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Safe Distributed Architecture for Image-based
Computer Assisted Diagnosis

Sébastien Varrette, Jean-Louis Roch,Johan Montagnat,
Ludwig Seitz, Jean-Marc Pierson, Franck Leprévost

Abstract— Existing electronic healthcare systems based on
PACS and Hospital IS are designed for clinical practice. Yet, both
for security, technical and legacy reasons, they are often weakly
connected to computing infrastructures and data networks. In
the context of the RAGTIME project, grid infrastructures are
studied to propose a cheap and reliable infrastructure enabling
computerized medical applications. This raises various concerns,
in particular in terms of security and data privacy. This paper
presents the results of this study and proposes a complete grid-
based architecture able to process medical image for assisted
diagnosis in a secured way. Using this infrastructure, care
practitioner are able to execute the application from any machine
connected to the Internet, therefore improving their mobility.
Medical image analysis jobs are certified to be correct using the
latest advances in result checking and fault-tolerant algorithms
provided in [1], [2]. The architecture has been successfully de-
ployed and validated on the Grid5000 large scale infrastructure.

Index Terms— Medical Expert Systems, Security, Distributed
Computing, Image Processing, Parallel Architectures.

I. I NTRODUCTION

The RAGTIME project1 federates researchers in the grid
computing community around a common goal: the manage-
ment of medical information. For that purpose, grids and
more particularly grids of clusters [3] are studied to provide a
cheap distributed computing infrastructure complementary to
clinical PACS2 for medical application. The project aims to
demonstrate how grid technologies can improve the cooper-
ation between PACS located in distant hospitals and enable
medical image analysis procedures.

A grid of cluster corresponds to a cluster aggregation
through the Internet with a remote access for users. This
topology is particularly adapted to represent the network that
would interconnect the PACS.
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The experiment described in this article has the ambition
to convince care practitioner of the improvement and the
flexibility provided by such an architecture (the latter point is
generally seen as incompatible with this technology for end-
users). For that purpose, this paper illustrates an application
of breast cancer lesions detection in mammograms using
statistical comparison on a database of studied cases (see
figure 1). In practice, the database should be located on PACS
that are seen as a secure distributed storage grid for this
application. On the other side, a computing grid composed
of interconnected clusters (either located in hospitals orin
supporting institutions) executes comparison algorithmsto
evaluate the similarity between a new mammogram submitted
by a doctor to those registered in the storage grid.
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Fig. 1. Application for mammograms comparison

Of course, this application raises various constraints, mainly
in terms of security and privacy:

• The system should be accessible from any computer
connected to the Internet.

• Only authorized users (typically a doctor) should be
allowed to use this application and access the resources
(machines or data) required.

• Communications during the process between the re-
sources should be encrypted to guarantee their privacy
and integrity.

• Medical images sent on the computing grid have to be
anonymized to guarantee patient privacy even in case of
a resource corruption.

• Data on the storage grid should be securely stored.
• The system should remain operative even in case of

resources corruption.
• The jobs should be cleverly scheduled on the grid

All these constraints are addressed by the proposed archi-
tecture. Point 4 should normally be addressed by the PACS.
Yet, for obvious security reasons, access to a real PACS in
production mode has not been possible. In this article, the



storage grid is achieved by a simple database, even if we
negotiate access to the distributed database on EGEE3. We
therefore detail in§II-D how data are securely stored in this
model. It is important to notice that as soon as unsafe resources
are used (as in pervasive architecture), it is impossible to
completely trust the results computed [4]. That’s why some
algorithms are considered in§II-B to certify the computed
results. The remaining sections are organized as follows:
§II expounds and justifies the components of the proposed
architecture.§III details the protocol used while§IV concludes
this article and explain future works we plan to add to improve
this experiment.

II. A RCHITECTURAL COMPONENTS

A. Authentication System for Grid Access

Designing a robust authentication system in distributed en-
vironments has been extensively studied [3], [5], [6]. Efficient
solutions depend on the grid topology. As for grids of clusters,
the authors of [3] demonstrate an adapted and efficient solution
based on LDAP servers that broadcast authentication informa-
tion. In terms of security, LDAP provides various guarantees
thanks to the integration of cypher and authentication standard
mechanisms (SSL/TLS, SASL) coupled with Access Control
Lists. All these mechanisms enable an efficient protection
of transactions and access to the data incorporated in the
LDAP directory. The proposed solution is currently used as
the authentication system of Grid50004. It enables access to
the Grid5000 grid - and for the context of this paper to
the execution platform - from any computer connected to
the Internet. Yet, LDAP could easily use other authentication
technologies such as smartcards - this kind of authentication
will be investigated in future works.

B. Ensuring Computation Resilience

Resilience in grid execution is a prerequisite that should
be embedded in the application: at this scale, component
failures, disconnections or results modifications are partof
operations, and applications have to deal directly with repeated
failures during program runs. This integration can be done
in a cross-platform way using a portable representation of
the distributed execution: a bipartite Direct Acyclic Graph
G = (V, E). the first class of vertices is associated to the
tasks (in the sequential scheduling sense) whereas the second
one represents the parameters of the tasks (either inputs or
outputs according to the direction of the edge). Such a graph
is illustrated in figure 2.

Using this representation, the authors in [7], [2] propose
portable fault-tolerance mechanisms for heterogeneous multi-
threaded applications. The flexibility of macro dataflow graphs
has been exploited to allow for a platform-independent de-
scription of the application state. This description resulted

3Enabling Grids for E-sciencEhttp://public.eu-egee.org/
4The Grid5000 project aims at building a highly reconfigurable, controlable

and monitorable experimental Grid platform gathering 9 sitesgeographically
distributed in France featuring a total of 5000 CPUs -https://www.
grid5000.fr
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Fig. 2. Instance of a data-flow graph associated to the execution of five tasks
{f1, ..., f5}. The input parameters of the program are{e1, ..., e4} whereas
the outputs (i.e the results of the computation) are{s1, s2}

in flexible and portable recovery strategies with a low over-
head that only required the existence of a checkpoint server
deployed on a set of safe resources. This server stores the
dataflow graph of the execution provided by the Kernel for
Adaptive, Asynchronous Parallel Interface (KAAPI). KAAPI
is a C++ library that allows to program and execute multi-
threaded computations with dataflow synchronization between
threads. The same approach can be exploited in this paper to
ensure resilience to crash fault of computing resources.

Alternatively, any error on the analysis of an image com-
puted on a grid could have dramatic consequences on the
resulting diagnosis. We do the ”optimistic” assumption that
even if the majority of resources will compute correctly, they
cannot be fully trusted. It is therefore important to reassure
the care practitioner that the computed results are correctand
have not been tampered by a corrupted resource. This requires
efficient error checking algorithms able to certify the correct-
ness of the computation. In this area, dataflow graphs are also
used [1], [8] and provide a tunable probabilistic certification.
These research also assumed the availability of safe resources
gathering a checkpoint server (eventually distributed) together
with a controller (or verifier) used to safely re-execute some
tasks of the program.

Both mechanisms – either for fault-tolerance or error check-
ing – have to be used in the target medical application. This
leads to the infrastructure presented in figure 3 in which the
resources have been divided in two classes:

1) A limited number of safe resources host the checkpoint
server and the verifiers. As it will be seen in§II-E,
the farm daemon of theµgrid middleware will also be
hosted on these resources.

2) the other resources, mentioned as ”unsafe”, constitute
the real computing grid and are divided among the
different hospitals and involved institutions.

C. DICOM Image anonymization

In this experiment, medical images are encoded using the
standard DICOM format (Digital Image and COmmunication
in Medicine). DICOM files contain both image data and
metadata headers containing sensitive patient identifying in-
formation such as name, sex, data acquisition site, etc. Before
sending any data to the computing grid infrastructure, the
DICOM images have to be anonymized to ensure patient
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Fig. 3. Resources hierarchy and mandatory components for portable fault-tolerance and error-checking algorithms

privacy. This is simply done by whipping all metadata out
of the DICOM files.

D. Secured Storage and Access

Since the image files and the associated meta-data in the DI-
COM image format must be considered sensitive information,
one goal is to protect them against unauthorized disclosure
while they are on the storage Grid. Archived images cannot
be fully anonymized, since we need to keep the person related
meta-data that are very important in many medical diagnosis
procedures. A convenient solution is to encrypt all sensitive
data before it is stored onto the Grid.

When using data encryption, the problem arises of how
to make it possible for authorized users to decrypt the data
in order to gain access to its contents. Therefore we need a
mechanism that makes decryption keys accessible for autho-
rized users, while not compromising the security of the data
encryption. Furthermore access to the keys needs to evolve
dynamically with the individual access rights of the users,
without requiring external intervention of an administrator.
Finally we want to have some degree of safety in the key
storage, so that the loss of one or more keys do not cause the
loss of data it encrypts.

In order to make the keys available we store them on key
servers that are not necessarily part of the Grid itself. These
key servers use an access control mechanism to determine
who may access which decryption key. The access control
mechanism used by the key servers should mirror exactly the
file access permissions of the users on the Grid. We have
implemented an access control system calledSygn that can
be used to achieve this. The use of Sygn in the RAGTIME
environment is described in a former paper [9].

In order to make the key server more resilient to attacks
and breakdowns, we do not store entire keys on a single
key server. Instead we use several key servers and split up
the keys we want to store into key-shares, using Shamir’s
secret sharing algorithm [10]. This gives us two considerable
advantages: first, a successful attack on one key server does
not expose actual keys. Attackers will need to successfully
attack a number of key servers equal to the chosen threshold
value of the secret sharing algorithm in order to be able to
reconstruct the actual keys. Second, the algorithm allows for
the creation of redundant key shares, meaning that you only
needany n out of m(with n < m) key-shares to reconstruct a

key. We therefore gain some redundancy if a key server should
be unavailable or even loose its key related data.

The actual data encryption, creation and storage of key-
shares on key servers is performed by a local tool on the
machine of the user that produces the image. We have im-
plemented a prototype of this encrypted storage architecture
called CryptStorewhich is described in more detail in our
publicationEncrypted Storage of Medical Data on a Grid[11].

E. µgrid

Grid5000 is an experimental platform for grid computing
research that is not making any assumption on the middle-
ware to be used. Instead, Grid5000 users are deploying the
middleware they need for their research and experiments. We
have deployed theµgrid middleware [12] over the Grid5000
infrastructure.µgrid is a lightweight middleware prototype
that was developed for research purposes and already used
to deploy applications to medical image processing [13].

The µgrid middleware was designed to use clusters of PCs
available in laboratories or hospitals. It is intended to remain
easy to install, use and maintain. Therefore, it does not make
any assumption on the network and the operating system
except that independent hosts with private CPU, memory,
and disk resources are connected through an IP network
and can exchange messages via communication ports. This
matches the Grid5000 platform. The middleware provides the
basic functionalities needed for batch-oriented applications: It
enables transparent access to data for jobs executed from a
user interface. The code ofµgrid is licensed under the GNU
Public License and is freely available from the authors web
page.

In the µgrid middleware a pool of hosts, providing storage
space and computing power, is transparently managed by a
farm manager. This manager collects the information about the
controlled hosts and also serves as entry point to the grid. The
µgrid middleware is packaged as three elements encompassing
all services offered:

1) A host daemon running on each grid computing host that
manages the local CPU, disk, and memory resources. It
is implemented as a multiprocesses daemon forking a
new process for handling each task assigned. It offers
the basic services for job execution, data storage and
data retrieval on a farm.

2) A farm daemon, running on each cluster, that manages
a pool of hosts. It is implemented as a multithreaded



process performing lightweight tasks such as user com-
mands assignment to computing hosts.

3) A user interface that provides communication facilities
with farm daemons and access to the grid resources.

Although logically separated, the threeµgrid components
may be executed as different processes on a single host. The
communications between these processes are performed using
secured sockets. Therefore, a set of hosts interconnected via an
IP network can also be used to run these elements separately.

The µgrid middleware offers the following services:

• User authentication through X509 certificates. Certificates
are delivered by a certification authority that can be set
up using the sample commands provided in the openSSL
distribution.

• Data registration and replication. The middleware offers
the virtual view of a single file system though data are
actually distributed over multiple hosts. Files on the hosts
need to be registered at the farm to be accessible from the
grid middleware. Furthermore data can be transparently
replicated by the middleware for efficiency reasons.

• Job execution. Computing tasks are executed on the
grid hosts as independent processes. Each job is a call
to a binary command possibly including command line
arguments such as registered grid files.

These functionalities are handled by theµgrid components as
follows. The farm daemon role is to control a computing farm
composed of one or more hosts. It holds a database of host
capacities, grid files, and a queue of scheduled jobs. MySQL
is used as database back-end. When started, the farm daemon
connects to the database back-end. If it cannot find theµgrid
database, it considers that it is executed for the first time and
sets up the database and creates empty tables. In the other
case, it finds in the database, the list of grid files that have been
registered during previous executions and the hosts where files
are physically instantiated.

The host manager role is to manage the resources available
on a host. When started, it collects data about the host CPU
power, its available memory and the available disk space. It
connects to the farm manager indicated on command line or
in a configuration file to which it sends the host information.
The host manager encompasses both a data storage/retrieval
service and a job execution service.

To make use of the system, a user has to know a farm man-
ager to which its requests can be directed. For convenience,the
latest farm managers addressed are cached in the user home
directory. Through the user interface, a user may require file
creation, replication, or destruction, and jobs execution. These
requests are sent to a farm manager which is responsible for
locating the proper host able to handle the user request. To
avoid unnecessary network load, the farm manager does not
interfere any longer between the user interface and the target
host, it only provides the user interface with the knowledge
of the target host and then let the user interface establish a
direct connection with the host for completion of the task.
The system is fault tolerant in the sense that if the farm
manager becomes unreachable (e.g. due to a network failure
or the process being killed), the user interface parses the list of

cached farm managers for completing the request. Similarly,
if a worker node does not respond, it is declared ”down” and
removed from the farm manager list of known living hosts
until it restarts and registers again. The user interface consists
of a C++ API. A single class enables the communication with
the grid and the access to all implemented functionalities.A
command line interface has also been implemented above this
API that offers access to all the functionalities through four
UNIX-like commands (ucp, urm, and uls for file management
similarly to UNIX cp, rm, and ls commands respectively plus
usubmit for starting programs execution on the grid).

F. Analyzing medical images

Many computerized medical image analysis algorithms are
available today. Grid are particularly well suited to tackle very
compute intensive applications like those requiring full image
databases analysis. Indeed, massive data parallelism can often
be exploited on such applications to distribute the workload
over a grid infrastructure [14].

Computer Assisted Diagnosis techniques rely on target
image comparison against annotated reference databases. The
image comparison techniques greatly varies depending on the
concrete medical objectives researched. Some global image
indexing and analysis techniques have been proposed in the
literature, both based on global image descriptors (histograms,
global filter responses, etc) and local area features (localinten-
sity and texture analysis, etc) [15]. Although some interesting
usecases can be implemented, the consideration of a precise
medical parameter to be extracted requires adaptation of these
generic parameters.

In this paper, we are considering an application to breast
cancer lesions detection in mammograms. The objective is to
provide a computerized double reading of mammograms: A
computer software selects images with an identified risk of
malignant lesions for expert reading by a trained radiologist.
Algorithms that may produce false positive (false alarms) but
no false negatives (no malignant cases ignored) can be used
for such an application. Image analysis procedures for mam-
mograms based on a large number of local image descriptors
have been proposede.g. in [16].

G. Sorting Algorithm

Image analysis for assisted diagnosis first consists of com-
parison jobs which results have to be sorted. This can be
done either on safe resources (the verifiers typically) or on
the computing grid. The choice depends on the number of safe
resources available. In the first case,O(n log n) comparisons
should be checkpointed to ensure the sorting ofn scores. This
approach should be prefered in general. In the later case, one
should consider auto-tolerant algorithm to complement result-
checking approach (see§II-B). This approach is required when
safe resources are confined to limited embedded system and/or
have a limited computing power. To facilitate the certification,
we consider sorting algorithms composed of only one type of
tasks. This leads us to sorting networks analyzed by Batcher
[17] and Ajtai, Komlos, and Szemeredi [18]. Such a network
consists ofn registers and a collection of comparators, where
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n is the number of items to be sorted. Each register holds
one of the items to be sorted, and each comparator is a 2-
input, 2-output device that outputs the two input items in sorted
order. The comparators are partitioned into levels so that each
register is involved in at most one comparison in each level.
The depth of the network is defined to be the number of levels
in the network, and the size of the network is defined as the
number of comparators in the network. Extending this model
to our application, an algorithm only composed of comparator
tasks has been considered. One can show that this algorithm
requires at leastΩ(n log n) comparators andΩ(log n) levels
and this bound is reached using the AKS network [18]. As the
best sequential algorithm has a time complexity ofO(n log n),
the best improvement that can be expected usingn processors
is O(log n) so that the AKS network is optimal except for a
constant. In practice, the constant hidden under theO notation
in AKS makes it less efficient than the bitonic sort of Batcher
[17] (with sizeO(n log2 n) and depthO(log2 n)) that should
be prefered.
It remains to make this algorithm auto-tolerant to comparator
tasks failures. The destructive fault model introduced in [19]
has been considered: a faulty comparator task with inputs x
and y can outputf(x, y) andg(x, y) wheref andg can be any
of the following functions:x, y, min(x, y) or max(x, y). In
the case of random faults, and given an-item sorting network
with depth d and sizeN , Assaf and Upfal showed how to
construct a network withO(N log N) comparators andO(d)
levels that (with high probability) can sortn items even if a
constant fraction of the comparators are faulty. Applied tothe
AKS network, this leads to sizeO(n log2 n) and Leighton &

Ma in [20] demonstrates that this is an optimal size. With the
bitonic sort algorithm, an algorithm with sizeO(n log3 n) (the
checkpoint cost) and depthO(log2 n) is obtained.

III. EXPERIMENTAL PROTOCOL

As mentioned in§II-B, the availability of safe resources
is assumed. They will host the controllers, the checkpoint
server and the farm manager. In addition, the storage grid,
the front-end server and the key server are supposed on these
resources. Concerning the image database,§II-D demonstrates
how to provide a secure storage and access. The remaining re-
sources compose the computing grid and are supposed unsafe.
They each run a hostmanager daemon required by theµgrid
middleware (see§II-E). The exact protocol of the experiment
developed is summarized in the figure 4. It combines the
architectural components detailed in§III to provide a complete
and secure platform able to perform breast cancer lesions
detection in mammograms. The protocol conducted in the
experiment is now detailed:

1) The user authenticates to the front-end server. The
authentication system is the one used in the Grid5000
project (see II-A). Communications between the user
machine and the front-end server are encrypted using
SSL to ensure privacy of the request.

2) The user submits a new mammogramI to analyze.
3) The controller submits to the storage grid the meta-data

of the imageI to select a set of indexes onn images
{Ii}0≤i<n

that match the meta-data ofI.

4) The images of the set
{

I ∪ {Ii}0≤i<n

}

are anonymized
(see§II-C). Then, the farm manager submitsn compari-



son jobs, each of them receiving the imagesI andIi as
inputs and computing the similarity scoreri (see§II-F).

5) A certification process is launched to validate the simi-
larity computations (see§II-B).

6) The farm manager submits sorting jobs to execute a
fault-tolerant extension of the bitonic algorithm (§II-G).

7) The sorting process is certified using the result-checking
algorithms developed in§II-B. This produces a tableT
containing the sorted scores together with indexes on the
corresponding imagesIi.

8) Only the first results are likely to interest the user. Con-
sequently, only the 10% first entries ofT are returned.

This complete architecture has been successfully deployed
on Grid5000 where unsafe resources have been simulated to
validate the approach. For this experiment, we only had a
small database of mammograms (for legal reasons, it appears
difficult to access medical images). Yet we hope that the
encouraging results presented in this paper will permit an
access to a wider set of mammograms: As mentioned in the
introduction, we negotiate access to a distributed database on
EGEE.

IV. CONCLUSION & FUTURE WORKS

This paper presents an illustration of a federated research
within the RAGTIME project. The specialities of the respec-
tive authors have been combined to provide a robust and
secure architecture, able to process medical images for assisted
diagnosis. The infrastructure is reachable from any machine
connected to the Internet, therefore improving the mobility
of care practitioner susceptible of using it. He gains a quick
and easy access to results, even from its desk. In the context
of this article, we considered an application of breast cancer
lesions detection in mammograms (even if this infrastructure
can be extended to any kind of medical image processing).
The complete architecture has been successfully deployed and
validated on the Grid5000 large scale infrastructure even if
we only have a small database of images. Having access to
a bigger database will make it possible to provide significant
experimental results. A current work in progress consists in
designing a graphical client to illustrate each step of the ap-
plication described in§III. Future works include the integration
of the access to an EGEE database of medical images and the
use of smartcards for authentication in step (1) of figure 4.
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