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Abstract 

This paper deals with the complete shaking force and shaking moment balancing of planar 

in-line four-bar linkages with constant input speed. A new solution is discussed, which is carried 

out without counter-rotations. The complete shaking force and shaking moment balancing is 

obtained by using a coupler link, which is a physical pendulum and by adding a class-two Assur 

group with prescribed geometrical and mass parameters. Two types of Assur group are 

examined: two links group with three revolute joints (RRR) and two links group with two 

revolute and one prismatic joints (RRP). Numerical simulations carried out using ADAMS 

software validate the proposed balancing technique and illustrate that the obtained six-bar 

mechanism is reactionless, i.e. the sum of all ground bearing forces and their moments are 

eliminated. 

 

Keywords: Shaking force, shaking moment, balancing, planar linkage, Assur group. 

   
1. Introduction 

When an unbalanced linkage must run at high speeds, or contains massive links, 

considerable shaking force and shaking moment are transmitted to its surroundings. These 

disturbances cause vibrations and therefore limit the full potential of many machines. Many 

high-speed machines contain planar four-bar linkages and the problem of their mass balancing is 

of continuing interest to machine designers. The previous works on the balancing of planar four-

bar linkages may be arranged in the following groups. 

(i) Complete shaking force balancing [1]-[7]. In general, it is carried out by counterweights 

mounted on the movable links of the linkage. With regards to the several approaches employed 

for the redistribution of movables masses, the developed methods could be divided into three 

principal groups. a) The method of «principal vectors» [1]; The aim of this approach was to 

study the balancing of the mechanism relative to each link and in the determination of those 

points on the links relative to which a static balance was obtained. These points were called 

«principal points». Then, from the condition of similarity of the vector loop of the principal 

points and the structural loop of the mechanism, the necessary conditions of balancing were 

derived. b) The method of «static substitution of masses»; its aim was to statically substitute the 

mass of the coupler by concentrated masses, which are balanced thereafter together with the 

rotating links. Such an approach changes the problem of mechanism balancing into a simpler 

problem of balancing rotating links. This method was illustrated for four-bar linkage in [2]-[5]. 
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c) The method of «linearly independent vectors» [6], in which the vector equation describing the 

position of the center of total mass of the mechanism is treated in conjunction with the closed 

equation of its kinematic chain. The result is an equation of static moments of moving link 

masses containing single linearly independent vectors. Thereafter following the conditions for 

balancing the mechanism by reducing the coefficients, which are time-dependent to zero.  

It should be noted that the addition of a counterweighted pantograph device to the planar 

four-bar linkage has also been used for its complete shaking force balancing [7]. 

(ii) Complete shaking force and partial shaking moment balancing [8]-[17]. Two principal 

approaches may be distinguished: a) the shaking moment minimization of fully force balanced 

linkages [8]-[14], in which it is shown that the optimum conditions of partial moment balance 

can be obtained by certain link mass distribution ratios. b) the minimization of the unbalance of 

shaking moment by transferring the rotation axis of the counterweight mounted on the input 

crank [15]-[17]. In the study [15], the first harmonic of the shaking moment is eliminated by 

attaching the required input link counterweight, not to the input shaft itself, but to a suitable 

offset one which rotates with the same angular velocity. This approach is original in that, while 

maintaining the force balance of the mechanism, it is possible to create an additional balancing 

moment, thereby reducing the shaking moment. This approach has been further developed in 

works [16], [17].  

It should be noted that optimization algorithms are also widely used in partial balancing of 

four-bar linkages [18]-[21]. 

(iii) Complete shaking force and shaking moment balancing [22]-[32]. The first method of 

complete shaking force and shaking moment balancing was proposed in study [22], which was 

extended in [23]. In this approach, the mass of the connecting coupler is substituted dynamically 

by concentrated masses located at the coupler joints. Thus, the dynamic model of the coupler 

becomes a weightless link with two concentrated masses. This transforms the problem of four-

bar linkage shaking force and shaking moment balancing into a problem of balancing rotating 

links carrying concentrated masses. The parallelogram structure has also been applied for 

complete shaking force and shaking moment balancing of four-bar linkages [24]. In the studies 

[25]-[29], the authors have proposed methods for complete shaking force and shaking moment 

balancing by counterweights with planetary gear trains. In [30] a toothed-belt transmission is 

used to rotate counterweights intended for shaking force balancing, which also allows shaking 

moment balancing. The disadvantage of these methods is the need for the connection of gears to 

the oscillating links. The oscillations of the links of the mechanism will create noise unless 

expensive anti-backlash gears are used.  

Another solution using the copying properties of the pantograph was developed [31], [32], in 

which the gears driven by the coupler suffer no such sudden reversals so that this problem is 

almost eliminated. However, it should be noted that the use of the gears for the balancing of 

four-bar linkages is a drawback for the industrial applications and a fully shaking force and 

shaking moment balanced four-bar linkage without any gears is more appealing.  

The shaking moment balancing of fully force balanced linkages using a prescribed input 

speed fluctuation was proposed in [33]. However, such balancing is complicated because it is 

necessary to use a special type of drive generator. Moreover, it cannot be used for balancing of 

linkages, which generate the prescribed motions of the output links.  

In this paper a new solution is discussed, which allows the complete shaking force and 

shaking moment balancing of in-line
1
 four-bar linkages with constant input speed by adding a 

class-two Assur group, i.e. a group which does not add any supplementary degree of freedom 

into the mechanism [34]. It should be noted that the balancing of the shaking moment without 

counter-rotations of three particular classes of four-bar linkages was discussed in the studies 

                                                
1
 The term ‘in-line’ means that the centres of mass of the links must lie on the line connecting the pivots (which can 

be extended beyond the pivots). The links need not be symmetrical in any way [23]. 
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[35]–[38]. However, such a method cannot be extended to general four-bar linkages. In this 

paper it is proposed to take advantages of the use of the properties of the four-bar linkage with 

prescribed geometric parameters [35]–[38] and to combine it with (i) the principle of the 

dynamic substitution of link mass by concentrated masses and (ii) with the prescription of 

constant input speed. It should be mentioned here that the suggested balancing approach can be 

efficiently applied on the cyclic high-speed machines executing motions in the steady-state 

regime when the input speed is constant [39], [40].  

 

 

2. Complete shaking force and shaking moment balancing by adding a class-two RRR 

Assur group 

 

2.1. Theoretical background related to the balanced four-bar linkages with prescribed 

geometrical parameters. 

 

Before considering the suggested balancing concept, let us recall basic notions concerning 

the balanced four-bar linkages with prescribed geometrical parameters. 

In the paper of Berkof and Lowen [8], the angular momentum H and the shaking moment M, 

expressed at point O, of a force balanced in-line four-bar linkage (Fig. 1) were expressed as:  

 



3

1i

iiIH  ,   



3

1i

iiIH
dt

d
M   (1) 

with 

  iiiiii lrrkmI  22 , (i = 1 and 3) (2) 

  22

2

2

2

222 lrrkmI  , (3) 

where ri is the length of vector ri which connects the pivot Pi to the centre of mass of link i, li is 

the length of vector li which connects the proximal revolute joint Pi to the distal joint on the same 

link, d is the length of the base which is the distance between the two fixed joints on the base, 

and ki is the radius of gyration with respect to the centre of mass of link i, mi is the mass of link i. 

Moreover, i is the angular position of link i with respect to the x-axis. 

 

 
 

Fig. 1. A general in-line four-bar mechanism. 

 

It should be carefully noted that the terms Ii of equations (2) and (3) should not be mistaken 

for the moment of inertia of a link, even if the units are the same.  

With regard to the shaking force balancing, the following expressions were obtained: 

  1 1 2 2 2 1 2/m r m l r l l  , (4) 
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 3 3 2 2 3 2/m r m r l l . (5) 

In the works [35], [36], it has been shown that it is possible to cancel the shaking moment of 

a four bar mechanism by associating mentioned geometric constraints with an optimal 

distribution of masses. Three kinds of shaking force and shaking moment balanced four-bar 

mechanisms were found, which are shown in Fig. 2. 

 

 
 

(a) Case I: l1 = d and l2 = l3 (b) Case II: l1 = l3 and l2 = d 

 

(c) Case III: l1 = l2 and l3 = d 

Fig. 2. The three kinds of shaking force and shaking moment balanced four-bar mechanisms. 

 

In order to illustrate the shaking moment balancing, let us consider the mechanism shown in 

Fig. 2b. The geometrical constraints of this mechanism are the following: 

 31 ll  , (6) 

 2ld  . (7) 

This leads to the following kinematic relationships: 

 0321    . (8) 

Thus, from expressions (1) and (8), it is easy to see that the shaking moment will be cancelled if 

I1=−I2=I3 (see Eqs. (2) and (3)). For this purpose the following relationships must be established 

[34]: 

 
 

2

1

2

22222

2
m

Irrlm
k


 , (9) 

 
 

3

1

2

33332

3
m

Irrlm
k


 , (10) 

where  
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  11

2

1

2

111 lrrkmI  . (11) 

It should be noted that similar results have been obtained for the mechanisms shown in Figs. 

2a and 2c.  

 

Statement of the problem 

 

The aim of the suggested balancing approach consists of adding a two-link kinematic chain 

with prescribed geometrical parameters to an in-line four-bar linkage with arbitrary geometrical 

parameters. It is important to note that the added structure must be an Assur group, i.e. a group 

which does not add any supplementary degree of freedom into the mechanism [34]. This allows 

for the modification of the mass redistribution of the obtained six-bar mechanism without 

perturbation of the kinematic properties of the initial four-bar linkage. We would like to restate 

that this technique allows for the complete shaking force and shaking moment balancing without 

counter-rotating masses.  

Now let us consider the shaking force and shaking moment balancing of an in-line four-bar 

mechanism using class-two Assur groups with RRR kinematic chain. 

 

 

2.2. Shaking force balancing  

 

Fig. 3 shows an in-line four-bar linkage with the added class-two RRR Assur group. Let us 

denote the following vectors as: l1 = dOA, l2 = dAB, l3 = dCB, l’3 = dCP2, l4 = dP2P’2, l5 = dP3P’2, r1 = 

dOS1, r2 = dAS2, r3 = dCS3, r4 = dP2S4, r5 = dP3S5, rCP1 = dOSCP1, rCP2 = dCSCP2, rCP3 = dP3SCP3. The 

notation dPQ represents the vector starting from from P to point Q. 

The added class-two RRR Assur group has the above mentioned properties, i.e. it is 

designed such as: 

 53' ll  , (12) 

 4e l , (13) 

where li (i = 3 to 5) is the norm of vector li and e the distance between C and P3. 

As it is shown in Fig. 3, the Assur group P2P’2P3 is attached to the initial linkage OABC in 

such a way that it forms a four-bar linkage with link (BC), discussed in paragraph 2.1. 

 

 
 

Fig. 3. The balanced mechanism with the class-two RRR Assur group.  

 

Let us now derive the expression of the shaking force Fsh of the obtained mechanism: 

 
5

1

sh i Si

i

m


F d  (14) 
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where mi is the mass of the link i and 
Sid  the translational acceleration of the centre of mass Si. 

Developing and simplifying, one obtains: 

 51 2 2 2 4 4 4
1 2 2 3 3 4 2 4 5 '2

1 2 2 4 4 5

sh A B S P P

rr l r r l r r
m m m m m m m

l l l l l l

   
        
   

F d d d d d  (15) 

where ri is the algebraic values of the norm of vectors ri, and Ad ,
Bd , 

3Sd , 
2Pd  and 2'Pd  represent 

the acceleration of points A, B, S3, P2 and P’2 respectively. Their expressions are: 

 







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

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






1

12

1

1

1
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
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


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)sin(

)cos(

)cos(

)sin(

3
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3

3

3
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





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  rSd , (16c) 

 
3 32
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3 3
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     

     
d , (16d) 
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
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
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


















5

52

5

5

5

552'
sin

cos

cos

sin









  lPd . (16e) 

The shaking force Fsh may be cancelled through the addition of three counterweights 

positioned at points SCPi (Fig. 3), with masses mCPi (i = 1, 2, 3). With such counterweights, the 

expression of the shaking force becomes: 

 1 3
1 2 2 3 '2

1 5

CP CP
sh CW sh CP A CP CP CP P

r r
m m m

l l
     F F F F d d d , (17a) 

where rCPi is the algebraic values of the norm of vectors rCPi and 

 
3 32

2 2 3 3

3 3

sin( ) cos( )

cos( ) sin( )
CP CPr

   
 

   

      
     

     
d . (17b) 

Thus the shaking force is cancelled if the distribution of the masses is as follows: 

 

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


 
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2
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2
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l
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 
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2 3 2 2 3 3 4 4 4 3

sin 1 / ' sin
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cos 1 / ' cos
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 
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 
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

  
, (18b) 
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  (18c) 
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CP
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2.3. Shaking moment balancing 

 

Let us now derive the expression of the shaking moment M, expressed at point O, of such a 

mechanism: 
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    



3

1

5

1

2

i

SCPiSCPiSCPiSCPiCPi

i

iiSiSiSiSii xyyxmkxyyxmM    (19) 

where xSi, ySi, Six  and Siy  are the position and accelerations along x and y axes of points Si, 

respectively, and xSCPi, ySCPi, SCPix  and SCPiy  are the position and accelerations along x and y axes 

of points SCPi, respectively, ki is the radius of gyration of link i.  

Now, let us consider that link 2 is a physical pendulum
2
 [23], i.e. it can be replaced 

dynamically by two point masses located at joint centres A and B. This implies that: 

  222

2

2 rlrk  . (20) 

Then, considering that the input speed is constant, i.e.  

 01  . (21) 

Taking into account Eqs. (20) and (21), one can simplify Eq. (19) as: 

 



5

3i

iiIM   (22) 

where 

  2 2 2 2 '22 4 4
3 3 3 3 2 3 2 2 4 3

2 4

CP CP

r l r
I m k r m l m r m l

l l


     , (23a) 

 2 2

4 4 4 4 4 4( )I m k r r l   , (23b) 

    2 2

5 5 5 5 3 5 4 4 5 5 3 4/CP CPI m k r r r m r l l r l     . (23c) 

Thus, this new six-bar mechanism has the same shaking moment as the four-bar mechanism 

composed of links (P1P2), (P2P’2) and (P’2P3). Therefore, the initial four-bar linkage balancing 

problem is transformed in the balancing of the four-bar linkage formed by the added Assur 

group. Note that the latter has specific geometry and its balancing conditions have been 

examined in section 2.1.    

Applying these results to the considered mechanism, we obtain: 

  2 2

4 3 4 4 4 4/k I r l r m    , (24) 

 
   2

5 3 5 5 4 4 5 3 5 4 32

5

5

/CP CPm r r r m r l r l l I
k

m

   
 . (25) 

Substitution of Eqs. (24)-(25) into eq. (22) leads to: 

  5433    IM , (26) 

Taking into account relations (12) and (13), we have  

 0543    . (27) 

and consequently  

 0M . (28) 

The proposed balancing technique has been illustrated using the four-bar linkage shown in 

Fig. 2b. However, it can also be achieved via the mechanism of Fig. 2a or Fig. 2c.  

 

 

 

 

 

 

                                                
2
 A ‘physical pendulum’ is a link which has such a distribution of masses that it allows the dynamic substitution of 

link’s mass and inertia by two concentrated masses. 

 



 8  

3. Complete shaking force and shaking moment balancing by adding a class-two RRP 

Assur group 

 

3.1. Shaking force balancing 

 

The second solution, which is proposed for the cancellation of the shaking moment of a 

four-bar linkage is carried out by adding a class-two RRP Assur group (Fig. 4).  Let us denote 

the following vectors as: l1 = dOA, l2 = dAB, l3 = dCB, l’3 = dCD, l4 = dDE, r1 = dOS1, r2 = dAS2, r3 = 

dCS3, r4 = dDS4, r5 = dES5, rCP1 = dOSCP1, rCP2 = dCSCP2, rCP3 = dDSCP3. 

 

 
 

Fig. 4. The balanced four-bar linkage with the class-two RRP Assur group.  

 

In this case, the lengths of added links are the following: 

 43' ll  . (29) 

Thus, the new part created by added links is a Scott-Russell mechanism, which is attached to 

the initial linkage at an angle of . 

The relations between link accelerations are the following: 

 43    . (30) 

Let us now derive the expression of the shaking force Fsh of such a mechanism: 

 



5
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Siish m dF   (31) 

where mi is the mass of the link i and Sid  the translational acceleration of the centre of mass Si. 

Developing and simplifying, one obtains: 
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where ri and li are the algebraic values of the norm of vectors ri, and li, respectively,  
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and Dd  represent the acceleration of point D. Its expression is: 
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
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  lDd . (35) 

The shaking force Fsh may be cancelled through the addition of three counterweights 

positioned at points SCPi (Fig. 4), with masses mCPi (i = 1, 2, 3). With such counterweights, the 

expression of the shaking force becomes: 

 1 3
1 2 2 3 3

1 4

CP CP
sh CW sh CP A CP CP CP D CP

r r
m m m m

l l
      F F F F d d d d , (36) 

where rCPi is the algebraic values of the norm of vectors rCPi, and 

 
3 32

2 2 3 3

3 3

sin( ) cos( )

cos( ) sin( )
CP CPr

   
 

   

      
     

     
d . (37) 

Thus the shaking force is cancelled if the distribution of the masses is as follows: 

 






 


2

22
2

1

1
1

1

1
1
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m

l

r
m

r

l
m

CP

CP , (38a) 
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
 5

4

4
4

3

4
3 m

l

r
m

r

l
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CP

CP , (38b) 

 
 

  



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354332232

35433
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lmmrm


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2

2

2

354332232

2

35433
2

cos'cossin'sin

CP

CP
r

lmmrmlrlmlmmrm
m

 
 . (38d) 

 

 

3.2. Shaking moment balancing 

 

With regard to the shaking moment M, expressed at point O, we have: 

    



3

1

5

1

2

i

SCPiSCPiSCPiSCPiCPi

i

iiSiSiSiSii xyyxmkxyyxmM    (39) 

where xSi, ySi, Six  and Siy  are the positions and accelerations along x and y axes of points Si, 

respectively, and xSCPi, ySCPi, SCPix  and SCPiy  are the positions and accelerations along x and y 

axes of points SCPi, respectively, ki is the radius of gyration of link i. 

Now, let us consider as in the previous case, that link 2 is a physical pendulum and that the 

input speed is constant. 

Taking into account Eqs. (20) and (21), one can simplify Eq. (39) as: 

 
3 3 4 4M I I    (40) 

where 

     2

22

2

3354

2

3

2

2
2

2

3

2

333 ' CPCPCP rmlmmml
l

r
mrkmI  , (41) 

   2

33

2

45

2

4

2

444 CPCP rmlmrkmI  . (42) 

Introducing eq. (30) in this expression, we find: 

   343 IIM  . (43) 

Thus, the mechanism will be moment balanced if: 

 I3 = I4, (44) 

which can be obtained using a design of link 4 for which the radius of gyration should be equal 

to 
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4

2

33

2

45

2

443
4

m

rmlmrmI
k CPCP
 . (45) 

It should be mentioned that, in order to avoid the singular configurations of the added 

structure, the value of angle  should be chosen carefully during the design process.  

The next section presents two illustrative examples of the proposed balancing technique. 

 

 

4. Illustrative examples and numerical simulations 

 

4.1. Balancing by adding a class-two RRR Assur group 

 

Let us carry out the complete shaking force and shaking moment balancing of a four-bar 

linkage with parameters given in table 1. The simulations of the proposed mechanism have been 

carried out using ADAMS software and the obtained results are shown in Fig. 5 (full line).  

Now we add the RRR Assur group with prescribed distribution of the center of masses and 

inertia. Its geometric and mass properties are given in table 2 and the location and mass of the 

added counterweights are given in table 3. The radii of gyration of elements 4 and 5 and the mass 

of the counterweight mCP2 are not expressed in these tables as they depend on the value of angle 

(Fig. 3). Their variations as a function of  are shown in Fig. 6. In these figures, the values of 

 are bounded between –60 and 180 deg in order to avoid the RRR Assur group to cross a 

singularity during the motion. In Fig. 5 (dotted line), it is shown that after the addition of the 

Assur group, the shaking force and shaking moment are cancelled. 

 

 

Table 1. Four-bar linkage’s parameters. 

 

Parameters link 1 link 2 link 3 ( = 0 deg) 

li (m) 0.2 0.27 0.25 

mi (kg) 1 1 1 

ri (m) 0.1 0.135 0.125 

ki (m) 0.056 0.135 0.086 

 

 

Table 2. Parameters defining the RRR Assur group. 

 

Parameters link 4 link 5 

li (m) 0.8 0.25 

mi (kg) 1.5 1 

ri (m) 0.4 0.125 

 

Table 3. Parameters defining the counterweights. 

 

Parameters Counterweight 1 Counterweight 2 Counterweight 3 

rCPi (m) -0.1 0.25 -0.125 

mi (kg) 2 – 2.5 
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(a) Shaking force along x-axis. (b) Shaking force along y-axis. 

 

(c) Shaking moment along z-axis. 

Fig. 5. Shaking force and shaking moment of the four-bar mechanism before (full line) and after 

(dotted line) balancing.  

 

As angle  is a free parameter that has only influence on the values k4, k5 and mCP2, it can 

be chosen so that it minimizes one supplementary criterion. In the remainder of the paper, this 

criterion is chosen to be the linkage input torque [39], [40]. It should however be mentioned that 

angle  could be used to minimize another criterion such as the power consumption, the energy, 

etc. 

It should also be noted that the input torque , i.e. the torque requested by the actuator to 

move the mechanism, is computed in the two illustrative examples by using the Lagrange 

equations [40]: 

 
11 






















LL

dt

d

 , (46) 

where L = T – V is the Lagrangian of the system, V is the potential energy (equal to 0 in absence 

of gravity) and T is the kinetic energy: 

  2 2 21 1

2 2
   i Si Si j j

i j

T m x y I , (47) 

Six , Siy  being the velocities along x and y axes of any centres of masses (for links and 

counterweights). 

In Fig. 7, the maximum of the input torque absolute value of as a function of angle  is 

shown. Thus, it is possible to see that if the value of  is chosen arbitrarily, the input torques can 
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grow up to 2140 Nm (for  = 0 deg). It also appears that the input torque will be minimal if  = 

164 deg. In this case, the value of the input torque is 1010 Nm, i.e. about 2 times less than in the 

first case. 

 

  

(a) variation of k4 and k5 (b) variation mCP2 

Fig. 6. Variation of the values of parameters k4, k5 and mCP2 as a function of angle .  

 

 

 
Fig. 7. Variation of the maximal input torque absolute value as a function of angle .  

 

 

4.2. Balancing by adding a class-two RRP Assur group 

 

We now propose obtaining the complete shaking force and shaking moment balancing of the 

same mechanism by adding a class-two RRP Assur group. Its geometric and mass properties are 

given in table 4 and the location and mass of the added counterweights are given in table 5. The 

radii of gyration of element 4 and the mass of the counterweight mCP2 are not expressed in these 

tables as they depend on the value of angle  (Fig. 4). Their variations as a function of  are 

shown in Fig. 8. In these figures, the values of  are bounded between 25 and 100 deg or 205 

and 280 deg in order to avoid the RRP Assur group to cross a singularity during the motion. The 

simulations of the proposed mechanism have been carried out using ADAMS software and the 

results are similar to the previous case shown in Fig. 5. 
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Table 4. Parameters defining the RRP Assur group. 

 

Parameters link 4 ( = -90°) link 5 

li (m) 0.25 0.25 

mi (kg) 0.35 0.1 

ri (m) 0.125 − 

 

Table 5. Parameters defining the counterweights. 

 

Parameters Counterweight 1 Counterweight 2 Counterweight 3 

rCPi (m) -0.1 0.25 -0.125 

mi (kg) 2 – 0.55 

 

 

  

(a) variation of k4 for   [25 100] deg (b) variation of k4 for   [205 280] deg 

  

(c) variation mCP2 for   [25 100] deg (d) variation mCP2 for   [205 280] deg 

 

Fig. 8. Variation of the values of parameters k4 and mCP2 as a function of angle .  
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(a) for   [25 100] deg (b) for   [205 280] deg 

Fig. 9. Variation  of the maximal input torque absolute value as a function of angle .  

 

 

As it was mentioned above, the angle  is a not fixed design parameter and it can be found 

from minimization of the input torque of the mechanism. In Fig. 9, maximum of the input torque 

absolute value as a function of angle  is shown. It is possible to see that if the value of  is 

chosen arbitrarily, the input torques can grow up to 2300 Nm (for  = 25 deg). It also appears 

that the input torque will be minimal if  = 205 deg. In this case, the value of the input torque is 

1380 Nm, i.e. about 1.7 times less than in the first case. 

 

 

5. Conclusion 

 

In this study, a new balancing method is proposed, which allows the shaking force and 

shaking moment cancellation in the in-line four-bar linkages with constant input speed. It is 

carried out without counter-rotating masses because, in this balancing approach, the properties of 

the self-balanced four-bar linkage with prescribed geometric parameters are combined with the 

principle of the dynamic substitution of link by concentrated masses. The suggested balancing is 

obtained by adding a class-two RRR or RRP Assur groups with prescribed geometrical 

parameters to the initial mechanism. The simulations carried out using ADAMS software have 

shown that the obtained six-bar mechanism transmits no inertia loads to its surroundings, i.e. the 

sum of all ground bearing forces and their moments are eliminated. 
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Figures captions 

 

Fig. 1. A general in-line four-bar mechanism. 

Fig. 2. The three kinds of shaking force and shaking moment balanced four-bar mechanisms. (a) 

Case I: l1 = d and l2 = l3. (b) Case II: l1 = l3 and l2 = d. (c) Case III: l1 = l2 and l3 = d. 

Fig. 3. The balanced mechanism with the class-two RRR Assur group.  

Fig. 4. The balanced four-bar linkage with the class-two RRP Assur group.  

Fig. 5. Shaking force and shaking moment of the four-bar mechanism before (full line) and after 

(dotted line) balancing. (a) Shaking force along x-axis. (b) Shaking force along y-axis. (c) 

Shaking moment along z-axis. 

Fig. 6. Variation of the values of parameters k4, k5 and mCP2 as a function of angle . (a) 

variation of k4 and k5. (b) variation mCP2. 

Fig. 7. Variation of the maximal input torque absolute value as a function of angle .  

Fig. 8. Variation of the values of parameters k4 and mCP2 as a function of angle . (a) variation of 

k4 for   [25 100] deg. (b) variation of k4 for   [205 280] deg. (c) variation mCP2 for   [25 

100] deg. (d) variation mCP2 for   [205 280] deg. 

Fig. 9. Variation of the maximal input torque absolute value as a function of angle . (a) for   

[25 100] deg. (b) for   [205 280] deg. 

 

 

Tables captions 

 

Table 1. Four-bar linkage’s parameters. 

Table 2. Parameters defining the RRR Assur group. 

Table 3. Parameters defining the counterweights. 

Table 4. Parameters defining the RRP Assur group. 

Table 5. Parameters defining the counterweights. 

 

 

 

 


