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Abstract

The problem we address in this paper is to build complex
applications by reusing and assembling scientific codes on a
production grid infrastructure. We first review the two main
paradigms for executing application code on a grid: (a)
the task based approach, associated to global computing,
characterized by its efficiency, and (b) the service approach
developed in the meta computing and the Internet commu-
nities, characterized by its flexibility. We carefully introduce
the terminologies coming from different computing commu-
nities and we combine the advantages of both approaches.

We argue that the service approach is more relevant for
composing application codes. However, (i) it introduces an
extra level of complexity on the application developer side
and (ii) it makes application optimization on a grid more
difficult. We propose solutions based on (i) a generic code
wrapper which simplifies new application services devel-
opment and (ii) a new grouping strategy coupled with tra-
ditional data and services parallelization techniques, that
proved to be underused in the grid area for optimization.
These solutions are implemented in our grid workflow en-
actor prototype. To our knowledge, it is the first implemen-
tation taking into account all these optimization levels.

The theoretical performances are analyzed and com-
pared to real measurements. Results are shown on a real,
data-intensive application to medical images analysis. The
execution is done on the very large scale EGEE produc-
tion infrastructure. An execution time speed up of approxi-
mately 9 is achieved, with a minimal additional cost for ap-
plication developers. The strategies adopted being generic,
many other applications could similarly be instrumented at
very low cost. Moreover, our optimized application enactor
is based on existing standards and it is freely available for
download.

1. Introduction

As a consequence of the tremendous research effort car-
ried out by the international community these last years and

the emergence of standards, grid middlewares have reached
a maturity level such that large grid infrastructures where
deployed (EGEE [8], OSG [24], NAREGI [21]) and sus-
tained computing production was demonstrated for the ben-
efit of many industrial and scientific applications [19]. Yet,
current middlewares expose rather low level interfaces to
the application developers and enacting an application on
a grid often requires a significant work involving computer
and grid system experts.

Considering the considerable amount of sequential, non
grid-specific algorithms that have been produced for various
data processing tasks, grid computing is very promising for:

• Performing complex computations involving many
computation tasks (codes parallelism).

• Processing large amounts of data (data parallelism).

Indeed, beyond specific parallel codes conceived for ex-
ploiting an internal parallelism, grids are adapted to the
massive execution of different tasks or the re-execution ofa
sequential code on different data sets which are needed for
many applications. In both cases, temporal and data depen-
dencies may limit the parallelism that can be achieved.

To handle user processing requests, two main strategies
have been proposed and implemented in grid middlewares:

1. In the task basedstrategy, also referred to asglobal
computing, users define computing tasks to be exe-
cuted. Any executable code may be requested by
specifying the executable code file, input data files,
and command line parameters to invoke the execution.
The task based strategy, implemented in GLOBUS [9],
LCG2 [16] or gLite [13] middlewares for instance, has
already been used for decades in batch computing. It
makes the use of non grid-specific code very simple,
provided that the user has a knowledge of the exact
syntax to invoke each computing task.

2. The service basedstrategy, also referred to asmeta
computing, consists in wrapping application codes into
standard interfaces. Such services are seen as black
boxes from the middleware for which only the invoca-
tion interface is known. Various interfaces such as Web



Services [30] or gridRPC [20] have been standardized.
The services paradigm has been widely adopted by
middleware developers for the high level of flexibil-
ity that it offers (OGSA [10]). However, this approach
is less common for application code as it requires all
codes to be instrumented with the common service in-
terface.

In this paper, we are interested in building data-intensive
applications by composing data processing algorithms. We
are proposing efficient and transparent grid processing of
such applications on grid infrastructures through an opti-
mized workflow manager. We discuss the strengths of the
service based approach for achieving this goal in section2
and we present execution optimizations in section3. The
workflow manager is evaluated on a realistic application to
medical images registration in section4. The services com-
position tool proposed is generic and reusable. Many ap-
plication could thus be instrumented at a low cost from the
application developer’s point of view.

2. Composing complex applications

Many sequential codes have been and are being devel-
oped for data analysis. Building applications by assembling
such algorithms is very common, in the image processing
field for instance, where an image analysis procedure often
involves a sequence of basic image processing operations.
In many other application areas, such application compo-
sition is praised as it allows code reusability without intro-
ducing a too high load on the application developers.

The task based approach has been used for grid and batch
computing for a very long time. The service based approach
is more dynamic and flexible but it is usually used for ac-
cessing remote resources which do not necessarily benefit
from grid computing capabilities. This is acceptable for
most middleware services that are located and executed on
a single server but application services that may require
compute-intensive code execution and that are invoked con-
currently in the context of the target applications, can easily
overwhelm the computing capabilities of a single host. To
overcome these limitations some approaches have been ex-
plored, such as submission services replacing the straight
task submission [11] or generic services for wrapping any
legacy code with a standard interface [15].

2.1. Composing services for building appli-
cations

When building an application by composing basic pro-
cessings, the application logic, referred to as theapplication
workflow, can intuitively be represented through a directed

graph ofprocessors(graph nodes) representing computa-
tion jobs and data dependencies (graph arrows) constraining
the order of invocation of processors (see figure1).
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Figure 1. Simple workflow example.

Many workflow representation formats and execution
managers have been proposed in the literature with very dif-
ferent capabilities [31]. We are especially targeting data-
intensive workflow managers used for scientific applica-
tions.

In the task based approach, the description of a task, or
computation job, encompasses both the processing (binary
code and command line parameters) and the data (static dec-
laration). Workflow processors directly represent comput-
ing tasks. The user is responsible for providing the binary
code to be executed and for writing down the precise invo-
cation command line. All computations to be performed are
statically described in the graph.

Conversely in the service based approach, the input data
are treated as input parameters (dynamic declaration), and
the service appears to the end user as a black box hiding
the code invocation. This difference in the handling of data
(static or dynamic declaration) makes the application com-
position far easier from a user point of view, as detailed in
section2.2. The service based approach is also naturally
very well suited for chaining the execution of different al-
gorithms assembled to build an application. Indeed, the in-
terface to each application component is clearly defined and
the middleware can invoke each of them through a single
protocol.

In a service based workflow, each processor is represent-
ing an application component. In addition to the processors
and the data arrows, a service based workflow representa-
tion requires a number of input and output ports attached to
each processor. The oriented arrows are connecting output
ports to input ports. Two special processor nodes are de-
fined: data sourcesare processors without input ports (they
are producing data to feed the workflow) anddata sinks
are processors without output ports (they are collecting data
produced).

A significant difference between the service and task ap-
proaches of workflow composition is that there may exist
loops in a service based workflow given that an input port
can collect data from different sources as illustrated in fig-
ure 2. This kind of workflow pattern is common for opti-
mization algorithms: it corresponds to an optimization loop



converging after a number of iterations determined at the
execution time from a computed criterion. In this case, the
output of processorP1 would correspond to the initial value
of this criterion. P3 produces its result on one of its two
output ports, whether the computation has to be iterated one
more time or not. On the contrary, there cannot be a loop
in the graph of a task based workflow as this would mean
that a processor input is depending on one of its output. An
emblematic task-based workflow manager is indeed called
Directed Acyclic Graph Manager (DAGMan)1. Compos-
ing such optimization loop would not be possible, as the
number of iterations is determined during the execution and
thus cannot be statically described.
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Figure 2. Service-based workflow example.

The service based approach has been implemented in
different workflow managers. The Kepler system [18] tar-
gets many application areas from gene promoter identifi-
cation to mineral classification. It can orchestrate stan-
dard Web-Services linked with both data and control de-
pendencies and implements various execution strategies.
The Taverna project [23], from the myGrid e-Science UK
project2 targets bioinformatics applications and is able to
enact Web-Services and other components such as Soaplab
services [25] and Biomoby ones. It implements high level
tools for the workflow description such as the Feta seman-
tic discovery engine [17]. Other workflow systems such as
Triana [28], from the GridLab project3, are decentralized
and distribute several control units over different comput-
ing resources. This system implements both a parallel and
a peer-to-peer distribution policies. It has been applied to
various scientific fields, such as gravitational waves search-
ing [7] and galaxy visualization [27].

2.2. Data-intensive grid-enabled applica-
tions

The main difference between the task based and the ser-
vice based approach appears when considering the reexe-
cution of the same application workflow over an input data
set. In a task based workflow, a computation task is defined

1Condor DAGMan,http://www.cs.wisc.edu/condor/dagman/
2http://mygrid.org.uk
3http://www.gridlab.org
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Figure 3. Action of the cross product(left) and
dot product(right) operators on the input data

by a single input data set and a single processing. Executing
the same processing over two data results in two indepen-
dent tasks. This approach enforces the replication of the
execution graph for every input data to be processed.

To get closer to the service-based approach, a simple
extension to the task based approach is to propose multi-
input data tasks descriptions where a generic task can be
described for a set of input data, resulting in the executionof
multiple jobs: one per input data. However, it is far from be-
ing commonly available in today’s production middlewares
and it is often treated at the application level. Moreover,
multi-input tasks cannot be used in a workflow where each
task needs to be replicated for every input data.

The service based approach easily accommodates with
input data sets. Data sources are sequentially delivering
input data but no additional complexity of the application
graph is needed. An example of the flexibility offered by
the service-based approach is the ability to define differ-
ent iteration strategiesover the input data of a service.
When a service owns two input ports or more, an itera-
tion strategy defines the composition rule for the data com-
ing from all input ports pairwise. Consider two input sets
A = {A0,A1, . . . ,An} and B = {B0,B1, . . . ,Bm} to
a service. The most common iteration strategy consists
in processing each data of the first set with each data of
the second set in their order of definition, thus producing
min(n,m) result. This corresponds to the case where a se-
quence of pairs need to be processed. This iteration strat-
egy is referred to as adot productin the Taverna commu-
nity [23]. Another common iteration strategy, called across
product, consists in processing all input data from the first
set with all input data from the second set, thus produc-
ing m × n results. Figure3 illustrates these two strategies.
Many other strategies could be implemented but we limit
ourselves to these two ones that are sufficient for imple-
menting most applications.

Using iteration strategies to design complex data inter-
action patterns is a very powerful tool for data-intensive
application developers. It makes the task replication prob-
lem associated to the task-based workflows combinatorial:
a cross product produces an enormous amount of tasks and
chaining cross products just makes the application work-

http://www.cs.wisc.edu/condor/dagman/
http://mygrid.org.uk
http://www.gridlab.org


flow representation intractable even for a limited number
(tens) of input data. Despite the availability of graphical
tools to design application workflow, dealing with many in-
put data quickly becomes impossible for users.

2.3. Data synchronization barriers

A particular kind of processors are algorithms that need
to take into account the whole input data set in their pro-
cessing rather than processing each input one by one. This
is the case for many statistical operations computed on the
data, such as the computation of a mean or a standard devia-
tion over the produced results for instance. Such processors
are referred to assynchronizationprocessors has they repre-
sent real synchronization barriers, waiting for all input data
to be processed before being executed.

2.4. Interfaces and platforms

Another strength of the service based approach is to eas-
ily deal with multiple execution platforms. Each service is
called as a black box without knowledge of the underlying
platform. Several services may execute on different plat-
forms transparently which is convenient when dealing with
legacy code. In the task based approach, a specific submis-
sion interface is needed for each infrastructure.

3. Scheduling and executing the services work-
flow

The service based approach is making services composi-
tion easier than the task based approach as discussed above.
It is thus highly convenient from the end user point of view.
However, in this approach, the control of jobs submissions
is delegated to external services, making the optimization
of the workflow execution much more difficult. The ser-
vices are black boxes isolating the workflow manager from
the execution infrastructure. In this context, most known
optimization solutions do not hold.

Many solutions have indeed been proposed in the task-
based paradigm to optimize the scheduling of an applica-
tion in distributed environments [6]. Concerning workflow-
based applications, previous works [2] propose specific
heuristics to optimize the resource allocation of a complete
workflow. Even if it provides remarkable results, this kind
of solutions is not directly applicable to the service-based
approach. Indeed, in this latest approach, the workflow
manager is not responsible for the task submission and thus
cannot optimize the resource allocation.

Focusing on the service-based approach, nice develop-
ments such as the DIET middleware [5] and comparable ap-
proaches [26, 1] introduce specific strategies such as hierar-
chical scheduling. In [4] for instance, the authors describe a

way to handle file persistence in distributed environments,
which leads to strong performance improvements. How-
ever, those works focus on middleware design and do not
include any workflow management yet. Moreover, those
solutions require specific middleware components to be de-
ployed on the target infrastructure. As far as we know, such
a deployment has only been done on experimental platforms
yet [3], and it is hardly possible for an application running
on a production infrastructure.

Hence, there is a strong need for precisely identifying
generic optimization solutions that apply to service-based
workflows. In the following sections, we are exploring dif-
ferent strategies for optimizing the workflow execution in a
service based approach, thus offering the flexibility of ser-
vices and the efficiency of tasks. First of all, several level
of parallelism can be exploited when considering the work-
flow execution for taking advantage of the grid computing
capabilities. We describe them and then study their impact
on the performances with respect to the characteristics of
the considered application. Besides, we propose a solution
for grouping sequential jobs in the workflow, thus allowing
more elaborated optimization strategies in the service-based
workflow area.

3.1. Asynchronous services calls

To enable parallelism during the workflow execution,
multiple application services have to be called concurrently.
The calls made from the workflow enactor to these services
need to be non-blocking for exploiting the potential paral-
lelism. GridRPC services may be called asynchronously
as defined in the standard [20]. Web Services also the-
oretically enables asynchronous calls. However, the vast
majority of existing web service implementations do not
cover the whole standard and none of the major implemen-
tations [29, 14] do provide any asynchronous service calls
for now. As a consequence, asynchronous calls to web ser-
vices need to be implemented at the workflow enactor level,
by spawning independent system threads for each processor
being executed.

3.2. Workflow parallelism

Given that asynchronous calls are possible, the first level
of parallelism that can be exploited is the intrinsic workflow
parallelism depending on the graph topology. For instance
if we consider the simple example presented in figure2,
processorsP2 and P3 may be executed in parallel. This
optimization is trivial and implemented in all the workflow
managers cited above.



3.3. Data parallelism

When considering data-intensive applications, several
input data sets are to be processed using a given workflow.
Benefiting from the large number of resources available in a
grid, workflow services can be instantiated as several com-
puting tasks running on different hardware resources and
processing different input data in parallel.

Data parallelismdenotes that a service is able to pro-
cess several data sets simultaneously with a minimal per-
formance loss. This capability involves the processing of
independent data on different computing resources.

Enabling data parallelism implies, on the one hand, that
the services are able to process many parallel connections
and, on the other hand, that the workflow engine is able to
submit several simultaneous queries to a service leading to
the dynamic creation of several threads. Moreover, a data
parallel workflow engine should implement a dedicated data
management system. Indeed, in case of a data parallel ex-
ecution, a data is able to overtake another one during the
processing and this could lead to a causality problem, as we
exemplified in [11]. To properly tackle this problem, data
provenance has to be monitored during the data parallel ex-
ecution. Detailed work on data provenance can be found
in [32].

Consider the simple workflow made of 3 services and
represented on figure1. Suppose that we want to execute
this workflow on 3 independent input data setsD0, D1 and
D2. The data parallel execution diagram of this workflow
is represented on figure4. On this kind of diagram, the ab-
scissa axis represents time. When a data setDi appears on
a row corresponding to a processorPj , it means thatDi

is being processed byPj at the current time. To facilitate
legibility, we represented with theDi notation the piece of
data resulting from the processing of the initial input data
setDi all along the workflow. For example, in the diagram
of figure 4, it is implicit that on theP2 service row,D0

actually denotes the data resulting from the processing of
the input data setD0 by P1. Moreover, on those diagrams
we made the assumption that the processing time of every
data set by every service is constant, thus leading to cells of
equal widths. Data parallelism occurs when different data
sets appear on a single square of the diagram whereas in-
trinsic workflow parallelism occurs when the same data set
appears many times on different cells of the same column.
Crosses represent idle cycles.

As demonstrated in the next sections, fully taking into
account this level of parallelism is critical in service-based
workflows, whereas it does not make any sense in task-
based ones. Indeed, in this case it is covered by the work-
flow parallelism because each task is explicitly described in
the workflow description.

D0

P3 X D1

D2

D0

P2 X D1

D2

D0

P1 D1 X
D2

Figure 4. Data parallel execution diagram of
the workflow of figure 1

P3 X D0 D1 D2

P2 X D0 D1 D2

P1 D0 D1 D2 X

Figure 5. Service parallel execution diagram
of the workflow of figure 1

3.4. Services parallelism

Input data sets are likely to be independent from each
other. This is for example the case when a single workflow
is iterated in parallel on many input data sets.

Services parallelismdenotes that the processing of two
different data sets by two different services are totally inde-
pendent. This pipelining model, very successfully exploited
inside CPUs, can be adapted to sequential parts of service-
based workflows. Consider again the simple workflow rep-
resented in figure1, to be executed on the 3 independent
input data setsD0, D1 andD2. Figure5 presents a service
parallel execution diagram of this workflow. Service par-
allelism occurs when different data sets appear on different
cells of the same column. We here supposed that a given
service can only process a single data set at a given time
(data parallelism is disabled).

Data synchronization barriers, presented in section2.3,
are of course a limitation to services parallelism. In this
case, this level of parallelism cannot be exploited because
the input data sets are dependent from each other.

Here again, we show in the next section that service par-
allelism is of major importance to optimize the execution
of service-based workflows. In task-based workflow, this
level of parallelism does not make any sense because it is
included in the workflow parallelism.

3.5. Theoretical performance analysis

The data and service parallelism described above are
specific to the service-based workflow approach. To pre-



cisely quantify how they influence the application perfor-
mances we model the workflow execution time for differ-
ent configurations. We first present general results and then
study particular cases, making assumptions on the type of
application run.

3.5.1 Definitions and notations

In the workflow, apathdenotes a set of processors linking
an input to an output. Thecritical path of the workflow
denotes the longest path in terms of execution time.

nW denotes the number of services on the critical path
of the workflow andnD denotes the number of data sets to
be executed by the workflow.

i denotes the index of theith service of the critical path
of the workflow (i ∈ [0, nW − 1]). Similarly j denotes the
index of thejth data set to be executed by the workflow
(j ∈ [0, nD − 1]).

Ti,j denotes the duration in seconds of the treatment of
the data setj by the servicei. If the service submits jobs to
a grid infrastructure, this duration includes the overheadin-
troduced by the submission, scheduling and queuing times.

Σ denotes the total execution time of the workflow

3.5.2 Hypotheses

The critical path is assumed not to depend on the data set.
This hypothesis seems reasonable for most applications but
may not hold in some cases as for example the one of work-
flows including algorithms containing optimization loops
whose convergence time is likely to vary in a complex way
w.r.t the nature of the input data set.

Data parallelism is assumed not to be limited by infras-
tructure constraints. We justify this hypothesis consider-
ing that our target infrastructure is a grid, whose computing
power is sufficient for our application.

In this section, workflows are assumed not to contain any
synchronization processors. Workflows containing such
synchronization barriers may be analyzed as two sub work-
flows respectively corresponding to the parts of the ini-
tial workflow preceding and succeeding the synchronization
barrier.

3.5.3 Execution times modeling

Under those hypotheses, we can determine the expression
of the total execution time of the workflow for different ex-
ecution policies:

• Sequential case (without service nor data parallelism):

Σ =
∑

i<nW

∑

j<nD

Ti,j (1)

• Case DP: Data parallelism only

ΣDP =
∑

i<nW

max
j<nD

{Ti,j} (2)

• Case SP: Service parallelism only

ΣSP = TnW −1,nD−1 + mnW −1,nD−1 (3)

with: ∀i 6= 0 and ∀j 6= 0,

mi,j = max(Ti−1,j + mi−1,j , Ti,j−1 + mi,j−1)

and:

m0,j =
∑

k<j

T0,k and mi,0 =
∑

k<i

Tk,0

• Case DSP: both Data and Service parallelism

ΣDSP = max
j<nD

{

∑

i<nW

Ti,j

}

(4)

All the above expressions of the execution times can be
demonstrated recursively. By lack of space, these proofs
are not expanded here.

3.5.4 Asymptotic speed-ups

To better understand the properties of each kind of paral-
lelism, it is interesting to study the asymptotic speed-ups
resulting from service and data parallelism in particular ap-
plication cases.

Massively data-parallel workflows. Let us consider a
massively (embarrassingly) data-parallel application (sin-
gle processor P0, very large number of input data). In this
case,nW = 1 and the execution time is:

ΣDP = ΣDSP = max
j<nD

(T0,j) ≪ Σ = ΣSP =
∑

j<nD

T0,j

In this case, data parallelism leads to a significant speed-
up. Service parallelism is useless but it does not lead to any
overhead.

Non data intensive workflows. In such workflows,nD =
1 and the execution time is:

ΣDSP = ΣDP = ΣSP = Σ =
∑

i<nW

Ti,0

In this case, neither data nor service parallelism lead to any
speed-up. Nevertheless, none of them does introduce any
overhead.



Data intensive complex workflows. In this case, we will
suppose thatnW > 1 andnD > 1. In order to analyze
the speed-ups introduced by service and data parallelism,
we make the simplifying assumption of constant execution
times: Ti,j = T . The workflow execution time then re-
sumes to:

Σ = nD × nW × T

ΣDP = ΣDSP = nW × T

ΣSP = (nD + nW − 1) × T

If service parallelism is disabled, the speed-up intro-
duced by data parallelism is:

SDP =
Σ

ΣDP

= nD

If service parallelism is enabled, the speed-up introduced
by data parallelism is:

SDSP =
ΣSP

ΣDSP

=
nD + nW − 1

nW

If data parallelism is disabled, the speed-up induced by
service parallelism is:

SSP =
Σ

ΣSP

=
nD × nW

nD + nW − 1

Service parallelism does not lead to any speed-up if it is
coupled with data parallelism:SSDP = ΣDP

ΣDSP
= 1 . Thus,

under those assumptions, service parallelism may not be of
any use on fully distributed systems. However, section4
will show that even in case of homogeneous input data sets,
T is hardly constant in production systems because of the
high variability of the overhead due to submission, schedul-
ing and queuing times on such large scale and multi-user
platforms. The constant execution time hypothesis does not
hold. This appears to be a significant difference between
grid computing and traditional cluster computing. Figure6
illustrates on a simple example why service parallelism do
provide a speed-up even if data parallelism is enabled, if the
assumption of constant execution times does not hold. The
left diagram does not take into account service parallelism
whereas the right one does. The processing time of the data
setD0 is twice as long as the other ones on serviceP0 and
the execution time of the data setD1 is three times as long
as the other ones on serviceP1. It can for example occur
if D0 was submitted twice because an error occurred and if
D1 remained blocked on a waiting queue. In this case, ser-
vice parallelism improves performances beyond data paral-
lelism as it enables some computations overlap. It justifies
the experimental observations done in section4.

D2

P3 X X D1 X X
D0

D0

P2 X X D2

D1D1D1

D2

P1 D1 X X X
D0D0

P3 X D1 X
D2D0

P2 X D2D0

D1D1D1

D2

P1 D1 X X
D0D0

Figure 6. Workflow execution time without
(left) and with (right) service parallelism
when the execution time is not constant.

3.6. Grouping services and targeting the ex-
ecution platform

In addition to the known strategies described so far, we
propose a processors grouping strategy to further optimize
the execution time of a workflow. Processors grouping con-
sists in merging multiple jobs into a single one. It reduces
the grid overhead induced by the submission, scheduling,
queuing and data transfers times whereas it may also reduce
the parallelism. In particular sequential processors grouping
is interesting because those processors do not benefit from
any parallelism. For example, considering the workflow
of our application presented on figure9 we can, for each
data set, group the execution of thecrestLines and the
crestMatch jobs on the one hand and thePFMatchICP
and thePFRegister ones on the other hand.

Grouping jobs in the task-based approach is straightfor-
ward and it has already been proposed for optimization [2].
Conversely, jobs grouping in the service-based approach is
usually not possible given that (i) the services composing
the workflow are totally independent from each other (each
service is providing a different data transfer and job submis-
sion procedure) and (ii) the grid infrastructure handling the
jobs does not have any information concerning the work-
flow and the job dependencies. Consider the simple work-
flow represented on the left side of figure7. On top, the ser-
vices forP1 andP2 are invoked independently. Data trans-
fers are handled by each service and the connection between
the output ofP1 and the input ofP2 is handled at the work-
flow engine level. On the bottom,P1 andP2 are grouped
in a virtual single service. This service is capable of invok-
ing the code embedded in both services sequentially, thus
resolving the data transfer and independent code invocation
issues. It breaks the hypothesis of all services seen as black
boxes whose internal logic is unknown.

The solution we propose to enable job grouping in a
service-based workflow is to use a generic submission ser-
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vice. This service is able to wrap any executable code. It
exposes a standard interface that takes as input (i) a generic
descriptor of the executable command line and (ii) the input
parameters and data of this executable. The command line
description has to be complete enough to allow dynamic
composition of the command line from the list of param-
eters at the service invocation time and to access the ex-
ecutable and input data files. As a consequence, the exe-
cutable descriptor contains:

1. The name and access method of the executable. In our
current implementation, access methods can be a URL,
a Grid File Name (GFN) or a local file name. The
wrapper is responsible for fetching the data according
to different access methods.

2. The name and access method of the sandboxed files.
Sandboxed files are external files such as dynamic li-
braries or scripts that may be needed for the execution
although they do not appear on the command-line.

3. The access method and command-line option of the
input data. As our approach is service-based, the ac-
tual name of the input data files is not mandatory in
the description. Those values will be defined at the
execution time. This feature differs from various job
description languages used in the task-based middle-
wares. The command-line option allows the service to
dynamically build the actual command-line at the exe-
cution time.

4. The command-line option of the input parameters: pa-
rameters are values of the command-line that are not
files and thus does not have any access method.

5. The access method and command-line option of the
output data. This information enables the service to

register the output data in a suitable place after the ex-
ecution.

We gather all this information into an XML file. An
example of such as description file is presented in fig-
ure 8. It corresponds to the description of the service
crestLines of the workflow of figure9. It describes
the scriptCrestLines.pl which is available from the
servercolors.unice.fr and takes 3 input arguments:
2 files (options-im1 and-im2 of the command-line) that
are already registered on the grid as GFNs at execution time
and 1 parameter (option-s of the command-line). It pro-
duces 2 files that will be registered on the grid. It also re-
quires 3 sandboxed files that are available from the server
colors.unice.fr .

This generic service highly simplifies application devel-
opment because it is able to wrap any legacy code with a
minimal effort. The application developer only needs writ-
ing the executable descriptor for her code to become service
aware. But its main advantage is in enabling the sequential
services grouping optimization. Indeed, as the workflow
enactor has access to the executable descriptors, it is able
to dynamically create a virtual service, composing the com-
mand lines of the codes to be invoked, and submitting a
single job corresponding to this sequence of command lines
invocation.

It is important to notice that our solution remains com-
patible with the services standards. The workflow can still
be executed by other enactors, as we did not introduce any
new invocation method. Those enactors will make standard
service calls (e.g. SOAP ones) to our generic wrapping ser-
vice.

4. Results using our enhanced workflow enac-
tor prototype

The goal of this section is to present experimental re-
sults that quantify the relevance of the optimizations de-
scribed above on a real service-based data-intensive appli-
cation workflow. We first present the design of an enhanced
workflow enactor prototype that implements those features
and we then evaluate its performance on the EGEE produc-
tion grid infrastructure.

4.1. Workflow enactment

We implemented a prototype of a workflow enactor tak-
ing into account the optimizations mentioned in section3:
workflow, data and service parallelism and sequential pro-
cessors grouping. Our hoMe-made OpTimisEd scUfl en-
actoR (MOTEUR) prototype was implemented in Java, in
order to be platform independent. It is available under Ce-
CILL Public License (a GPL-compatible open source li-
cense) athttp://www.i3s.unice.fr/˜ glatard .



<description>
<executable name="CrestLines.pl">

<access type="URL">
<path value="http://colors.unice.fr"/>

</access>
<value value="CrestLines.pl"/>
<input name="floating_image" option="-im1">

<access type="GFN"/>
</input>
<input name="reference_image" option="-im2">

<access type="GFN"/>
</input>
<input name="scale" option="-s"/>
<output name="crest_reference" option="-c1">

<access type="GFN"/>
</output>
<output name="crest_floating" option="-c2">

<access type="GFN"/>
</output>
<sandbox name="convert8bits">

<access type="URL">
<path value="http://colors.unice.fr"/>

</access>
<value value="Convert8bits.pl"/>

</sandbox>
<sandbox name="copy">

<access type="URL">
<path value="http://colors.unice.fr"/>

</access>
<value value="copy"/>

</sandbox>
<sandbox name="cmatch">

<access type="URL">
<path value="http://colors.unice.fr"/>

</access>
<value value="cmatch"/>

</sandbox>
</executable>

</description>

Figure 8. Example of an executable descrip-
tion file.

To our knowledge, this is the only service-based workflow
enactor providing all these levels of optimization.

The workflow description language adopted is the Sim-
ple Concept Unified Flow Language (Scufl) used by the
Taverna workbench [23]. This language is currently becom-
ing a standard in the e-Science community. Apart from de-
scribing the data links between the services, the Scufl lan-
guage allows to define so-called coordination constraints.
A coordination constraint is a control link which enforces
an order of execution between two services even if there
is no data dependency between them. We used those co-
ordination constraints to identify services that require data
synchronization.

We developed an XML-based language to be able to de-
scribe input data sets. This language aims at providing a
file format to save and store the input data set in order to be
able to re-execute workflows on the same data set. It simply
describes each item of the different inputs of the workflow.

Handling the iteration strategies presented in section2.2
in a service and data parallel workflow is not straightfor-
ward because produced data sets have to be uniquely iden-
tified. Indeed they are likely to be computed in a different
order in every service, which could lead to wrong dot prod-
uct computations. Moreover, due to service parallelism,
several data sets are processed concurrently and one can-
not number all the produced data once computations com-
pleted. We have implemented a data provenance strategy to
sort out the causality problems that may occur. Attached to
each processed data segment is a history tree containing all
the intermediate results computed to process it. This tree
unambiguously identifies the data.

Finally, MOTEUR is implementing an interface to both
Web Services and GridRPC instrumented application code.

4.2. Bronze Standard application

We made experiments considering a medical imaging
rigid registration application. Medical image registration
consists in searching a transformation (that is to say 6 pa-
rameters in the rigid case – 3 rotation angles and 3 transla-
tion parameters) between two images, so that the first one
(the floating image) can superimpose on the second one
(the reference image) in a common 3D frame. Medical im-
age registration algorithms are a key component of medical
imaging workflows.

The application we are working on aims at assessing
registration results with a statistical approach called the
Bronze-Standard [22]. The goal is basically to compute the
registration of a maximum of image pairs with a maximum
number of registration algorithms so that we obtain a largely
overestimated system to relate the geometry of all the im-
ages. As a consequence, the mean registration should be
more precise and is called a bronze-standard. It implies that



we are first able to process registrations of many pairs of
images, which is a data-intensive problem.

The workflow of our application is represented on
figure 9. The two inputs referenceImage and
floatingImage correspond to the image sets on which
the evaluation is to be processed. The first registra-
tion algorithm is crestMatch . Its result is used
to initialize the other registration algorithms which are
Baladin , Yasmina andPFMatchICP /PFRegister .
crestLines is a pre-processing step. Finally, the
MultiTransfoTest service is responsible for the evalu-
ation of the accuracy of the registration algorithms, leading
to the outputs values of the workflow. This service eval-
uates the accuracy of a specified registration algorithm by
comparing its results with means computed on all the oth-
ers. Thus, theMultiTransfoTest service has to be
synchronized: it must be enacted once every of its ancestor
is inactive. This is why we figured it with a double square
on figure9.

We chose this particular application because it is a real
example of data-intensive workflow in the medical imaging
field. Moreover, it embeds a synchronization barrier and
thus provides an interesting case of complex service-based
workflow.

Input image pairs are taken from a database of injected
T1 brain MRIs from the cancer treatment center ”Centre
Antoine Lacassagne” in Nice, France, courtesy of Dr Pierre-
Yves Bondiau. All images are 256×256×60 and coded on
16 bits, thus leading to a 7.8 MB size per image (approxi-
mately 2.3 MB when compressed without loss).

4.3. Execution platform

In order to evaluate the relevance of our prototype and
to compare real executions to theoretically expected results,
we made experiments on the EGEE production grid infras-
tructure. This platform is a pool of thousands computing
(standard PCs) and storage resources accessible through the
LCG2 middleware. The resources are assembled in comput-
ing centers, each of them running its internal batch sched-
uler. Jobs are submitted from a user interface to a central
Resource Broker which distributes them to the available re-
sources. Not only workflow and service parallelism but also
data parallelism make sense on such a grid infrastructure.
Indeed, every instance of a service will be submitted to the
grid and thus executed on a different processor.

4.4. Experiments

We executed our workflow on 3 different inputs data sets,
with various sizes, corresponding to the registration of12,
66 and126 image pairs from the above mentioned database,
corresponding to images from1, 7 and25 patients respec-

Configuration Computation time (s)
12 images 26 images 126 images

NOP 32855 76354 133493
JG 22990 68427 125503
SP 18302 63360 120407
DP 17690 26437 34027

SP+DP 7825 12143 17823
SP+DP+JG 5524 9053 14547

Table 1. Execution time for each configura-
tion

y-intercept Slope
(seconds) (s/data sets)

NOP 20784 884
JG 11093 900
SP 6382 897
DP 16328 143

SP+DP 6625 88
SP+DP+JG 4310 79

Table 2. Y-intercept and slope of the obtained
straight lines, for each configuration

tively on whom acquisitions have been done at several time
points to monitor the growth of brain tumors. Each of the
input image pair was registered with the 4 algorithms and
leads to 6 job submissions, thus producing a total number
of 72, 396 and756 job submissions respectively. We sub-
mitted each dataset 6 times with 6 different optimization
configurations in order to identify the specific gain provided
by each optimization.

4.5. Results

Figure10 displays the experimental results we obtained
for each of execution configuration mixing Data Parallelism
(DP), Service Parallelism (SP) and Job Grouping (JG). The
configuration with no optimization (NOP) only includes
workflow parallelism. The corresponding numeric values
are presented in table1 with execution times in seconds.
The full experiment lead to a total running time of 9 days
and 8 hours.

We can notice on figure10 that the graphical representa-
tions of the execution times with respect to the size of the
input data set size are almost straight lines. This could be
expected as the infrastructure is large enough to support the
increasing load.
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5. Discussion

5.1. Metrics for the analysis

To analyze performances, the first relevant metric from
the user point of view is the speed-up, measured as the ra-
tio of the execution time over the reference execution time.
We also introduce two other metrics,y-interceptandslope
ratios of the time curves versus input data size, that allow
a more precise interpretation of experiments on production
grid infrastructures.

Indeed, on multi-users systems, the overhead introduced
by submission, scheduling, queuing and data transfers times
can be very high (around 10 minutes) and quite variable (±
5 minutes) as we already noticed before. This overhead is
measured by the y-intercept value of the curves: this value
denotes the time spent for the processing of0 data set and
thus corresponds to the incompressible amount of time re-
quired to access the infrastructure. Therefore, we introduce
the y-intercept ratio as a metric to compare the influence
of methods on the system’s overhead. This ratio compares
the y-intercept value of the analyzed line with the one of a
reference line.

Besides, given the linear aspect of the execution time
curves, we approximate them as lines by linear regression.
The slope of these regression lines measure the data scal-
ability of the grid, that is to say its ability to process huge
data sets with the same level of performance. Consequently,
we introduce the slope ratio as a metric to compare the influ-
ence of methods on the infrastructure data scalability. This
ratio compares the slope value of the analyzed line with
the one of a reference line. The higher the number of data
to process, the more important the slope ratio parameter is
compared to the y-intercept one.

In case of low latency infrastructures such as local clus-
ters, the y-intercept ratio would be meaningless because it
would be close to0. This metric is thus more specific to pro-
duction grid infrastructures such as the one we described in
section4.3.

In the following sections, we use the slope and y-
intercept ratios in addition to the speed-up metric. For each
configuration, we reported the y-intercept and the slope of
the lines in table2. Those values were obtained by linear re-
gressions on measurements displayed in table1. We relate
our experimental results to the theoretical ones that we pre-
sented in section3.5. As our data set is quite homogeneous
(all the images have the same size), we make the hypothesis
of constant execution times and thus refer to the results pre-
sented in the last paragraph of section3.5.4and in particular
to SDP , SSP andSSDP . For our application,nW is 5 and
nD is either12, 66 or 126, depending on the input data set.

5.2. Impact of the data and service paral-
lelism

DP versus NOP. Given the data-intensive nature of the
application, the first level of parallelism to enable to im-
prove performances is data parallelism. In this case, the last
paragraph of section3.5.4predicted a speed-upSD = nD.
We obtain speed-ups of1.86, 2.89 and3.92 for nD = 12,
66 and126 image pairs respectively. This speed-up is effec-
tively growing with the number of input images as predicted
by the theory, although it is lower than expected. Indeed,
this experiment shows that the system variability (on trans-
fer and queuing time in particular) and the increasing load
of the middleware services on a production infrastructure
cannot be neglected.

To go further in the analysis, we can compute from ta-
ble2 that in this case, data parallelism leads to a slope ratio
of 6.18 and to a y-intercept ratio of1.27. Data parallelism
thus mainly influences the slope ratio. It is coherent as this
metric is designed to evaluate the data scalability of the sys-
tem. Although a higher slope ratio could be expected on a
dedicated system to some extent (until the number of ded-
icated resources is reached), we can see that in our experi-
ment the grid infrastructure smoothly accepts the increasing
load (no saturation effect). This is interesting for applica-
tions such as the Bronze Standard that needs the highest
number of data to be processed as possible.

(DP + SP) versus DP. One can notice is that service paral-
lelism does introduce a significant speed-up even if data par-
allelism is enabled. Indeed, it leads to a speed-up of2.26,
2.17 and1.90 for 12, 66 and126 image pairs respectively
whereas the theory predicted a speed-up ofSSDP = 1. This
result can be justified by noticing that the constant times hy-
pothesis may not hold on such a production infrastructure,
as already suggested in section3.5.4. On a traditional clus-
ter infrastructure, service parallelism would be of minor im-
portance whereas it is a very important optimization on the
production infrastructure we used.

Moreover, we can then notice that in case of data par-
allelism, service parallelism leads to a slope ratio of1.62
and to a y-intercept ratio of2.46. This is another argu-
ment which demonstrates that service parallelism is particu-
larly important on production infrastructures. On traditional
clusters indeed, y-intercept values may be close to0 and
such systems would therefore be less impacted by a reduc-
tion of this metric.

5.3. Impact of the job grouping

JG vs NOP. The speed-up introduced by job grouping is
1.43, 1.12 and1.06 for 12, 66 and126 image pairs respec-
tively. It leads to a slope ratio of0.98 and to a y-intercept



ratio of 1.87. Job grouping only influences the y-intercept
ratio. It is coherent because it has been designed to lower
the system’s overhead which is evaluated by the y-intercept
value.

(JG + SP + DP) vs (SP + DP) In addition to data and
service parallelism, job grouping introduces a speed-up of
1.42, 1.34 and1.23 for 12, 66 and126 image pairs respec-
tively. It leads to a slope ratio of1.11 and to a y-intercept
ratio of 1.54. Here again, job grouping mainly improves
the y-intercept ratio, which is coherent with the expected
behavior.

We can thus conclude that job grouping effectively ad-
dresses the problem for which it as been designed as it leads
to a significant reduction of the system’s overhead.

5.4. Optimization perspectives

The y-intercept and slope values are able to quantify how
an application could be improved, without any reference
to the scale of the infrastructure. Indeed, an ideal system
would have a null slope and a close to zero y-intersect.

The y-intercept value of DP+SP+JG quantifies the poten-
tial overhead reduction that could be targeted. In the future,
we plan to address this problem by grouping jobs of a single
service, thus finding an trade-off between data parallelism
and the system’s overhead.

Besides, the slope value of DP+SP+JG quantifies the po-
tential data scaling improvement that could be targeted. On
an ever-loaded production infrastructure, middleware ser-
vices such as the user interface or the resource broker may
be critical bottlenecks. The theoretical modeling does not
take into account these limitations. A probabilistic model-
ing considering the variable nature of the grid infrastructure
is probably an interesting future path to explore for further
optimizing this value [12].

5.5. Conclusions

Grids have a very interesting potential for processing
data intensive applications and composing new applications
from services wrapping application code. However, the
level of flexibility introduced by the service based approach
also lowers the computations efficiency.

In this paper we have reviewed several optimization
strategies that can be exploited to efficiently process such
applications. We proposed a method for grouping job sub-
missions in a service-based workflow. We designed a com-
plete prototype of an optimized workflow enactor taking
into account workflow, services and data parallelism and
which is able to group sequential jobs in order to speed-
up the execution on a grid infrastructure. The implemented
prototype is able to deal with existing standard workflows

and services description languages. To our knowledge no
other workflow enactor does exploit all these strategies to-
day. The modeling of the overall execution times demon-
strates that in different scenarios, the workflow manager
never leads to performance drops and that it is particularly
efficient for dealing with data-intensive applications. This
is confirmed by an experiment on a medical image regis-
tration application which precisely quantifies the impact of
these optimizations. In addition to the traditional speed-up
metric, we introduced the y-intercept and slope ratios which
are particularly suited for the interpretation of optimizations
on production grids.

We have plans for further optimizing the workflow en-
gine. In particular, we are thinking of an optimal strategy
to adapt the jobs’ granularity to the grid load and a prob-
abilistic modeling of the ever-changing production grid in-
frastructure.
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