (hori-
zontal and vertical}0.5,0.5), and of another chrominance componéht modulated
at spatial frequencie®.5,0) and (0,0.5). Such interpretation may be easily checked
on an achromatic image, in whid® = f¢ = B : the two chrominance components
are then equal to zero.

Provided that functionsg®, f¢! and f©? can be estimated at each pixel from the
CFA signal, estimated color levef&, & and fB are simply retrieved as :

fr 1 -1 -2 ft
fl=]1 1 o0 e . (76)
f8 1 -1 2 fcz

To achieve this, the authors take the Fourier transformefRA signal {5) :

FCFAUV) = FH(uv) + FY(u—0.5v—0.5) + F®2(u—0.5v) — F?(uv—0.5), (77)

expression in which terms are, respectively, the Fourdastiorms off - (xy), of f€(x,y)(—1)**Y,

and of the two signals defined 88%(x,y) £ f€2(xy)(—1)* andfS®(xy) 2 — fC2(xy)(—1)Y.
It turns out that the energy of a CFA image is concentratedhia rones of the fre-
guency domain (see example of figi®), centered on spatial frequencies according
to equation 77) : energy of luminancé"(u,v) is mainly concentrated at the center
of this domain (i.e. at low frequencies), whereas that obofinance is located on its
border (i.e. at high frequencies). More precisely, the gnef F¢1(u—0.5,v—0.5) is
located around diagonal zones (“corners” of the domair), ®hF“?(u— 0.5,v) along
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(a) “Lighthouse” CFA image (b) Normalized energy (frequencies in cycles/pixel)

FiG. 25: Localization of the energy (Fourier transform modufy CFA signal in the
frequency domainAlleysson et al.2005.

u axis of horizontal frequencies, and thatr§f?(u,v — 0.5) alongv axis of vertical fre-
guencies. These zones are quite distinct, so that isol&tangorresponding frequency
components is possible by means of appropriately desighed fiBut their bandwidth
should be carefully selected, since the spectra of the ttugetions mutually over-
lap. In these frequency zones where luminance and chroeneannot be properly
separated, thaliasingphenomenon might occur and color artifacts be generated.
In order to design filter bandwidths which achieve the bessjixde separation of lu-
minance ) and chrominancedl, C2), Dubois(2005 proposes an adaptive algorithm
that mainly handles the spectral overlap between chrormaaand high-frequency lu-
minance components. The author observes that spectrdapvegtween luminance
and chrominance chiefly occurs according to either the bota or the vertical axis.
Hence he suggests to estiméfe by giving more weight to the sub-componeniGt
(C2a or C2b) that is least prone to spectral overlap with luminance. ifffdemented
weight values are based on an estimation of the averagdidiratenergies, for which
Gaussian filters (with standard deviation= 3.5 pixels and modulated at spatial fre-
quencieg0,0.375) and(0.3750) cycles per pixel) are applied to the CFA image.

3.3.2. Demosaicing by Joint Frequency and Spatial Analyses

Frequency selection is also a key feature usedliby et al.(2007), who propose
a hybrid method based on an analysis of both frequency artthksgdamains. They
state that the filter used by Alleyssenal. for luminance estimation may not be opti-
mal. Moreover, since the parameters defining its bandwith {igure26g depend on
the image content, they are difficult to be adjusteiduf et al, 2005. Although low-
pass filtering the CFA image allows to extract the luminanm@monent, it removes
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FIG. 26: Filters (bandwidth and spectrum) used to estimaterante, as proposed by
Alleysson et al(2005 andLian et al.(2007).

the high-frequency information along horizontal and \gattidirections. As the human
eye is highly sensitive to the latter, such loss is prejadith the estimation quality.
Lian et al. then notice thaF“? components in horizontal and vertical directions have
same amplitudes but opposite sign€onsequently, the luminance spectréhat G
locations is obtained as the CFA image spectrum from w8ki‘corner”) component
has been removed (see detailian et al, 2007). A low-pass filter is proposed to this
purpose, which cancezl while preserving the high-frequency information along ho
rizontal and vertical axes. This filter is inspired from Afésonet al.'s, reproduced on
figure264g but its bandpass is designed to rem@tecomponent only (see figugsh).
The main advantage of this approach is that lumindnspectrum bears less overlap
with the spectrum o€1 than that ofC2 (see example of figur@sh), which makes the
filter design easier.
From these observations, Liahal.propose a demosaicing scheme with three main
steps (see figur?) :
1. Estimate the luminance (denotedi3dsat G locations, by applying a low-pass
filter on the CFA image to remov€l. Practically, the authors suggest to use the
following 5 x 5 kernel, which gives very good results at low computatiaost :

0 1 -2 1 0
L1 4 8 41
H=—1|_-2 6 56 6 -2]|. (78)
641 1 4 6 -4 1
0 1 -2 1 0

2. Estimate the luminance BtandB locations by a spatial analysis. As isolating
the spectrum of compone@® is rather difficult, the authors suggest an adaptive
algorithm based on color difference constancy (exploiipgctral correlation)
and adaptive weighted-edge linear interpolation (exjplgispatial correlation) :

5We keep here notations used by Alleyssoml. for C1 andC2, although switched by Liaet al.
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FIG. 27: Demosaicing scheme proposedLign et al.(2007) : 1. Luminance estima-
tion at G locations — 2.(a) Pre-estimation & and B components aG locations —
2.(b) Luminance estimation &andB samples — 2.(c) Repetition of steps (a) and (b) —
3. Final color image estimation from the fully-populatedninance plane. Notation
it used here for illustration sake coincides at each pixel tiehluminance signal of
expression5), namelyLyy £ It (xy) = fL(xy).

(a) Pre-estimat® andB components a6 locations, by simply averaging the
levels of the two neighboring pixels at which the considezechponent is
available.

(b) Estimate the luminance BtandB locations by applying, on the component
difference plane. — R or L — B, a weighted interpolation adapted to the
local level transition. For instance, luminaricat R locations is estimated

as follows : . .
> W(P) (L(P)—R(P))

. PEN,
L=R+ WiP) : (79)

For the samg GRG} CFA structure, weights/(P) = ws, 5, are expressed
by using the relative coordinat®sy 5, of the neighboring pixel as :

1
1+ ’RO,O - R26x,26y| + ||:5x,5y - I:—éx,—éy

Wsx oy = ) (80)

which achieves an adaptive weighted-edge interpolatisnn &immel’'s
method (see sectiah 1.4).

(c) Repeat the previous steps to refine the estimat&rre-estimateR com-
ponent (therB similarly) atG locations, by averaging— Rlevels at neigh-
boring R locations ;b) re-estimatd_ at R (thenB) locations according to
equation 79) (weightsw(P) remaining unchanged).

3. From the fully-populated luminance plafe estimate the two missing compo-
nents at each pixel of the CFA image by using bilinear intkan :

1y = Ty + (H< 4 (1572 1) ) (x), (82)
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wheregX(1)(xy), k € {R.G,B} is the plane defined by expressiah &nd shown
on figure12, and where convolution kernet$® which achieve bilinear interpo-
lation are defined by expressior@ and ©)°.

The above approach does not require to design specific fitteosder to esti-
mateC1 andC2 components, as do methods using the frequency domainDuabyofs
uses for instance complementary asymmetric filters). ktad. show that their method
globally outperforms other demosaicing schemes accotdingSE (or PSNR crite-
rion. The key advantage seems to lie in exploiting the fraqgquelomain ats locations
only. According to results presented hian et al. (2007, luminance estimations are
less error-prone than green level estimations provided &ghads which chiefly scan
the spatial image plane (shown in taB)e

3.4. Conclusion

An introduction to the demosaicing issue and to its majoutsmhs has been expo-
sed in the above section. After having described why sucbeegsing task is required
in mono-CCD color cameras, the various CFA solutions haenlgesented. Focu-
sing on the Bayer CFA, we have detailed the formalism in ussutfhout the paper.
The simple bilinear interpolation has allowed us to introelbboth artifact generation
that demosaicing method have to overcome, and two majos wigely used in the
proposed approaches : spatial and spectral correlations.

The vast majority of demosaicing methods strive to estirttategreen plane first,
which bear the most high-frequency information. The guatitthis estimation stron-
gly influences that of red and blue planes. When exploitingapzorrelation, we expe-
rimentally show that a correct selection of the interpolatiirection is crucial to reach
a high interpolation quality for green levels. Moreovermamnent-consistent direc-
tions should be enforced in order to avoid color artifactegation. Spectral correlation
is often taken into account by interpolating on the diffeerather than ratio, of com-
ponent planes. An iterative post-processing step of caaection is often achieved,
so0 as to improve the final result quality by reinforcing spalatorrelation.

Demosaicing methods may exploit spatial and/or frequemeyains. The spatial
domain has been historically used first, and many studidsssed on it. More recently,
authors exploit the frequency domain, which opens largsgestives. Such approaches
indeed allow to avoid using — at least partially or in a firgjpst the heuristic rule of
color difference constancy to take spectral correlatiaa account. In all cases where
such assumptions are not fulfilled, even locally, explgitine frequency domain is an
interesting solution. Dubois foresaw several years 2909 that frequency selection
approaches are preeminently promising. This will be carrated is the next sections,
dedicated to the objective quality evaluation of images asaited by the numerous
presented methods. Already mentioned critebESE and PSNR will be completed
by measures suited to human color perception, and new specis dedicated to the
local detection of demosaicing artifacts.

6Notice thatpX(l) may equally be expressed@(1)(x,y) = I (x,y)mK(x,y), where sampling functionsk
are defined by42) to (74).
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4. Objective Evaluation Criteria for Demosaiced | mages

4.1. Introduction

The performances reached by different demosaicing schapmied to the same
CFA image can be very different. Indeed, different kinds uifacts which alter the
image quality, can be generated by demosaicing schemessdkijiion of these arti-
facts is given in subsectioh2

Measuring the performance reached by a demosaicing sclezpaiegs to evaluate
the quality of its output image. Indeed, such a measurenapstio compare the per-
formances of the different schemes. For this purpose, wayaollow the same ex-
perimental procedure (see figurd). First, we simulate the color sampling by keeping
only one out of the three color components at each pixel obtlggnal imagd , accor-
ding to the Bayer CFA mosaic. Then, we apply the consideretbdaicing scheme to
obtain the estimated color imagi€hereafter calledlemosaiced imagdrom the CFA
samples. Finally, we measure the demosaicing quality bypemimg the original and
demosaiced images.

The main strategy of objective comparison is based on estonation between the
original and demosaiced images. In subsecti@) we present the most used criteria
for objective evaluation of the demosaiced image.

The objective criteria are generally based on a pixel-wisamgarison between the
original and the estimated colors. These fidelity criteria ot specifically sensitive
to one given artifact. Hence, in subsectib®, we present new measurements which
quantify the occurrences of demosaicing artifacts.

Since demosaicing methods intend to produce “perceptsalligfying” images,
the most widely used evaluation criteria are based on thktyide the original images.
Rather than displaying images, our goal is to apply autamatage analysis proce-
dures to the demosaiced images in order to extract feaflinese extracted features
are mostly derived from either colors or detected edges éndégmosaiced images.
Since the quality of features is sensitive to the presencartdficts, we propose to
quantify the demosaicing performance by measuring the @dterroneously detected
edge pixels. This evaluation scheme is presented in thelasection.

4.2. Demosaicing Artifacts

The main artifacts caused by demosaicing are blurringe feddors and zipper ef-
fect. In this part, we present those artifacts on exampléseaplain their causes by
considering the spatial and frequency domains.

4.2.1. Blurring Artifact

Blurring is located in areas where high frequency informatirepresenting pre-
cise details or edges, is altered or erased. Fig8rdlustrates different blurring levels
according to the used demosaicing scheme. A visual congpebistween the original
image28band image28cwhich has been demosaiced by bilinear interpolation, shows
that this scheme causes severe blurring. Indeed, somésdeftahe parrot plumage
are not retrieved by demosaicing and blurring is generajelbd-pass filtering. As
stated in sectioR.2.], this interpolation can be achieved by a convolution apipige
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(a) Original Image.

(b) © (d)

FiG. 28: Blurring in the demosaiced image. Imag® is an extract from the ori-
ginal image(a), located by a black box. Imagggs) and (d) are the correspon-
ding extracts of the images respectively demosaiced bydaili interpolation and
by Hamilton and Adamq 1997 schemes.

each sampled color component plane (see expresshn The corresponding filters,
whose masksiK are given by expression8)(and ©), reduce high frequencies. Hence,
fine details may be not properly estimated in the demosainedé (see figur28g.
This artifact is less visible in imag8d, which has been demosaicedigmilton and Adans
scheme1997. A visual comparison with image8cshows that this scheme, presented
in section3.1.1, generates a small amount of visible blurring. It first esti@s vertical
and horizontal gradients, then interpolates the greertid@leng the direction with the
lowest gradient module, i.e. by using as homogeneous laggdsssible. This selection
of neighbors used to interpolate the missing green levebatem pixel, tends to avoid
blurring.

4.2.2. Zipper Effect

Let us examine figur29, and more precisely imag@9band29dwhich are extrac-
ted from the original “Lighthouse” image9a Images29cand29eare the correspon-
ding extracts from the demosaicing resulttédmilton and Adamscheme £997). On
image29e one can notice repetitive patterns in transition areagdxt homogeneous
ones. This phenomenon is calleigper effect

The main reason for this artifact is the interpolation oflewvhich belong to ho-
mogeneous areas representing different objects. It oetwach pixel where the inter-
polation direction (horizontal or vertical) is close totléthe color gradient computed
in the original image. Imag29cdoes not contain any zipper effect, since the interpo-
lation direction is overall orthogonal to that of a color djent, hence close to the tran-
sition direction between homogeneous areas. Oppositehge29e contains strong
zipper effect. In this area with high spatial frequenciemglthe horizontal direction,
the scheme often fails to determine the correct gradieattion (see sectioB.1.2and
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(a) Original image @ (f) Demosaiced image

Fic. 29: Zipper effect due to erroneous selection of the intetpmn direction.
Images(b) and (d) are two extracts from the original imade), located by black
boxes. Image&) and(e) are the corresponding extracts from the iméyeemosaiced

by Hamilton and Adanis scheme 1997).

(a) Original image (b) (d) Demosaiced image

FiG. 30: False colors on a diagonal detail. Imgbgis an extract from the original
image(a), located by a black box. Image), on which artifacts are circled in black,
is the corresponding extract from ima@¢#d) demosaiced byHamilton and Adamis
scheme 1997).

figure 19).

The other main reason is related to the arrangement, in theilBage, of pixels
whose green level is not available. Indeed, these pixelsevine green levels can be
erroneously estimated, are arranged in staggered losation

4.2.3. False Colors
False color at a pixel corresponds to a large distance battheeoriginal color and
the estimated one, in the acquisition color spR&B Figures30cand31cshow that
this phenomenon is not characterized by a specific georakstimicture in the image.
Incorrect estimation of the color components may causespéilide false colors, in
particular in areas with high spatial frequencies.
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(b) ©

Fic. 31: False colors generated on a textured afepExtract from the original
image(a), located by a black boxc) Extract demosaiced byu and Zhangcheme
(20049, with artifacts circled in black.

(a) Original Image

4.2.4. Artifacts Described in the Frequency Domain

The representation of the CFA color samples in the frequelocyain, proposed
by Alleysson et al(2005, also allows to explain the reasons why artifacts are gener
ted by demosaicing schemes.

As seen in sectioB3.3.1, the CFA image signal is made up of a luminance signal,
mainly modulated at low spatial frequencies, and of two ofinance signals, mainly
modulated at high frequencies (see fig@fepage48). Therefore, demosaicing can
be considered as an estimation of luminance and chromineomo@onents. Several
schemes which analyze the frequency domaileysson et al. 2005 Dubois 2005
Lian et al, 2007 estimate the missing levels by selective filters appliethto CFA
image. The four possible artifacts caused by frequencyaisadre shown in figurd2
extracted from Alleysson et al. 2005 : excessive blurring, grid effect, false colors
and watercolor. When the bandwidth of the filter applied toG@Ré image to estimate
the luminance is too narrow, an excessive blurring occutisérdemosaiced image (see
figure323. When the bandwidth of this filter is too wide, it may selegfthfrequencies
in zones of chrominance. Such a case can result in a grid sffgmecially visible in flat
(homogeneous) areas of the image (see figake. Moreover, false colors appear when
the chrominance filters overlap with the luminance filtettia frequency domain (see
figure 32¢). Finally, when the chrominance filter is too narrow, watdoc effect may
appear as colors which are “spread beyond” the edges of antdbge figur&2d).

These artifacts are caused by a bad conception of the seldittiers used to esti-
mate luminance and chrominance. They can also be generatiiinsaicing methods
which spatially scan the image. Indeed, several spatiabdaining schemes generate
blurring and false colors since they tend to under-estituaténance and over-estimate
chrominanceKimmel's (1999 andGunturk et als (2005 schemes also generate grid
effect and watercolor.

4.3. Classical Objective Criteria

All the described artifacts are due to errors in color congmrestimation. The
classical objective evaluation criteria sum up the err@svben levels in the origi-
nal and demosaiced images. At each pixel, the error betwesenriginal and demo-
saiced images is quantized thanks to a distance betweendomoints in a three-
dimensional color spacd3(isin et al, 2009. In this subsection, we regroup the most
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(a) Blurring (b) Grid effect

(c) False color (d) Watercolor

F1G. 32: Four kinds of artifacts caused by demosaicifiief/sson et al.2005.
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widely used measurements into two categories, namely thktfidind perceptual cri-
teria.

4.3.1. Fidelity Criteria
These criteria use colors coded in RE&Bacquisition color space in order to esti-
mate the fidelity of the demosaiced image compared with tiggnad image.

1. Mean Absolute Error.
This criterion evaluates the mean absolute error betweeortginal imagd and
the demosaiced imadeDenoted bWAE, it is expressed a£hen et al.2008
Li and Randhawg2005 :

X-1Y-1

A= 527, By 2l

wherel ky is the level of the color componektat the pixel whose spatial coor-
dinates aréx.y) in the imagd . X andY are respectively the number of columns
and rows of the image.

The MAE criterion can be used to measure the estimation errors oéeifgp
color component. For example, this criterion is evaluatedhe red color plane
as:

(82)

R 1X1Y1
MAER(1,1) = ZJ ZO|| (83)

MAE values range from 0 to 255, and the demosaicing quality isidened as
better as its value is low.

2. Mean Square Error.
This criterion measures the mean quadratic error betweerttiginal image
and the demosaiced image. DenotedWSE, it is defined asAlleysson et al.
2005 :

X-1Y-1

MSE(T) = 3XYk RGBxZ) Z0 . &4

The MSE criterion can also measure the error on each color plane egua-
tion (23). The optimal quality of demosaicing is reached whMSBE s equal to O,
whereas the worst is measured wi@8E is close to 255,

3. Peak Signal-to-Noise Ratio.
ThePSNRcriterion is a widely used distortion measurement to egtrttee qua-
lity of image compression. Many authors (eAjleysson et al.2005 Hirakawa and Parks
2005 Lian et al, 2007 Wu and Zhang2004) use this criterion to quantify the
performance reached by demosaicing schemesPBiRis expressed in deci-
bels as :

PSNRI,I) = 10-log;, (MSZ(ZH)) , (85)
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whered is the maximum color component level. When the color comptsere
quantized with 8 bitsgl is set to 255.

Like the preceding criteridSNRcan be applied to a specific color plane. For
the red color component, it is defined as :

N d?
PSNR(1,1) = 10-logo [ ———= | - 86
(L glo(MS?(I,I)) (86)
The higher the®SNRvalue is, the better is the demosaicing quality. F&NR
measured on demosaiced images generally ranges from 30dB {iCe. MSE
ranges from 6®3 to 650).

4. Correlation.

A correlation measurement between the original image andemosaiced image
is used bySu and Willis(2003 to quantify the demosaicing performance. The
correlation criterion between two gray-level imagemd| is expressed as :

x=0 y=0

CLD = |7 ) e R T
S Y Ixy? | —XYp? SO Ixy | = XY[?
x=0y=0 x=0y=0

wherepu andfi are the mean gray levels in the two images.

When a color demosaiced image is considered, one estimatesttelation le-

vel Ck (I'ﬁ F“), k € {R,G,B}, between the original and demosaiced color planes.
The mean of the three correlation levels is used to measerguhlity of de-
mosaicing. The correlation levelrange between 0 and 1, and a measurement
close to 1 can be considered as a satisfying demosaicingyqual

X-1Y-1 R
z z |x,y|x,y _XY“IJ

4.3.2. Perceptual Criteria

The preceding criteria are not well consistent with quadisyimation provided by
the human visual system. That is the reason why new measnte /e been defined,
which operate in perceptually uniform color spacghifng and Char2006.

1. Estimation Error in the CIE*a*b* color space.

The CIEL*a*b* color space is recommended by the International Commission
on lllumination to measure the distance between two coBusif et al, 20098.

This space is close to a perceptually uniform color spacehvhias not been
completely defined yet. So, the Euclidean distance in thelC#b* color space

is a perceptual distance between two colors.

The three color componen{R G,B) at a pixel are first transformed in{X,Y,Z)
components according to a CIKY Zlinear operation. Then, the color compo-
nents CIEL*a*b* are expressed as :
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L { 116x Y /Yn—16  ifY/Y, > 0.008856, (88a)

9033 xY /Yy otherwise, (88b)
a” = 500 (f(X/%)— f(Y/Yn), (89)
b* = 200x (f(Y/Yn) —f(Z2/Zn)), (90)
with :
RS if Y/Y, > 0.008856 , (91a)
) = 7.787+ 45 otherwise, (91b)

where the used reference white is characterized by the cotoponent$X,, Yn, Zn).
We can notice that* represents the eye response to a specific luminance level,
whereasa* andb* components correspond to chrominance. The compaient
represents an opposition of colors Red—Green ténmbrresponds to an opposi-
tion of colors Blue—Yellow.

The color difference is defined as the distance between thay points in this
color space. Then, the estimation error caused by demngdgthe mean error
processed with all image pixels :

AEL*a*b*(I ,I\) _ iX71Y71 Z (lk . ﬂ< )2 (92)
) X, X, :
XY x; y;) k=L*a*,b* Y Y

The lowerAE-"@0" is, the lower is the perceptual difference between the meigi
and demosaiced images, and the higher is the demosaicilityqua

. Estimation Error in the S-CIE*a*b* color space.

In order to introduce spatial perception properties of thman visual system,
Zhang and Wande(lL997) propose a hew perceptual color space, called SLC#EDL*.
The color componenté&R,G,B) are first transformed into the color spax¥ Z
which does not depend on the acquisition device. Then, t@se components
are converted into the antagonist color spACgeC,, whereA represents the per-
ceived luminance and, Cy, the chrominance information in terms of opposition
of colors Red—Green and Blue—Yellow, respectively. Thed¢lmomponent planes
are then separately filtered by Gaussian filters with spedfiances, which ap-
proximate the contrast sensitivity functions of the humesnal system.

The three filtered componen#s C; andC, are converted back int@X,Y,Z)
components, which are then transformed into Ci&*b* color space thanks to
equations §8) and 89). Once the color components, a* andb* have been
computed, the estimation errQE in S-CIEL*a*b* is defined by equatiorte).
This measurement was used biy (2009, Su (200§ and Hirakawa and Parks
(2005 to measure the demosaicing quality.
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3. Normalized Color Difference in the CIE‘u*v* color space.
The CIE proposes another perceptually uniform color spatlecc CIEL*u*v*,
whose luminancé* is the same as that of CIE a*b* color space. The chromi-
nance components are expressed as :

Ut =13x L* x (U -, (93)
Vi =13xL* x (V V), (94)
with :
;o 4X
Y XFisv+az’ (95)
QY
\/_x+15Y+32’ (96)

whereu;, etv,, are the chrominance of the reference white.

The criterion of normalized color differen®CDis expressed as(and Randhawa
2005 Lukac and Plataniotj20049 :

X—1Y-1 (Ik X )2
2 2 > vy X
x=0y=0 \/ k=L*u*v* ooy

X-1Y-1 !
(1%)°

Wherel)‘(fy is the level of color componemt k € {L*,u*,v*}, at the pixel having
(x,y) spatial coordinates. This normalized measurement ramges@ (optimal
demosaicing quality) to 1 (worst demosaicing quality).

NCD(I,i) =

(97)

2 2 >
x=0y=0 \/ k=L* u* v*

Among other measurements found in the literature, let wsratntionBuades et al.
(2008. These authors first consider artifacts as noise whictuptsrthe demosaiced
image, and propose an evaluation scheme based on specifacthsstics of white
noise. Unfortunately, the evaluation is only achieved Hyjective appreciation. More
interesting is the suggestion to use gray-level images danabaicing evaluation. In-
deed, color artifacts are then not only easily visually tdfesd, but may also also be
analyzed by considering the chromaticity. The rate of et pixels whose chroma-
ticity is higher than a threshold reflects the propensity given demosaicing scheme
to generate false colors.

4.4. Artifact-sensitive Measurements

The objective measurements presented above are based ealaatien of the
color estimation error. None of these measurements gyahgf specific presence of
each kind of artifact within the demosaiced images. Thoitgiuld be interesting to
isolate specific artifacts during the evaluation processhis part, we present measu-
rements which are sensitive to specific kinds of artifacttaling their properties into
account.
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FiG. 33: Vertical edge pixels associated with their left andhtrigixels. Vertical edge
pixels P, P, P;s andP, are represented by solid lines, while pixels correspontting
extrema are located by dashed lines. The left (resp. right@mum of a vertical edge
pixel R is denotedP! (resp.P’). One single extremum may be associated with two
different vertical edge pixels, for exampRg = Pé.

4.4.1. Blurring Measurement

The blurring measurement proposedMsrziliano et al.(2004) is sensitive to the
decrease of local level variations in transition areas. dinors notice that blurring
corresponds to an expansion of these transition areasrapdge to measure the tran-
sition widths to quantify this artifact. The evaluation eate analyzes the luminance
planes of the original and demosaiced images, respectileipted as andL. The
transition width increase, evaluated at the same pixelilmesiin both images, yields
an estimation of the blurring caused by demosaicing.

This blurring measurement consists in the following susivessteps :

1. Apply the Sobel filter to the luminance plabh@ccording to the horizontal direc-
tion, and threshold its output. The pixels detected in thay are calledvertical
edge pixels

2. At each vertical edge pixél, examine the luminance levels of pixels located on
the same row aB in the luminance plank. The pixelP' (resp.P") corresponds
to the first local luminance extremum located on the leftgrelse right) ofP.

To each vertical edge pix&, associate in this way a pair of pixefs andP",
one of them corresponding to a local luminance maximum aedther one to
a minimum (see figur&3).

3. The transition width aP is defined as the difference between f#heoordinates
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of pixelsR andPR,.

. Compute the blurring measurement as the mean transitidth wstimated over

all vertical edge pixels in the image.

. From the spatial locations of vertical edge pixelk inwhich have been detected

in step 1 —, steps 2 to 4 are performed on the luminance filafithe demosaiced
image. A blurring measurement is then obtained for thisglan

. The two measurements, obtained respectively for thenadignd demosaiced

images, are compared in order to estimate blurring causeithdoygonsidered
demosaicing scheme.

4.4.2. Zipper Effect Measurements

As far as we know, the single proposition for zipper effecasweement was gi-
ven byLu and Tan(2003. This artifact is characterized at a pixel by an increase of
the minimal distance between its color and those of its rmgh This measurement
therefore relates to the original color image. A

The zipper effect measurement in a demosaiced iragempared with the original
imagel, is computed by these successive steps :

1.

At each pixeP in the original imagd, identify the neighboring pixeP’ whose
color is the closest to that & in CIE L*a*b* color space :

P’ = argmin[I (P) — 1 (Q)]|, (98)

Q€eNg

whereNg is the 8-neighborhood & and||-|| is the Euclidean distance in CIEa*b*
color space. The color difference is then computed as :

AL(P) = [[I(P)—1(P)]|. (99)

. At the same locations @&andP’, compute their color difference in the demo-

saiced imageé :

Al(P) = [[I(P)—T(P)]. (100)

. Compute the color difference variatigriP) = Al (P) — Al (P).
. Threshold the color difference variation, in order toedéthe pixels? where

zipper effect occurs. I (P)| > Ty, the pixelP in the demosaiced image presents
a high variation of the difference between its color and tfi& . More precisely,
when ¢ (P) is lower than—Tjy, the demosaicing scheme has reduced the color
difference between pixelB andP’. On the other hand, whefp(P) > Ty, the
difference between the color & and that of® has been highly increased iin
compared witH ; so, the pixelP is considered as affected by zipper effect. The
authors propose to set the thresh@jdo 2.3

. Compute the rate of pixels affected by zipper effect indamosaiced image :

ZEy, = Card{P(x,y) | §(P) > Ty }. (101)
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(a) Original imagd (b) Demosaiced ima(je (c) Zipper effect map

FIG. 34: Over-detection of the zipper effect by and Tars measuremenQ03, in a
synthetic image.

In the detection majfc), pixels affected by zipper effect are labeledsasand the
ground-truth (determined by visual examination) is lateds gray. A pixel labeled
both asx and gray corresponds to a correct detection, whereas alabaded only as
x corresponds to an over-detection of the zipper effect.

The effectiveness of this measurement was illustrated 9uthors with a syn-
thetic imagé. However, by applying it to images of Kodak Database, we shilbw
in section5.2 that it tends to over-detect zipper effect in the demosaiicedjes. Two
reasons explain this over-detection.

First, a pixel whose color is correctly estimated and whiak heighboring pixels
whose colors are erroneously estimated, can be considsiteeirsy affected by zipper
effect (see figur@4).

Second, we notice that all the pixels detected by Lu and Taegsurement are not
located in areas with perceptible alternating patternskwborrespond to zipper effect.
Indeed, all the artifacts which can increase the minim#&édthce between the color of
a pixel and those of its neighbors do not always bear the gemnpeoperties of zipper
effect. An example of this phenomenon is found on the zipffectdetection result
of figure38c4: almost all pixels are detected as affected by zipper efédittough the
demosaiced imag@&8b4does not contain this repetitive and alternating pattern.

To avoid over-detection, we propose a scheme — hereaftaredfto aslirectional
alternation measurement which quantifies the level variations over three adjacent
pixels along the horizontal or vertical direction in the deaiced image.

Two reasons explain why the direction of zipper effect ismhahorizontal or ver-
tical. Demosaicing schemes usually estimate the greem cofoponent first, then the
red and blue ones by using color differences or ratios. Hewelong a diagonal direc-
tion in the CFA image, all the green levels are either avilap missing. Since there
is no alternating pattern between estimated and avail&bkdd along this diagonal
direction, there are few alternating estimation errorsclwtdharacterize zipper effect.
Secondly, edges of objects in a natural scene tend to folloszdntal and vertical
directions.

We propose to modify the selection of neighboring pixelsdusedecide, thanks
to Lu and Tan’s criterion, whether the examined pixel is etfd by zipper effect. We

"This image is not available.
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require the selected adjacent pixels to present a greematitey pattern specific to
zipper effect. Moreover, this series of three adjacentlpikas to be located along
transitions between homogeneous areas, so that the oagatf levels associated with
this transition are not taken into account.

The zipper effect detection scheme based on directiorahaltion, which provides
a measurement for this artifact, consists in the followingcgssive steps :

1. At a give pixelP, determine the local direction (horizontal or verticalprag
which the green variations are the lowest in the originalgea his direction is
selected so that the green level dispersion is the lowest :

1 1
P=3 5 (8,-wP)  ad @)= 5 (15.-wP)"

(102) (103)

wherep*(P) (respectivelyuy(P)) is the mean of the green Ieveigi‘y (respec-
tively, Ixy+|) i € {—1,0,1}, in the original image.
The determined directiod is that for which the directional variance is the lo-
west :
5= argmin(ad(P)) . (104)
de{xy}

Thanks to this step, the green levels of the three selectatead pixels are
locally the most homogeneous.

2. Evaluate the alternation amplitude at pilelbetween the three adjacent pixels
along directiond, in the original and estimated images. Whilis horizontal,
the amplitude on a planeis computed as :

ax(l aP) = ||x71,y_ Ix.,y| + ||x,y_ Ix+l,y| - ||x71,y_ |x+l.,y‘ ' (105)

When? is vertical, the amplitude is computed as :

ay(l aP) = ||x,y71 - Ix.,y| + ||x,y - Ix,y+l| - ||x,y71 - |x,y+l‘ . (106)

When the three green levels present an alternating “highHigiv” or “low-high-
low” pattern,a®(1,P) is strictly positive, otherwise zero.

3. Compare the alternation amplitudes on @Gelane of the original image and
that of the demosaiced imageWhena?® (i®,P) > a (16,P), the alternation
amplitude of green levels has been amplified by demosaidompahe direc-
tion &. The pixelP is retained as a candidate pixel affected by zipper effect.

4. Apply to these candidate pixels a modified the scheme geapby Lu and Tan,
except that the neighboring pixel whose color is the closest B has to be one
of the two neighboring pixels along the selected direction
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4.4.3. False Colors Measurement

We also propose a measurement for the false color arti¥actg et al, 2007). At
a pixel in the demosaiced image, any mere error in the estsnalue a color com-
ponent can be considered as a false color. However, the huisaa system cannot
actually distinguish any subtle color difference which dgvér than a specific thre-
shold Faugeras1979. We consider that the estimated color at a pixel is falsenwhe
the absolute difference between an estimated color conmp@mel the original one is
higher than a threshol@i. The proposed measuremdfCy, is the ratio between the
number of pixels affected by false colors and the image size :

FCoy = ;L((:?Card{ P(xy) | max ( Ik, — %, ) > T} . (107)
FCy is easy to be implemented and expresses the rate of pixelstedfby false
colors as a measurement of the performance reached by a aiemgsscheme. Mo-
reover, this criterion can be also used to locate pixelstdteby false colors. However,
as classical fidelity criteria, it requires the original igeain order to compare the effi-
ciency of demosaicing schemes.

4.5. Measurements Dedicated to Low-level Image Analysis

Since the demosaicing methods intend to produce “perciypsaisfying” demo-
saiced images, the most widely used evaluation criteridased on the fidelity to the
original images. Rather than displaying images, our l@rgitgoal is pattern recogni-
tion by means of feature analysis. These features extréciedhe demosaiced images
are mostly derived from either colors or detected edgesfagts generated by demo-
saicing (mostly blurring and false colors) may affect thefgrenance of edge detection
methods applied to the demosaiced image. Indeed, bluredgces the sharpness of
edges, and false colors can give rise to irrelevant edgest i$hwhy we propose to
quantify the demosaicing performance by measuring the terroneously detected
edge pixels.

4.5.1. Measurements of Sub- and Over-detected Edges.
The edge detection procedure is sensitive to the alterafibigh spatial frequen-
cies caused by demosaicing. Indeed, low-pass filteringstemdenerate blurring, and
so to smooth edges. Moreover, when the demosaicing scheneeages false colors
or zipper effect, it may give rise to abnormally high valuésa @olor gradient module.
The respective expected consequences are sub- and ogetialebf edges. Notice that
the different demosaicing algorithms are more or less efiidn avoiding to generate
blurring, false color and zipper effect artifacts.
So, we propose a new evaluation scheme which performs thesessive step¥éng et al,
2007 :

1. Apply a hysteresis thresholding of the module of the col@dient proposed
by Di Zenzo(1986), in order to detect edges in the original imdg&he same
edge detection scheme with the same parameters is applted temosaiced
imagel .

Edge detection is performed as follows :
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(a) Compute the square module of the Di Zenzo gradient atg@aehin image
| as:

o = ;<a+c+ (ac)2+4b2>, (108)
6 = ;arctan(z_b>, (109)

where coefficient®, b andc are computed by approximating the partial
derivatives of the image functidn:

2 = (&)

(X(1R))% 4 (4%(19))? + (2¥(18))?,

Q

b = %% ~~ AX(IR)AV(IR)+AX(|G)AV(IG)+AX(|B)A)’(|B),
¢ = (%)2 ~ (BY(R)P+ (BY(19)) %+ (a(1B)) .

Each approximative partial derivatia (1), d € {xy} , k€ {RG,B}, is
computed thanks to the Deriche operaefiche 1987).

(b) Find the local maxima of the vector gradient modl# ||.

(c) Among pixels which are associated with local maximagdethe edge
pixels thanks to a hysteresis thresholding, parametrized bow thre-
sholdT, and a high threshold,.

2. Store the edge detection result for the original image lainary edge mays,
and similarly for the demosaiced image edgeB.ilNotice that these two maps,
in which edge pixels are labeled as white, may be differerttdwartifacts in the
demosaiced image.

3. In order to quantify the influence of demosaicing on edgedali®n quality, we
propose to follow the strategy developed Myrtin et al.(2004. Edge maps8
andB are compared by means of two successive operators (see 3ggre

(@) Apply the XOR logical operator to edge madpandB, in order to enhance
the differences between them in a new binary rap

(b) Apply the AND logical operator to map$ and B, which results in the
binary sub-detected edge m&p. Similarly, the AND logical operator is
applied to maps) and B, which results in the binary over-detected edge
mapOD.

Pixels labeled as white in mapD are edge pixels which are detected in the
original imagel but undetected in the demosaiced imag®ixels labeled as
white in the imageOD are edge pixels erroneously detected in the demosaiced
imagel, compared with edge pixels detected in
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Difference map
J=BXORB

Original imagel Original edges
Edge
detection
Edge ‘—
detection T

Demosaiced imagk

Sub-detection map
SD=JAND B

Demosaiced edgd3}

b

(a) General scheme

Over-detection map
OD=JAND B

SD
B
J
oD
B
(b) Example

FiG. 35: Steps to measure the quality of edge detection. A
In subfigure(b), over-detected edge pixels are labeledka@n bold typeface) irB, J
andOD, in order to distinguish them from sub-detected edge piteleled as<).
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SD

SD(X)
oD (X)

oD

FiG. 36: ComputingSD andOD from SDandOD, on an example. Pixels labeled as
dottedx belong to pairs of shifted edge pixels, and are dropped dheifinal detection
maps.

4. Compute the rates of sub- and over-detected edge pixglsctively as :

SDy, = %)Card{P(x,y) | SD,y # 0}, (110)
ODy, = %)Card{ P(x,y) | ODxy # 0} . (111)

Finally, the rate of erroneously detected edge pixels igesged as Dy, =
SDy, 4 ODog.

4.5.2. Measurements Based on Shifted Edges

By visually examining the mag in figure 35b, we notice the presence of many
pairs of adjacent edge pixels. In such edge pairs, one gigetected i3 only (i.e. sub-
detected), and the other one Bhonly (i.e. over-detected). For example, the niap
of figure 35b presents five pairs of adjacent pixels composed of a sulztdetedge
pixel (labeled asx) and an over-detected edge pixel (labeledkais bold typeface).
These cases do not result from a bad edge detection, but fspatal shift of edge
pixels between the original and demosaiced images. A stdziel (respectively, over-
detected) edge pixel is shifted when at least one of its heighis an over-detected
(respectively, sub-detected) edge pixel. Such pairs dlpiare hereafter callguhirs
of shifted (edge) pixels

In order to characterize the effect of demosaicing on edg¢gctien precisely, we
want to distinguish pairs of shifted edge pixels from othéges pixels. For this pur-
pose, we represent unshifted sub- and over-detected egrgis ps two binary maps
respectively denoted &DandOD, and defined as :
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SDy#0 & SDiy#0A(2Q(XY)eNs(P(xy))|ODyy #0), (112)
ODyxy#0 < ODyy #0A (AQ(X.Y) € Ng(P(xy)) |SDyy #0), (113)

where symboh represents the logical AND operator.

Figure 36 illustrates, from the example of figus, how mapsSD and OD are
obtained. In this figure, mafD andOD used to buildSD andOD are superimposed
in order to highlight the pairs of shifted edge pixels.

From the two binary map§D and OD, we compute the rates of sub- and over-
detected unshifted edge pixels as :

. 100 .
SDy, — WCard{P(x,yﬂSD&y;&O}, (114)
__ 100 __

ODy, — WCard{P(x,y)|ODX7y7é0}. (115)

These rates are used to evaluate precisely the quality ef@elgction in demosai-
ced images.

4.6. Conclusion

In this section, we have presented the techniques of obgeetialuation of demo-
saicing quality. For this purpose, we have first presentedntbst occurred artifacts
caused by demosaicing. Blurring, false colors and zipgeceflamage the quality of
the demosaiced images.

Then, we have presented classical criteria which total treebetween the origi-
nal and estimated colors through the image. These critaxia fome limits since they
provide a global estimation of the demosaicing quality andat reflect the judgment
of an observer. Indeed, they do not quantify the occurrentastifacts which can be
identified by an observer. Therefore, we have described uneaents dedicated to
three kinds of artifacts.

In the computer vision context, most images are acquirealnr cnono-sensor ca-
meras in order to be automatically processed. So, the yudlitemosaicing affects the
quality of low-level image analysis schemes. That is thesaavhy we have proposed
criteria which are based on the quality of edge detection.
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5. Quality Evaluation Results

5.1. Results of Classical Criteria

The quality of demosaicing results, achieved by the ten ou=ldetailed in sec-
tion 2, has been first evaluated thanks to classical criteria.H®purpose, the twelve
mostly used images of Kodak benchmark database are coedi@eee figures7)®.
These images, all of size 768512 pixels, have been selected in order to present a
significant variety of homogeneous regions, colors anditextareas.

Table3 displays the results obtained with criteria which measueditielity of each
demosaiced image to its corresponding original image, hathe mean absolute er-
ror (MAE, expression&?2)), the peak signal-to-noise ratiB$NR expressiong5)) and
the correlation criterion, expression&7)). Table4 shows, for the same images and
demosaicing schemes, the results obtained with percepiteria, namely the estima-
tion error in CIEL*a*b* color space&4E-" 2", expressiong2)), the estimation error
in S-CIE L*a*b* color space AES-"2") and the criterion of normalized color diffe-
rence NCD, expression{7)) between the demosaiced image and its original image.

These two tables show that for a given method, the perforesaneasured with
a specific criterion vary from an image to another one. Thigioms that obtaining
a good color estimation from the CFA image is all the more diffias the image is
rich in high spatial frequency areas. For instance RB& Rof images demosaiced by
bilinear interpolation ranges from ZdB for image 4 (“House”), which contains a
lot of high frequency areas, to 36 dB for image 1 (“Parrota/hich contains a lot of
homogeneous regions.

It can be noticed that the two methods which chiefly use thguigacy domain
provide better results than those which only scan the dpdtimain. Moreover, the
method proposed b®ubois (2005 achieves the best average results over the twelve
images, whatever the considered criterion. We also notiaé the different criteria
provide similar performance rankings for the methods orvargimage.

5.2. Results of Artifact-sensitive Measurements

5.2.1. Zipper Effect Measurements

In order to compare the relevance of the results providedbeywo zipper effect
measurements described in sectdbh.2 we propose to use the following procedure.
First, a ground truth is built for the zipper effect by vidyaxamining the demosaiced
image and defining whether each pixel is affected by zippcebr not. Then, the
two measurements are applied, in order to provide binarysmégere pixels which are
affected by zipper effect are labeled as white. A final consparstep of these binary
maps with the ground truth quantifies the performance of eagttive measurement,
by counting pixels where zipper effect is correctly detdctaub-detected and over-
detected.

Figure38displays the results on four image extracts of size 10 pixels. It shows
that the directional alternation measurement generafi\bétter with the ground truth

8This database is availablelat t p: / / www. mat h. pur due. edu/ ~I uci er/ PHOTO_CD
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1. Parrots 2. Sailboat 3. Windows

6. Pier

7. Island

10. Cape 71 11. Barn 12. Chalet

Fic. 37: The twelve benchmark images picked up from Kodak dagbknages 5
and 8 are presented vertically for illustration purposé Hawve been analyzed in land-
scape orientation.



[ Image [ Criterion [[ Bilinear [ Cst. Hue [ Hamilton | Wu [ Cok [ Kimmel [ Li [ Gunturk [ Dubois [ Lian |
MAE 1542 1.358 0.938 0.949 1.257 1.784 1.379 0.877 0.879 0.796
1 PSNR 36.256 38.082 42.868 | 42984 | 39.069 31883 | 38132 43186 | 43259 | 44.199
[} 0.9966 0.9978 0.9993 | 0.9993 | 0.9982 0.9912 | 0.9978 0.9993 | 0.9993 | 0.9995
MAE 4.352 3.381 1.829 1.565 2.897 2.241 2.515 1.339 1.154 1.415
2 PSNR 28.956 31.396 36.324 | 37.831 | 32561 34.418 | 33499 39.951 | 41433 | 39.303
C 0.9830 0.9905 0.9970 | 0.9978 | 0.9928 0.9952 | 0.9942 0.9987 | 0.9990 | 0.9984
MAE 1.978 1.578 0.980 0.994 1.407 1.264 1.484 0.907 0.900 0.786
3 PSNR 34.454 36.779 41773 | 41641 | 37915 38620 | 37.111 42713 | 43062 | 43.832
[} 0.9909 0.9946 0.9983 | 0.9982 | 0.9958 0.9965 | 0.9950 0.9987 | 0.9987 | 0.9989
MAE 7.329 5.655 2.629 2.607 3.986 3.077 4.130 2.055 2.022 1.975
4 PSNR 24551 27.350 33409 | 33535 | 29.885 31858 | 29.588 36.452 | 36.479 | 36.445
[} 0.9596 0.9799 0.9950 | 0.9951 | 0.9888 0.9928 | 0.9881 0.9975 | 0.9975 | 0.9975
MAE 2.276 1.822 1.112 1.078 1591 1.230 1.556 0.896 0.895 0.860
5 PSNR 33611 36.120 41430 | 41795 | 37.701 39.659 | 37515 43237 | 43354 | 43.785
[} 0.9863 0.9926 0.9978 | 0.9980 | 0.9949 0.9967 | 0.9946 0.9985 | 0.9986 | 0.9987
MAE 3.589 2.857 1.605 1511 2.404 1.949 2.370 1.247 1.167 1.215
6 PSNR 30.191 32400 37.353 | 37.748 | 33579 35.344 | 33372 40409 | 40.894 | 40.399
[} 0.9783 0.9874 0.9960 | 0.9963 | 0.9905 0.9935 | 0.9900 0.9980 | 0.9982 | 0.9980
MAE 2.880 2.264 1.263 1.084 1.931 1.518 1.652 0.964 0.826 1.022
7 PSNR 32341 34.719 39.713 | 41613 | 36.141 37.788 | 37.451 42913 | 44.680 | 42144
C 0.9861 0.9921 0.9975 | 0.9984 | 0.9944 0.9961 | 0.9958 0.9988 | 0.9992 | 0.9986
MAE 3.849 3.079 1.571 1.546 2.344 1.874 2.284 1.234 1.164 1.195
8 PSNR 29.186 31716 38419 | 38594 | 34.663 36.172 | 34.708 42913 | 41547 | 41072
C 0.9775 0.9875 0.9973 | 0.9974 | 0.9936 0.9956 | 0.9938 0.9985 | 0.9987 | 0.9986
MAE 2.362 1.929 1.306 1.318 1.769 1.394 1.802 1.043 1.114 0.994
9 PSNR 32565 34931 39.462 | 39.347 | 35.985 38181 | 35601 42030 | 41735 | 42.353
C 0.9973 0.9984 0.9995 | 0.9994 | 0.9988 0.9993 | 0.9987 0.9997 | 0.9997 | 0.9997
MAE 3.772 2.936 1.840 1.801 2.661 1.969 2.739 1.311 1.290 1.319
10 PSNR 29557 31.960 36542 | 36.643 | 32891 35202 | 32549 40.220 | 40.172 | 39.972
C 0.9769 0.9870 0.9955 | 0.9955 | 0.9895 0.9939 | 0.9887 0.9981 0.9981 | 0.9980
MAE 3.164 2.497 1.701 1.741 2.346 1.971 2.535 1.442 1.368 1.326
11 PSNR 31433 33718 37.746 | 37.455 | 34.560 35995 | 33.802 39217 | 39575 | 39.963
C 0.9849 0.9909 0.9964 | 0.9962 | 0.9925 0.9949 | 0.9913 0.9975 | 0.9977 | 0.9979
MAE 4.366 3.317 2.057 1.965 3.091 2.244 3.310 1.530 1.453 1.469
12 PSNR 27.564 29.938 33381 | 34.237 | 29.957 32196 | 29.333 36.630 | 37.690 | 36.687
C 0.9752 0.9859 0.9936 | 0.9948 | 0.9859 0.9915 | 0.9838 0.9970 | 0.9976 | 0.9970
MAE 3.455 2.723 1.569 1.513 2.307 1.876 2.313 1.237 1.186 1.198
Avg. PSNR 30.889 33259 38202 | 38619 | 34575 35610 | 34.388 40.823 | 41.157 | 40.846
C 0.9827 0.9904 0.9969 | 0.9972 | 0.9930 0.9947 | 0.9926 0.9983 | 0.9985 | 0.9984

TaB. 3: Demosaicing quality results, for twelve color imagesnirKodak database,
according to fidelity criteria : mean absolute errbtAE), peak signal-to-noise ratio

(PSNR in decibels), and correlatiorC) between the original image and the demo-
saiced image. For each image and each criterion, the bagdt iesvritten in bold
typeface. The tested methods are : 1. Bilinear interpaiati®. Constant-hue-based
interpolation Cok, 1987 — 3. Gradient-based methodgmilton and Adams1997) —

4. Component-consistent schenWu and Zhang2004 — 5. Method based on tem-

plate matching Cok, 1986 — 6. Adaptive weighted-edge methadithmel, 1999 —

7. Covariance-based method and Orchard 2001 — 8. Alternating projection me-

thod Gunturk et al.2002 — 9. Frequency selection methddubois 2005 — 10. Me-
thod based on frequency and spatial analykes(et al, 2007).
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[ Image [ Criterion [[ Bilinear | Cst. Hue | Hamilton | Wu | Cok [ Kimmel | Li [ Gunturk [ Dubois [ Lian |
AELEY 1.439 1.289 1.002 | 1010 | 1229 1.655 | 1.387 0.969 | 0952 | 0.899

1| agsta 2.605 2.605 2318 | 2268 | 2682 | 5701 | 3537 | 2193 | 1967 | 2007
NCD 0.0098 | 0.0089 0.0067 | 0.0068 | 0.0083 | 0.0119 | 0.0094 | 0.0064 | 0.0064 | 0.0060

AEL@Y 3.382 2.562 1538 | 1.335 | 2275 1772 | 2078 1196 | 1078 | 1.223

2 AESL D 6.477 5.965 3756 | 2954 | 5.360 4653 | 4578 3079 | 2440 | 3021
NCD 0.0251 | 0.0194 0.0113 | 0.0099 | 0.0169 | 0.0136 | 0.0152 | 0.0089 | 0.0079 | 0.0091

AEL @D 2.048 1.663 1132 | 1.148 | 1.492 1491 | 1.653 1108 | 1.066 | 0.981

3 AESLED 3.715 3.483 2659 | 2615 | 3.339 4283 | 3.990 2594 | 2280 | 2229
NCD 0.0140 | 0.0114 0.0077 | 0.0078 | 0.0101 | 0.0102 | 0.0112 | 0.0074 | 0.0072 | 0.0066

AEL@Y 5.467 4.246 2167 | 2.099 | 3.138 2356 | 3.315 1735 | 1676 | 1.652

4 AESL D 11293 | 10635 5729 | 5166 | 7.918 6.125 | 7.886 4850 | 4507 | 4.327
NCD 0.0441| 0.0338 0.0172 | 0.0169 | 0.0249 | 0.0193 | 0.0261 | 0.0140 | 0.0136 | 0.0132

AELEY 1.780 1.474 0.965| 0931 | 1273 | 1040 | 1299 | 0861 | 0843 | 0816

5 AESLEY 3.925 3.824 2753 | 2.661 | 3401 | 3462 | 3.344 2437 | 2361 | 2304
NCD 0.0139 | 0.0114 0.0074 | 0.0072 | 0.0099 | 0.0082 | 0.0100 | 0.0065 | 0.0064 | 0.0062

AEL @D 3511 2.762 1729 | 1.641 | 2419 1.943 | 2485 1393 | 1.334 | 1343

6 AESL D 6.883 6.417 4333 | 3809 | 5781 4806 | 5675 3589 | 3209 | 3.323
NCD 0.0261 | 0.0209 0.0128 | 0.0122 | 0.0179 | 0.0151 | 0.0183 | 0.0104 | 0.0099 | 0.0100

AEL@Y 2671 2.047 1259 | 1.088 | 1.789 1407 | 1592 1.021 | 0895 | 1051

7| agstEr 5.231 4.808 3135 | 2496 | 4254 | 3563 | 3580 | 2597 | 1991 | 2635
NCD 0.0206 | 0.0161 0.0096 | 0.0083 | 0.0138 | 0.0113 | 0.0121 | 0.0079 | 0.0068 | 0.0081

AEL @Y 3.338 2.629 1561 | 1526 | 2170 1806 | 2.195 1260 | 1188 | 1224

8 AESL D 6.474 5.984 3811 | 3465 | 5039 4404 | 4857 3208 | 2860 | 2963
NCD 0.0243 | 0.0193 0.0111 | 0.0110 | 0.0156 | 0.0133 | 0.0157 | 0.0090 | 0.0085 | 0.0087

AEL@Y 2.155 1.725 1221 | 1.208 | 1613 1.277 | 1.709 0.996 | 1.005 | 0.959

9 | pEStar 4.568 4.136 3175 | 2984 | 3909 | 3346 | 4663 | 2791 | 2697 | 2478
NCD 0.0150 | 0.0122 0.0086 | 0.0086 | 0.0113 | 0.0093 | 0.0119 | 0.0071 | 0.0072 | 0.0068

AELED’ 3.259 2.524 1705 | 1.652 | 2.356 1696 | 2517 1273 | 1261 | 1278

10 | pgstad’ 6.239 5.839 4234 | 3826 | 5555| 4.060 | 5.694 3321 | 3107 | 3.140
NCD 0.0251 | 0.0197 0.0131 | 0.0128 | 0.0182 | 0.0137 | 0.0192 | 0.0099 | 0.0097 | 0.0098

AEL@Y 2.724 2.152 1584 | 1.602 | 2.065 1822 | 2284 1416 | 1319 | 1.303

11 | pgstad’ 5.175 4747 3898 | 3738 | 4.852 4690 | 5371 3631 | 3157 | 3191
NCD 0.0195 | 0.0157 0.0114 | 0.0116 | 0.0149 | 0.0133 | 0.0165 | 0.0101 | 0.0095 | 0.0093

AEL@Y 3.402 2.620 1736 | 1.655 | 2482 1814 | 2730 1380 | 1318 | 1317

12 | pgstar 6.286 5.870 4341 | 3920 | 5965| 4384 | 6371 | 3564 | 3135 | 3.193
NCD 0.0258 | 0.0200 0.0132 | 0.0127 | 0.0188 | 0.0142 | 0.0206 | 0.0105 | 0.0101 | 0.0100

AEL @Y 2.931 2.308 1467 | 1.408 | 2025 1673 | 2104 1217 | 1161 | 1170

Avg. | AgSLiab’ 5.739 5.359 3678 | 3325 | 4838 4456 | 4.962 3154 | 2809 | 2901
NCD 0.0219 | 0.0174 0.0108 | 0.0105 | 0.0150 | 0.0128 | 0.0155 | 0.0090 | 0.0086 | 0.0086

TaB. 4: Demosaicing quality results, for twelve color imagesnirKodak database,
according to perceptual criteria : estimation error in Ct&*b* color spacefE- 20"),
estimation error in S-CIE*a*b* color space§4ESL"@P"), and criterion of normalized
color difference NCD). For each image and each criterion, the best result (edb
value) is written in bold typeface. Images and tested metlaoel the same as in tale
The illuminant used fo(X.,Y,Z) transform is the standard CIE D65, which corresponds

to daylight.
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FiG. 38: Zipper effect detection in four Kodak image extracts;arding to two mea-
surements.

(al)(a4): original extracts(b1)}-(b4) : demosaiced extracts. Last two columns : pixels
affected by zipper effect, according ko and Tars criterion (c1)}+c4) and to the di-
rectional alternatiofd1)d4).

Pixels affected by zipper effect are labeled>xasThey correspond to ground truth in
images(b1)}-(b4). In imagesc1)(d4), the ground truth is reproduced as gray-labeled
pixels. So, pixels where the zipper effect is well detectedath labeled ag and gray.
Pixels where the zipper effect is sub-detected (respéygtioeer-detected) are labeled
only asx (respectively, only as gray). Imagésl) and(b2) are estimated by bilinear
interpolation,(b3) and(b4) by Hamilton and Adamq 1997 gradient-based method.
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Image Well-detected Sub-detected Over-detected
Lu and | Directional || Lu and | Directional || Lu and | Directional
Tan alternation Tan alternation Tan alternation
(a1) 100 100 0 0 0 0
(a2) 58 83 2 1 40 16
(a3) 72 86 1 9 27 5
(a4d) 7 94 0 0 93 6
Total 237 363 3 10 160 27

TAB. 5: Comparison between the measurements quantifying izgffect, proposed
by Lu and Tan(2003 and based on the directional alternation. Values corredpo
the numbers of well-detected, sub-detected and overigetgixels affected by this
artifact in the four image extracts of figugs.

than Lu and Tan’s measurement does. This remark is confirmegtrically by com-
paring the numbers of well-detected, sub-detected anddwrtected pixels affected by
zipper effect in the four images. The results in tabfhow that the measurement based
on directional alternation generally provides higher vastected pixel rates than the
one proposed by Lu and Tan. Indeed, the latter over-detaasrzeffect whereas the
measurement based on directional alternation tends tutlsligub-detect this artifact.

Finally, we have compared the demosaicing schemes acgotdithe measure-
ment based on directional alternation. Tablshows that the results are similar to
those obtained with classical criteria, presented in s&b&nd4 : bilinear interpolation
always generates the highest amount of zipper effect, \aetee scheme proposed
by Lian et al. (2007 is overall the most efficient. However, by examining tabla
detail, we notice that in images with few high spatial freggies (number 2-“Sailboat”
and 7-“Island”), the method proposed Byiboistends to generate less zipper artifact
thanLian et al's method does. Generally speaking, these results shothihatethods
which analyze the frequency domain generate less zippactdfian those which scan
the image planeMenon et al. 2006.

5.2.2. False colors

As described in sectios.4.3 the estimated color at a pixel is taken as false when
the absolute difference between an estimated color coomp@rel the original one
is higher than a threshold (see equation1(7). Since adjusting this threshold is
not easy, we compare the performance reached by a set of tersdicing schemes
applied to twelve images of the Kodak database, whearies from 10 to 25 with an
incremental step of 5. Figur@9 shows both the evolution of the average rate of false
colors with respect t@ for a given scheme, and the rates of false colors generated by
the considered schemes for a given valuel ofAs expected, the rate of false colors
decreases wheh increases. More interestingly, the relative ranking of deaicing
methods with respect to the number of false colors is cadistith both rankings
provided by classical fidelity criteria and by measureméated on zipper effect.
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Image || Bilinear | Cst. Hue | Hamilton Wu Cok Kimmel Li Gunturk | Dubois Lian
1 4.317 1.939 0.623 0.822 0.735 4.408 3.068 0.893 0.861 0.345
2 22.567 | 12.761 2.656 2.082 4.903 2.464 7.157 0.682 0.487 0.590
3 8.793 4.581 1.257 1.626 1.374 1.795 4.093 1.664 1.278 0.546
4 35.932 | 25.164 4.485 5.393 7.214 5.023 14.031 2.402 2.351 1.610
5 9.023 4.226 0.610 0.581 1.110 0.658 2.069 0.664 0.482 0.192
6 19.876 | 10.707 2.955 3.405 3.986 2.797 7.868 1.562 1.441 0.826
7 18.483 | 10.124 1.954 1.213 3.730 1.990 4.579 0.391 0.177 0.436
8 18.216 | 11.672 2.369 3.051 3.811 2,122 7.213 0.850 0.727 0.617
9 9.459 5.618 1.695 2.192 2.367 1.537 5.335 0.714 0.709 0.422
10 15.425 9.976 3.021 3.473 4.003 2.475 8.548 0.984 0.967 0.685
11 12.816 6.331 1.809 2.726 2.840 1.835 7.083 1.166 0.962 0.510
12 18.729 | 10.107 2.735 3.461 3.761 2.269 9.256 1.285 1.076 0.803
Avg 16.136 9.434 2.181 2.502 3.319 2.448 6.692 1.105 0.960 0.632

TAB. 6: RatesZEy, of pixels affected by zipper effect, according to the measwant
based on directional alternation. The images and testetiauetare the same as in

table3.
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FIG. 39: Average rates of false coloFy, with respect to the detection threshdid
The twelve considered images and ten tested methods arartfeeas in tablé.
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5.3. Discussion

The most widely used criteria for the evaluation of demadsgiquality areMSE
andPSNR the latter being a logarithmic form of tHdSE criterion. Several reasons
explain why most of the authors use these critearig and Bovik2006. First, these
functions are easy to be implemented and their derivatiaase estimated. They may
therefore be integrated into an optimization scheme. SEdbePSNRcriterion has a
real physical meaning — namely, the maximal energy of theedigith respect to errors
generated by demosaicing —, which can also be analyzed fretipgency domain.

However, thd?SN Reriterion provides a general estimation of the demosaigiray
lity, but does not really reflect the human judgment. For gxaman observer would
prefer an image containing a large number of pixels withnestéd colors close to
the original ones, than an image containing a reduced nuaoflpixels affected by vi-
sible artifacts. BUMSE andPSN Reriteria could provide identical values in both cases,
since they do not discriminate the characteristics of diffiartifacts in the demosaiced
image. These objective measurements have been critici¥adg and Bovik 2009
since they cannot evaluate the image alteration as a hunsamaly doesEskicioglu and Fisher
1995.

The alternative criteriAE of estimation errors in the CIE*a*b* and S-CIB_*a*b*
color spaces are the most widely used perceptual critéhiar(g and Wandell1997).
They are based on perceptually uniform color spaces as ampgtttto represent the
human perception, but require prior knowledge about thienihant and the reference
white used during image acquisition. Since the acquisitionditions are not always
known, the quality of these measurements may be biased.

5.4. Experimental Results for Edge Detection

The demosaicing performance has been evaluated with rtetspéte quality of
edge detection thanks to measurements detailed in set#iofable 7 displays the
average rates of sub-detecteé®l},), over-detected@Do,) and erreneously detected
(EDy, = SDy, + ODy,) edge pixels. These values have been computed over thestwelv
Kodak images previously considered, and for the ten clasdiemosaicing schemes.
Moreover, this table displays the average rév@@), 6vD% andIETD% which take into ac-
count only unshifted edge pixels. The lowest values comegjpo the best demosaicing
quality according to these edge-dedicated measurements.

By examining the average rateEdy, andE Dy, similar conclusions can be drawn
about the performances of demosaicing schemes. The meitttudk privilege the
frequency domain allow to obtain better edge detectionityulan the other methods
do. Besides, the methods proposedlybois and byLian et al. provide the lowest
error rates in both edge and unshifted edge detection. Tdesesaicing schemes are
therefore the most apt to be coupled with edge detectionepkges based on color
gradient.

Moreover, we notice that the ranking of the ten tested demiogaschemes with
respect tdODy, andSDy, is relatively consistent with the ranking obtained with mea
surementﬁ% and SND%. However, the rate of over-detected unshifted pixels is the
lowest for bilinear interpolation. This suprising perfante result can be explained
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Meas. Bilinear | Cst. Hue | Hamilton Wu Cok Kimmel Li Gunturk | Dubois Lian

SDy, 3.673 2.090 1.528 1.561 1.882 1.983 2.265 1.422 1.278 1.323

ODyy, 2.257 1.945 1.504 1.522 1.818 1.802 2.319 1.242 1.199 1.263

E Do, 5.930 4.035 3.032 3.083 3.700 3.785 4.584 2.664 2477 2.586

SDy, 1.945 1.109 0.881 0.877 1.032 1.077 1.094 0.888 0.774 0.803

ODy, 0.663 0.979 0.855 0.842 0.974 0.912 1.156 0.713 0.697 0.748

E Do, 2.608 2.088 1.736 1.719 2.006 1.989 2.250 1.601 1471 1551

TAB. 7: Average rates of sub-detected edge pix8[3/), of over-detected edge pixels
(ODw) and erreneously detected pixeBOy, = SDy, + ODy,). Average rates of sub-
detected unshifted edge pixeSI), of over-detected unshifted edge pixe®D)
and of unshifted edge pixels that are erreneously deteéth@L(z SDy, +6I5%). The
low and high thresholds used for hysteresis thresholdiegetrto 1 and 6, respectively.
The twelve considered images and ten tested methods arartieeas in tablé.

by both strong blurring and zipper effect generated by teimasaicing method. In-
deed, blurring induces fewer detected edge pixels, anceripffect mainly induces
pairs of shifted edge pixels.

For each of the other methods, the rates of sub- and ovettddtedge pixels are
overall similar. Moreover, their ranking is almost the saasehe one obtained with the
previous criteria.

In table 7, we also notice that more than the half of sub- and over-tedeedge
pixels accordlng to measuremerfy, and ODq, are not retrieved with measure-
mentsSDy, and ODy,. That means that shifted edges strongly contribute to the di
similarity between edges detected in the original and dained images.

Edge pixels are sub-detected because the color gradientienagkd to detect edges
decreases with blurring in demosaiced images. The ovectit edge pixels corres-
pond to an increase of the color gradient module in case ptanpffect or false colors.
These new rates of sub- and over-detected plﬁﬂﬁ) and OD% are able to reflect
the artifacts caused by demosaicing. From tahleve can evaluate the influence, on
edge detection, of the demosaicing strategies impleménthe tested methods. Both
methods using bilinear interpolation and hue constandyagt the pixel colors wi-
thout exploiting spatial correlation. Hence, they gereerabre artifacts than the three
other methods which exploit spatial correlation, and pteviigher rates of sub- and
over-detected edge pixels.

Allin all, sub- and over-detected edge pixels often coiacidth artifacts. Figurd0
shows images which are demosaiced by two different scheandgshe respective maps
of sub- and over-detected unshifted edge pixéTBe(md(/)vD). We notice that demosai-
cing influences the edge detection more significantly insawath high spatial frequen-
cies and that the artifacts are also mainly located in thessssa

Zipper effect often decreases the variation of levels ingition areas between
homogeneous regions. Hence, zipper effect tends to dectieagradient module, so
that the norm of local maxima becomes lower than the higtstioiel T, used by the
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FiG. 40: Sub- and over-detected unshifted edge pixels, for ®woabaicing schemes :
bilinear interpolation and the gradient-based methodgsed byHamilton and Adams
(1999.
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(a) Original imagd (b) Demosaiced imagje (c) Comparison between detected edge
pixels (green : coinciding; blue : sub-
detected; red : over-detected)

FiG. 41: Example of edge pixels which are not modified by pixelscéd by false co-
lors, on an image demosaiced by the scheme proposidimiton and Adamg§1997).

hysteresis thresholding (see pddg. This explains why zipper effect causes edge sub-
detection. Since a lot of pixels are affected by zipper ¢ffée rate of sub-detected
edge pixels is generally lower than that of over-detectexbon

Isolated pixels affected by false colors do not always ckéahg location of detec-
ted edge pixels. Figu#l shows that pixels affected with false colors do not change th
quality of edge detection, on an extract of the image “Hougststhese pixels indeed,
the gradient module increases, whereas the location of@ggls remains unchanged.

On the other hand, when the local density of pixels affeciefhlse colors is high,
they cause edge over-detection. In textured areas withdigtiails, most demosaicing
schemes generate a lot of neighboring pixels affected s fabdlors. The gradient mo-
dule at these pixels increases since its computation tatesaccount several neigh-
boring false colors. The gradient module at local maximaeases, so that it may
become higher than the high threshdjdused by the hysteresis thresholding. In that
case, new edge pixels are detected. For example, fifusbows that edge pixels are
over-detected in textured areas which correspond to thigeshand to the tiles of the
house roofs.

Finally, we notice that statistics about sub-detected gilgels can be exploited to
measure the blurring effect caused by demosaicing, andttestdetected pixels are
located in areas with a high density of false colors.
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6. Conclusion

This paper is related to the majority of digital color cansenahich are equipped
with a single sensor. The surface of this sensor is covereddnjor filter array which
consists in a mosaic of spectrally selective filters, sod¢laah sensor element samples
only one of the three color components Red, Green or Blue.atesfon the Bayer
CFA which is the most widely used. To estimate the coRIG(B) of each pixel in
a true color image, one has to determine the values of the tissimg color compo-
nents at each pixel in the CFA image. This process is comma&fgred to aCFA
demosaicingand its result as theemosaiced image

Demosaicing methods may exploit the spatial and/or frequeéobmains. The spa-
tial domain has been historically used first, and many mettawd based on assump-
tions about spectral and/or spatial correlation. Moremdgeworks have appeared that
exploit the frequency domain, which opens wide perspestive

We have compared the performances reached by ten demgssitiames applied
to twelve images extracted from Kodak database, with régpéhbree kinds of quality
measurements : classical fidelity criteria, artifact-g#am@smeasurements and measu-
rements dedicated to edge detection. The rankings betweesemosaicing schemes
established thanks to these measurements are consistent.

This detailed evaluation highlights that the methods whidmarily analyze the
frequency domain outperform those which only scan the apdtimain. More preci-
sely, the methods proposed bubois(2009 and byLian et al.(2007) provide the best
demosaicing results whatever the criterion used.

The implementation of demosaicing schemes has to respaeimee constraints.
Indeed, the time required for image demosaicing has to berltdvan the image acqui-
sition time. Hence, it would be useful to look for a comproertietween the processing
time and the performance reached by the examined demagaiciemes. This study
would allow to select the best methods which are less tinmswming.

Thanks to a visual comparison of the results, we have desttite relationships
between artifacts and edge detection quality. Zipper etfauses edge sub-detection,
whereas a high density of pixels affected with false colensls to cause over-detection
of edge pixels. These preliminary conclusions are worthdpgeneralized to the rela-
tionships between artifacts and the detection quality leéoteatures in the demosaiced
images.
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