
HAL Id: hal-00683203
https://hal.science/hal-00683203

Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic and dynamic optimization of job
partitioning on a grid infrastructure
Tristan Glatard, Johan Montagnat, Xavier Pennec

To cite this version:
Tristan Glatard, Johan Montagnat, Xavier Pennec. Probabilistic and dynamic optimization of job
partitioning on a grid infrastructure. Parallel, Distributed and network-based Processing, Feb 2006,
Montbéliard-Sochaux, France. pp.231-238, �10.1109/PDP.2006.61�. �hal-00683203�

https://hal.science/hal-00683203
https://hal.archives-ouvertes.fr

Probabilistic and Dynamic Optimization of Job Partitioning on a Grid
Infrastructure

Tristan Glatard, Johan Montagnat, Xavier Pennec

Laboratoire Informatique Signaux et Systèmes (I3S) – CNRS, France
INRIA Sophia-Antipolis, France

Abstract

Production grids have a potential for parallel execution
of a very large number of tasks but also introduce a high
overhead that significantly impacts the execution of short
tasks. In this work, we present a strategy to optimize the
partitioning of jobs on a grid infrastructure. This method
takes into account the variability and the difficulty to model
a multi-user large-scale environment used for production.It
is based on probabilistic estimations of the grid overhead.
We first study analytically modeled environments and then
we show results on a real grid infrastructure. We demon-
strate that this method leads to a significant time speed-up
and to a substantial saving of the number of submitted tasks
with respect to a blind maximal partitioning strategy.

Keywords : Grid Computing – Models and Tools – Het-
erogeneous Systems – Parallel Systems – Distributed Sys-
tems

1. Introduction

The problem of sharing independent tasks over a set of a
known amount of computing resources connected through
a reliable and high performance network has been tremen-
dously studied in the field of parallel computing [2, 5]. In
this paper we are addressing a similar problem arising when
considering execution of a set of independent tasks on a
computing grid. A grid is understood here as a set of indi-
vidual computers, connected through a not-so-reliable wide
area network and which topology can dynamically change
over time.

When using grid resources, a user get access to a consid-
erable and potentially infinite amount of distributed com-
puting power. Ideally, a user would split his computing jobs
in as many independent tasks as computing resources avail-
able. In practice though, usage of grid resources introduces
an overhead to the computing time due to the time needed
to reach remote resources, the scheduler working time, the
queuing time, and so on. Moreover, the infrastructure is

actually of course limited and its performance is likely to
decrease if the total number of submitted tasks exceeds a
certain limit. Therefore, optimal computation time is usu-
ally not obtained by maximum splitting: a trade-off has to
be found between splitting and grid overhead that tend to
grow with the number of tasks to deal with.

In the context of grid computing, the problem of tasks
splitting is impacted by several new parameters: the grid re-
sources are highly volatile, the topology of the grid network
is ever changing, and the status of the whole grid is never
fully known at a given instant. In the rest of the paper, we
study the underlying hypotheses and we survey the litera-
ture. Since a quick overlook of the literature does not sat-
isfy us, we propose a probabilistic approach to estimate the
grid computation overhead. We demonstrate the relevance
of our model through an analytical study and we show re-
sults on a real full scale grid used for production.

1.1. Hypothesis and context

Grid is a rather overused term covering a very broad
area. Among the different approaches on distributed sys-
tems that can be qualified as grids and that are currently
being investigated for research, we are focusing on early
grid systems originating from cluster computing that are
being put in production today [4, 3, 9, 6, 15]. In such a
system, the grid is mostly an aggregation of clusters, each
using a classical batch system to handle its local comput-
ing load, and amiddlewaresoftware layer offering an inter-
face to these potentially heterogeneous batch systems and
resources, with a single sign-on entry point for users. Such
a grid is merely a super-batch system capable of handling
tremendous amounts of computations, and particularly ef-
ficient in processing independent and large grain computa-
tions.

Batch computing is restrictive as compared to modern,
highly dynamic systems. Yet, these systems are robust and
able to deal with legacy code without requiring any rewrit-
ing nor instrumentation. A grid deployed over a wide area
network proves to have highly volatile resources: the prob-

1

ability for hardware failure is growing with the amount of
resources and the network instability can temporarily dis-
connect full fragments out of the infrastructure. Moreover,
resources may appear or disappear depending on the needs
for maintenance operations, addition to the infrastructure,
etc. The full grid topology and status cannot be known at a
given instant: grid information providers [17] rely on past
and possibly outdated data on the resources. As production
grids are multi-users (and even multi-community) systems,
they are continuously loaded. The evolution of load put
on grid resources is yet another hardly predictable param-
eter. Production systems are only accessible for end users
by their user interface giving minimal access to their inter-
nal mechanisms. On production grids, we have no access to
the core middleware and we can mainly submit computing
tasks, monitor their evolution, and collect results, to obtain
information on the grid status.

In this paper, we are conducting experiments on the
EGEE infrastructure which corresponds to the description
given above (see section 5.1). The best suited application
for such an infrastructure are so called embarrassingly par-
allel applications: computing tasks with a very high level
of inherent parallelism and no much synchronization con-
straints. High Energy Physics computing is famous for that
kind of applications, and other example in the field of med-
ical imaging are described in the literature [11, 14]. In par-
ticular, the french project AGIR aims at deploying medical
image based applications on grids [7].

1.2. Formalization

Problem description. On real large scale grid infrastruc-
tures, the overhead due to submission, scheduling, etc, can
be of a few minutes. Thus, the submission of short-running
tasks is likely to slow-down the global application. Tasks
should be grouped into larger sets to reduce the impact of
this penalty. Moreover, optimizing the tasks’ granularity
reduces the total number of tasks submitted to the infras-
tructure with respect to the default maximal partitioning
strategy. Hence, a potential improvement of the grid perfor-
mance can be obtained if every user adopts such a strategy.
Consequently, a trade-off has to be found between submit-
ting a high number of short tasks, which maximizes paral-
lelism but may leads the grid overhead to prevail on the run-
ning time, and submitting a small number of longer tasks.

In this context, our ultimate goal is to propose an op-
timization strategy for tuning the granularity of the tasks
submitted to the grid, given a fixed job to execute. This
strategy would aims at :

1. Lowering the total execution time of a job (user’s point
of view) ;

2. Reducing the total number of tasks submitted for a

given job (infrastructure’s point of view).

Problem modeling. Given a total job corresponding to
a known CPU timeW supposed to be divisible into any
numbern of independent tasks and a grid infrastructure in-
troducing an overheadG corresponding to the submission,
scheduling and queuing time of the tasks, we consider that
the execution of the whole task is completed whenall the
tasksare completed. We also make the hypothesis that a
task will be affected to a single processor, so that the num-
bern of submitted tasks strictly corresponds to the number
of processors involved in the execution. Thus, the goal is to
minimize the total execution timeH defined as:

H = maxi∈[1,n]

(

G +
W
n

)

If we assumeG to be a fixed value, the solution is
straightforward andn has to be as high as possible. How-
ever, this assumption is not realistic in most cases, due to the
infrastructure’s nature. A more realistic view is to assume
G to be dependent both oni and time. In the next section,
we review works related to this problem.

2. Related work

A complete comparative study of allocation strategies is
presented in [8], where task execution times are modeled as
random variables with known mean and variance. The au-
thor demonstrates the need for a dynamic allocation strat-
egy and he points out that it is associated with an over-
head which is assumed to be fixed in his study. He con-
siders a system of initially idle processors and notices that
there is a trade-off between overhead and idle time. Under
those assumptions, he compares several allocations strate-
gies by presenting simulation results. Our problem cannot
be entirely addressed by such methods because (i) alloca-
tion strategies consist in optimizing the size of the batches
allocated to the processors whereas we are trying to opti-
mize the total number of processors to use, given that every
processor will be given aW/n CPU time, (ii) we cannot as-
sume the overheadG to be fixed as it varies along time in
our case, and (iii) on a production infrastructure the proces-
sors are never idle. This leads to a queuing time that we take
into account in theG random variable.

Scheduling techniques are largely studied in the litera-
ture. A detailed review of heuristics and a study the im-
pact of performance estimation on the scheduling strategy
is presented in [1]. The authors assume that the scheduler
has knowledge of the current topology of the grid, the num-
ber and location of copies of all input files and the list of
computations and file transfers currently underway or al-
ready completed. This kind of solution is hardly usable

in our case because we do not assume any a priori knowl-
edge about the infrastructure concerning computations in
progress or the current grid topology. In [13] a scheduling
method taking into account the stochastic nature of the time
to compute one unit of data on a distant processor, suppos-
ing that distributions are Gaussian. In particular, the authors
notice that penalizing highly variable processors leads toa
significant speed-up. Even if the variability of resources
has to be taken into consideration (see section 3.1), this
approach cannot totally suit with our problem because (i)
the distribution ofG is not assumed to be Gaussian (and is
actually not, as described in section 4), and (ii) the distribu-
tion of G has to be dynamically estimated in the multi-users
infrastructure we consider. In [12], the author presents de-
cision rules for sequential resource allocation based on dy-
namic programming. They consider the problem consisting
in allocating machines to sequentially arriving tasks. Even
if this kind of solution would constitute an interesting per-
spective, our problem seems not to be treatable by dynamic
programming methods because we here consider a set of in-
dependent tasks being all submitted in parallel, at the same
time, to the infrastructure.

Other works address the task granularity issue, noticing
that there is an optimal number of processors to determine
to minimize the total execution time, taking into account
both computation time and communication time. In [16],
they use heuristics to determine a close to optimal config-
uration, in which tasks are assigned to specific processors
to reduce communication overhead induced by routing and
contention. Even if it provides good results in their scope,
their solution is strictly deterministic and models the com-
munication function linearly in the number of processors,
which cannot properly describe the overheadG we need to
consider. In [11], the authors determine the optimal num-
ber of tasks to submit by determining an analytical model
of the overhead of the grid submission and queuing system
in a batch architecture. Such an analytical model is very
hard to determine in a complex dynamic multi-users grid
infrastructure.

Works such as [10] and inside references propose perfor-
mance analysis methods for task scheduling into embedded
systems, considering probabilistic models of task execution
times. In this work, the authors model task execution by a
generalized continuous probability distribution and propose
a method not restricted to any specific scheduling policy.
They consider both execution time and memory aspects.
Their method is based on the construction of an underlying
stochastic process and its analysis. Even if this approach is
entirely probabilistic and makes no assumption on the na-
ture of the probability function of the execution time, which
well suits with our hypotheses, they assume all the tasks to
be executed concurrently on a single processor.

As a conclusion, the above methods does not seem to

completely match our hypotheses. Therefore, we propose a
dedicated model in the rest of the paper. We adopted a prob-
abilistic approach to cope with the variation of the overhead
G among the tasks. This approach is detailed in the next
section. We address the problem of the dependency ofG
along time with a dedicated infrastructure monitoring sys-
tem that is presented in section 4. Section 5 shows results
and an evaluation of the proposed model on a production
grid.

3. A probabilistic model

In this section, we investigate the problem described
in 1.2 considering that G is a random variable. If we assume
the probabilistic density function (p.d.f) of the random vari-
ableG to be fG(t), then the p.d.f ofH will be fH(t), such
as:

FH(t) = P(H < t) =
n

∏

i=1

P
(

G +
W
n
< t

)

= P
(

G < t −
W
n

)n

= FG

(

t −
W
n

)n

Then fH(t) =
dF
dt
= n. fG

(

t −
W
n

)

.FG

(

t −
W
n

)n−1

The problem can then be formulated as a minimization with
respect ton of the expectationEH of the random variable
H:

EH(n) =

∫

�

t. fH(t)dt

=

∫

�

t.n. fG
(

t −
W
n

)

FG

(

t −
W
n

)n−1

dt

=

∫

�

n.
(

t +
W
n

)

. fG(t).FG(t)n−1dt

=

∫

�

n.t. fG(t).FG(t)n−1dt+
W
n

3.1. Application to synthetic distributions

In this section, we investigate the problem analytically
considering synthetic distributions forG, in order to demon-
strate the relevance of the method in a controlled environ-
ment.

If we for example assumeG to be uniformly distributed
between a minimum valuea and a maximum valueb, then
an explicit solution can be provided: indeed, we then have:

fG(t) =

{

1
b−a if t ∈ [a,b]
0 else

and

FG(t) =



















0 if t < a
t−a
b−a if t ∈ [a,b]
0 if t > b

EH(n) =

∫ b

a
n.t.

1
b− a

.

(t − a
b− a

)n−1
dt+

W
n

EH(n) =
(n+ 1).W+ b.n2 + a.n

n.(n+ 1)

This result is coherent asEH(1) = W + a+b
2 : the execution

time on a single CPU isW and the execution suffers from
a a+b

2 penalty that is the mean overhead introduced by the
infrastructure. Moreover, lim(EH(n))n→+∞ = b: with an in-
finite amount of resources, it corresponds to the worst possi-
ble overhead introduced by the grid (b) and to the best com-
putation time (0). Indeed, as the number of submitted tasks
increases, the probability for one of the tasks to suffer from
a high overhead increases. Finally, lim(EH(n))n→0 = +∞:
the limit of EH towards zero corresponds to the execution
of the task on zero machine. In this case, the execution time
of course tends to infinity.

The next step is the minimization of the expectation of
H. Let us consider its derivative with respect ton:

dE
dn

= −
n2.W+ 2nW+W− b.n2 + a.n2

n2.(n+ 1)2

If W , b− a and
dE
dn
= 0

Then



























n1 = −
√

(b−a)W+W
W−(b−a)

or

n2 =
√

(b−a)W−W
W−(b−a)

n1 is positive if (b−a) >W and negative otherwise whereas
n2 is always negative. Given thatn has to be positive, there
is thus a unique optimal number of tasksnopt minimizing

EH(n) if (b−a) >W and we have:nopt = −
√

(b−a)W+W
W−(b−a) . Such

a configuration is represented on the left graph of figure 1
where we plottedEH(n) for a uniform distribution witha =
200s,b = 4000s andW = 2000s. On the other hand, if (b−
a) <W then dE

dn < 0 so thatEH is strictly decreasing and the
optimal number of tasks corresponds to the maximal one.
Such a configuration is represented on the right graph of
figure 1 where we plottedEH(n) for a uniform distribution
with a = 700s,b = 1500s andW = 2000s. IfW = b −
a, then dE

dn = −
2nW+W
n2.(n+1)2 : it thus has no positive root and

here again, the optimal number of tasks corresponds to the
maximal one.

We thus can conclude from this particular example that
the relative variabilityV = b−a

W of the grid overheadG plays
a strong role into the optimization procedure: whatever the
actual mean ofG is, if V is low enough, then looking for
an optimal job partitioning does not make sense. Indeed, in
that case,G can be seen as a fixed value with respect toW
and the problem is straightforward, as we explained in 1.2.

Figure 1. Representation of EH(n) for a uni-
form distribution with a = 200s, b = 4000s and
W = 2000s (up) and a = 700s, b = 1500s and
W = 2000s (down)

If we now suppose the distribution ofG to be Gaussian,
with meanµ and standard deviationσ, then:

fG(t) =
1

√
2.π.σ

.exp

(

−
(t − µ)2

2.σ2

)

and FG(t) =
1

√
2.π.σ

∫ t

−∞
exp

(

−
(u− µ)2

2.σ2

)

du

EH(n) =

∫

�

n.t.
1

√
2.π.σ

.exp

(

−
(t − µ)2

2.σ2

)

.

(

1
√

2.π.σ

∫ t

−∞
exp

(

−
(u− µ)2

2.σ2

)

du

)n−1

.dt+
W
n

In this case, the relative variabilityV of the overheadG is
denoted byV = σ

W . Minimizing EH(n) is hardly analyti-
cally feasible but we can estimate a minimum numerically.
For example, if we considerµ = 600s andσ = 300s, fig-
ure 2 displays the evolution ofEH(n) with respect ton for
different values ofV ranging from 0.015 to 0.6. We can see
on those figures that the higher the relative variability is,the
deeper the minimum ofEH(n) is. One can here again con-
clude that the optimization procedure is particularly suited
for environments with a high variability with respect toW.

Applying the model on synthetic distributions showed
that it seems coherent and that it is particularly adapted to

Figure 2. EH(n) for a Gaussian distribution
with σ = 300s and µ = 600s. From top to bot-
tom: V = 0.6, V = 0.15 and V = 0.015

highly variable environments. But as stated in the introduc-
tion, we cannot assume the p.d.f ofG to be known. There-
fore, we present in the next section the method we used to
estimate it from measures.

4. Experimental distributions

This section describes the method we used to estimate
the p.d.f ofG from measures.

4.1. Measuring task times

Our optimization method is based on the evaluation of
the p.d.f of the infrastructure’s latencyG. Thus, our pri-

mary goal was to determine a robust procedure to measure
it. Ideally a grid infrastructure should provide this measure
from all the tasks submitted by the users. However from our
user’s point of view, we cannot access the statistics concern-
ing all the tasks submitted to the infrastructure. Thus, the
experimental method we adopted was to submit waves of
dedicated ”ping” tasks to the infrastructure. Those tasks do
not process anything and we use them as probes to measure
the grid latency, by monitoring their submission, scheduling
and queuing times.

The main problem it raises is the fact that the status of
the infrastructure may be disrupted by such a measure. In-
deed, submitting waves of measure tasks would cause an
additional load on the infrastructure, leading to inconsistent
measures. To face this problem, we initially submit a lim-
ited set of ”ping” tasks and then instantaneously submit a
new one each time a ”ping” task completed, so that the to-
tal number of measure tasks running on the infrastructure is
constant, leading to a fixed perturbation.

Even if a grid potentially provides an infinite number
of resources, and thus allows a theoretical infinite number
of task submission, a real infrastructure is actually limited
by the maximum number of simultaneous connections from
the submission entity and the maximum number of tasks on
the scheduler. We empirically tuned the number of ”ping”
tasks as a trade-off between the accuracy of the measure and
the induced overhead. On the target grid infrastructure, we
used 50 measure tasks.

It is true that this kind of method is quite unfair because it
introduces a significant overload on the infrastructure. But
ultimately, the middleware should provide to the users such
statistics computed from all the submitted tasks so that the
method would not be invasive.

4.2. Timeouts

On a real large scale multi-users grid infrastructure task
”losses” may occur because ofe.g.overfull waiting queues,
execution failures on distant heterogeneous machines, net-
work problems and so on. Therefore, setting a timeout to
tasks is required to avoid unreasonable waiting times. Tak-
ing into account timed-out tasks into the optimization pro-
cedure would require to propose a fault-tolerant system han-
dling task resubmissions and so on. Even if we know that it
is a very important problem, this will be part of our future
work. In this present work, we focus on the validation of
the global principle and we thus decided to neglect timed-
out tasks, both in the measure scope and in the validation
study.

Setting the timeout of tasks to get consistent measures is
not straightforward. Indeed, when a measure comes back
from the infrastructure, it describes the infrastructure status
at the measure’s submission instant. Thus, the timeout has

Figure 3. Examples of p.d.f of G

to be inferior to the duration while we could consider that
the infrastructure’s status does not vary. On the other hand,
the timeout has to be large enough not to discard too many
tasks. For our experiments, we fixed the timeout of tasks to
the total CPU time valueW of the task, so that timed-out
tasks are the ones which would lead to a slowing down of
the task by the grid execution.

4.3. Estimating and minimizing the proba-
bilistic density function of G

Once we have latency measures, the next step is to de-
termine the p.d.f of the infrastructure’s latencyG. We did
that by considering the 50 last ping measures and gathering
them into 5 seconds bins. Obtaining the corresponding p.d.f
is then straightforward.

To provide an idea of the overhead times, two sample
examples of the p.d.f ofG at a given instant are displayed
on figure 3. As we can see on this figure, the p.d.f is likely
to strongly vary along time. Moreover, we can notice that
those distributions are clearly not Gaussian. Indeed, they
both are neither mono-modal, nor symmetric with respect
to their mean.

Once we estimated the p.d.f ofG the computation and
minimization ofEH(n) is straightforward, according to sec-
tion 3. We just computedEH(n) with n ranging from 1 to

Min Max Avg Median
δ (seconds) 10 960 258.94 215
δnormalized 0.04 12.64 2.1 1.16

Table 1. Errors between model and measures

a maximum value corresponding to the maximum number
of tasks submittable to the infrastructure from a single user
interface.

5. Experiments and Results

5.1. Infrastructure

We evaluated the proposed model on the grid infrastruc-
ture provided by the EGEE European project1. The plat-
form offered is a pool of thousands computing (standard
PCs) and storage resources accessible through the LCG2
middleware2. The resources are assembled in computing
centers, each of them running its internal batch scheduler.
Tasks are submitted from a user interface to a central Re-
source Broker which distributes them to the available re-
sources. This infrastructure strictly matches the hypothesis
we did on section 1.1. Indeed, from an application point of
view, this infrastructure behaves as a batch scheduler and
we do not have any information on the resources.

5.2. Experiments

We made two experiments to evaluate our model on the
EGEE infrastructure.

First, we evaluated the model capability to correctly pre-
dict the execution time of a set of tasks on the grid infras-
tructure. We submited and measured the total execution
time of a job, having previously estimated this time with
EH(n). The job is composed of 30 tasks, 67 seconds long
each, thus leading to a total CPU timeW of 2000 seconds.

Second, we quantified the benefit induced by the model
(optimal strategy) compared to the naive strategy consisting
in submitting a maximal number of tasks (maximal strat-
egy). A total CPU timeW = 2000s is submitted, on the
one hand using the optimal number of tasks resulting from
the minimization ofEH(n), and on the other hand using a
fixed number of 30 tasks (this corresponds to the maximum
number of tasks we can submit concurrently on the infras-
tructure without hitting some performance loss). To avoid
bias resulting from an evolution of the grid status between
the two submission processes, we alternatively repeated the

1http://www.eu-egee.org
2http://lcg-web.cern.ch

http://www.eu-egee.org
http://lcg-web.cern.ch

Min Max Avg
Expected 0 671 162.5
Measured -775 1308 198.1

Table 2. Time speed-up (s) between maximal
and optimal strategies

two strategies up to 88 times, on various day times (morn-
ings, afternoons, nights) spread over a week and using 3
different Resource Brokers.

5.3. Results

Experiment 1: model vs measures. Table 1 shows on its
upper line statistics concerning the differenceδ in seconds
between the model prediction and the effective measure. In
order to quantify the accuracy of the model, we normalized
this error with the predicted standard-deviation of the ran-
dom variableH : δnormalized =

δ
σH

. The table thus shows
on its lower line the minimum, maximum, average and me-
dian ratios between the measured errors and the standard-
deviationσH of the random variableH. One can notice that
the median ratio is close to 1, that is to say that the mea-
sured error is close to the standard-deviation ofH. We can
thus conclude that the proposed model is effectively able
to predict the execution time of a set of tasks on the grid
infrastructure.

Experiment 2: optimal strategy vs maximal strategy.
Two different conclusions can be made from this experi-
ment.

Task saving: on the 88 experiments, the estimated op-
timal number of tasksn differed from the maximal one 37
times, that is to say in 42% of the experiments. The remain-
ing 58% correspond to the experiments where the computed
optimaln is 30. The total number of submitted tasks is 2580
for the maximal strategy and 1756 for the optimal one. One
thus can see that the optimal strategy leads to a total saving
of 824 tasks, representing 32% of the tasks submitted in the
maximal strategy.

Time speed-up: table 2 shows statistics over the 88 exe-
cutions on the differences (in seconds) between the maximal
and the optimal strategies in cases where the computed op-
timal n differs from the maximal one. Negative values show
that the maximal strategy was faster than the optimal one.
One can notice that the average speed-up introduced by our
optimization strategy is about 200s, which represents 10%
of the total submitted CPU time W.

6. Conclusion and future work

In this work, we detailed a strategy to optimize the job
partitioning on a real grid infrastructure. The method takes
into account the dynamic and probabilistic nature of such
an infrastructure by perpetually refreshing the p.d.f of the
grid’s overhead and minimizing the expectation of the total
task time. We show experimental results demonstrating one
the that (i) a significant speed-up and (ii) a substantial task
saving can be obtained using this method.

However, parameters such as the data transfer time and
the random nature of the computing power of the resources
are not considered by our model. Including them into the
partitioning strategy will be part of our future work. We
also plan to consider timeouts and fault tolerance elements
such as resubmissions in order to propose a more complete
strategy for the optimization of job partitioning on a grid
infrastructure.

7. Acknowledgement

This work is partially funded by the French research pro-
gram “ACI-Masse de donńees”, http://acimd.labri.fr/, AGIR
project (http://www.aci-agir.org/).

References

[1] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
apples parameter sweep template : user-level middleware
for the grid. InACM/IEEE conference on Supercomputing,
2000.

[2] P. Chŕetienne, C. E.G, J. Lenstra, and Z. Liu, editors.
Scheduling theory and its applications. John Wiley and
Sons, 1995.

[3] Condor, high throughput computing.
http://www.cs.wisc.edu/condor/.

[4] European IST project of the FP6, Enabling Grids for E-
sciencE, apr. 2004-mar. 2006. http://www.eu-egee.org/.

[5] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel
job scheduling – a status report. In10th Workshop on Job
Scheduling Strategies for Parallel Processing, New-York,
NY, June 2004.

[6] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit.International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[7] C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard,
E. Jeannot, Y. Legré, C. Loomis, J. Montagnat, J.-M.
Moureaux, A. Osorio, X. Pennec, and R. Texier. Grid-
enabling medical image analysis. In5-th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid
– CCGrid – Bio-Grid workshop, Cardiff, UK, May 2005.
IEEE Press.

[8] T. Hagerup. Allocating independent tasks to parallel pro-
cessors : An experimental study.Journal of Parallel and
Distributed Computing, 47:185–197, 1997.

[9] Legion: worldwide virtual computer.
http://legion.virginia.edu/.

[10] S. Manolache, P. Eles, and Z. Peng. Memory and time-
efficient schedulability analysis of task sets with stochastic
execution time. In13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, 2001.

[11] J. Montagnat, V. Breton, and I. E. Magnin. Medical image
databases content-based queries partitioning on a grid. In
HealthGrid’04, Clermont-Ferrand, France, Jan. 2003.

[12] L. Pronzato. Optimal and asymptotically optimal decision
rules for sequential screening and resource allocation.IEEE
Transactions on Automatic Control, 46(5):687–697, 2001.

[13] J. Schopf and F. Berman. Stochastic scheduling. InSuper-
computing, Portland, USA, 1999.

[14] T. Tweed and S. Miguet. Distributed indexation of a mam-
mographic database using the grid. international. InWork-
shop on Grid Computing and e-Science, 17th Annual ACM
International Conference on Supercomputing, San Fran-
cisco, USA, June 2003.

[15] UNICORE: Uniform Interface to Computing Resources.
http://unicore.sourceforge.net/.

[16] J. Weissman and X. Zhao. Scheduling parallel applica-
tions in distributed networks.Journal of Cluster Computing,
1998.

[17] R. Wolski. Dynamically forecasting network performance
using the network weather service.Cluster Computing,
1(1):119–132, 1998.

	. Introduction
	. Hypothesis and context
	. Formalization

	. Related work
	. A probabilistic model
	. Application to synthetic distributions

	. Experimental distributions
	. Measuring task times
	. Timeouts
	. Estimating and minimizing the probabilistic density function of G

	. Experiments and Results
	. Infrastructure
	. Experiments
	. Results

	. Conclusion and future work
	. Acknowledgement

