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Abstract

In this paper, we present a set of experiments compar-
ing the EGEE production infrastructure and the Grid5000
experimental one. Our goal is to better understand and
quantify how these systems behave under load. We first
identify specific characteristics of the workload and data
management systems of these two infrastructures, underlin-
ing some of their limitations and suggesting some improve-
ments. We experimentally determine characteristic param-
eters for each infrastructure. From them, we build a multi-
grids model that minimizes the execution time of an appli-
cation by finding the best repartition of jobs between these
two systems. We finally coherently compare Grid5000 clus-
ters and EGEE using a real medical imaging application.

1. Introduction

Grids are novel and complex systems that are difficult to
optimally exploit from the end users point of view as their
behavior is not very well known. In this paper, we compare
two grid infrastructures, namely Grid5000 and EGEE. Our
ultimate goal is to understand, from an application point of
view, when it is preferable to use a given system. Through
a set of experiments, we present quantitative results charac-
terizing the performance of those systems. We identify what
differentiates those two platforms that define themselves as
experimental(Grid5000) andproduction(EGEE). We un-
derline their respective main limitations and propose some
improvements.

A brief overview of those systems is first presented in
section2. We then evaluate some of their specific aspects
that are of major importance from an application point of
view: workload management (section3) and data manage-
ment (section4). We finally compare the two systems in a
realistic scenario using a scientific medical imaging appli-
cation.

2. Grid5000 and EGEE infrastructures

The basic components of the EGEE and Grid5000 plat-
forms are the infrastructure, the workload management sys-
tem and the data management one. The infrastructure cov-
ers the physical aspects of the system. Workload manage-
ment is responsible for the submission, scheduling, execu-
tion and results collection of the jobs. Data management
handles representation, storage and access to the data files.

2.1. Grid5000

This platform is made of 13 clusters, located in 9 French
cities and including 1047 nodes for 2094 CPUs. Within
each cluster, the nodes are located in the same geographic
area and communicate through Gigabyte Ethernet links.
Communications between clusters are made through the
french academic network (RENATER). We will focus on 2
particular clusters of this infrastructure: the “idpot” cluster
of the Grenoble site, made of 20 2 GHz biprocessor nodes
and a larger Grid5000 cluster in Sophia Antipolis, made of
105 biprocessor nodes.

Grid5000’s nodes are accessible through the OAR batch
scheduler [1], from a central user interface shared by all the
users of the cluster. A cross-clusters super-batch system,
OARGrid, is currently being deployed and tested.

The home directories of the users are mounted with
NFS [6] on each of the infrastructure’s clusters. Data can
thus be directly accessed inside a cluster. Data transfers be-
tween clusters have to be handled by the users. The storage
capacity inside each cluster is a couple of hundreds of giga-
bytes.

2.2. EGEE

This platform is a pool of 18,000 CPUs clustered in more
than 180 computing centers. Users are grouped into Virtual
Organizations (VOs) which can only access a limited num-
ber of resources. For our VO, about 3000 CPUs, distributed
in 25 computing centers are available. The infrastructure is



spread all over the world and communications between its
components are done through the Internet.

Resources are accessible through the LCG2 middleware.
This middleware is based on various components coming
from the European DataGrid middleware, Globus Toolkit,
Condor, and other toolboxes. Jobs are described in a dedi-
cated format (Job Description Language) which mainly in-
cludes the executable to be run, and the input and output
files to be transfered to the execution resource. Jobs are
submitted from a user interface to a centralResource Bro-
ker (RB) which distributes them to theComputing Elements
(CEs) where they are queued in a batch scheduler and finally
run onWorker Nodes(WNs).

Specific resources are dedicated to data storage. Those
storage elements have a total capacity of 5 petabytes, 21 ter-
abytes of them being accessible for our VO. Data transfers
between theStorage Elements(SEs) and the worker nodes
are mainly done through the gridFTP protocol. Other proto-
cols such as RFIO are also available but they are only used
by a limited number of users. Data files are identified by
Logical File Names(LFNs) on the EGEE grid. LFNs iden-
tify files which may be replicated in multiple physical in-
stances for fault tolerance and optimization reasons.

2.3 Differences between both systems

Figure1 displays the interactions between the main com-
ponents of the studied systems. To perform experiments on
the Grid5000 clusters, we implemented a sequencer to avoid
overloading the OAR batch scheduler. Indeed, this sched-
uler processes connections in parallel but making a high
number of parallel queries rapidly overloads the user inter-
face which hosts the OAR server. In practice, we were not
able to submit and monitor more than 80 jobs in parallel. To
cope with this limitation, we implemented a sequencer that
puts the OAR queries coming from independent application
threads in sequence. On the EGEE system, the Resource
Broker sequentially processes the incoming connections.

The EGEE infrastructure is aproductiongrid, strongly
administrated and exploited 24/7 for scientific production.
Its resources are part of ever loaded computing centers and
are shared by a very large users community (in the order of
1000 registered users). They are distributed on the WAN
and likely to be affected by network instabilities. Con-
versely, Grid5000 is anexperimentalgrid, whose goal is to
ease research works on grid infrastructures. The resources
are only shared by dozens of users and may be reserved and
tailored for specific experiments. It is possible for a user
to get root access on them and to deploy its own operat-
ing system, whereas it is not possible on EGEE. Resources
are volatile but the connections inside each cluster are much
more stable.

The system load and the (computing or network) re-
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Figure 1. Overview of the systems. Left:
Grid5000 ; right: EGEE

sources volatility have severe consequences on the schedul-
ing and queuing times of the systems. One direct conse-
quence is the variability measured and discussed in the next
sections. A side effect is the non null probability to get out-
liers: jobs that are lost or blocked for a considerable time
before being processed. This problem is characteristic of
grid infrastructures and cannot be ignored unless a single
job could stop a very complex computation. Timeouts have
to be set up to deal with such outliers. For the same reason,
we did not compute any means nor standard deviations in
the analysis of the experimental results shown below. We
usedmediansand inter-quartile ranges(IQR) which are
less sensitive to outliers instead. Considering a sorted set
of values, the IQR is the interval defined between the first
quarter and the third quarter of the number of values. It rep-
resents the interval of the most relevant values, ignoring the
25% lowest and highest ones.

3. Workload management performances

3.1 Variable of interest

The variable of interest in this section is the overhead
caused by the workload management system. We define it
as the difference between theexecution timeof a job (i.e.
the duration between the submission time of the job and the
instant when the results become available) and itsrunning
time(i.e. the time it is effectively running on a resource).

As it will be shown in this section, this overhead may be
very high on large scale infrastructures. It strongly penal-
izes the execution of applications with a high turn-over of
jobs to process. It may come from (i) the network infras-



tructure itself, (ii) the middleware components (scheduling
time, latency of the information system) and (iii) the system
load (queuing time in batch and services queues).

3.2 Experimental method

To measure the overhead, we progressively loaded the
workload management system by submitting an increasing
numbern of short jobs. We resubmitted a new job each
time a job completed, so that the total load introduced by
the experiment was constant. We considered short (trun =1
minute long) jobs. These jobs were sleeping for one minute
to ensure constant execution time independently from the
hardware on which they were running. This experimental
setting favored a short turn-over of jobs and stressing con-
ditions of the WMS. Experiments were run over 3 hours pe-
riods (a long enough period compared to the jobs duration
to capture the system behavior over a statistically significant
number of measurements). We measured the execution time
texec of the jobs. A measure of the system overhead time
tover was obtained by computing the differencetexec− trun.

3.3 Results

Figure2 displays the median oftover for a growing num-
bern of submitted jobs and for the 3 studied systems. This
figure also displays, for each measure, the inter-quartile
range (IQR) of the overhead. This information measures
the spread of the samples and gives an information about
the variability of the system. For this experiment,20, 000
jobs were submitted to the EGEE infrastructure,32, 000 to
the Sophia cluster and28, 000 to the Grenoble one.

The experimental results suggest an affine behavior of
the median overheads with respect to the number of concur-
rently submitted jobs. We thus fitted a linear modelA.n+B

to the median overhead curve of each system. The lines ob-
tained are plotted on figure2.

The parameters of this model are shown in table1, where
the systems are sorted from the smallest one to the widest.
The determination of those parameters was done by a linear
regression on the median experimental values of the over-
head.

Those parameters will be used as metrics, to characterize
the variation of the median of the overhead with respect to
the number of jobs for each system. TheB parameter mea-
sures thenominal overheadof the system. It corresponds
to the overhead introduced by the system without any load.
The inverse ofA measures thescalabilityof the system with
respect to the number of jobs. It represents the additional
time generated by the submission of 1 extra job to the sys-
tem.

Despite its simplicity, this model provides a relevant way
to compare grid infrastructures, as detailed in the following
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Figure 2. Overhead time vs number of jobs

System A (s/job) B (s)
Grid5000 – Grenoble 3.44 0.48
Grid5000 – Sophia 0.74 8.25

EGEE – biomed VO 0.24 351.4

Table 1. Workload management evaluation

discussion. Moreover, it will allow the design of a multi-
grids model introduced in section5.

3.4 Median analysis

Nominal overheads (B metric) are growing with the size
of the infrastructure. This result is not surprising from a
qualitative point of view. Quantitatively, the EGEE system
has a very strong nominal overhead. This value, close to
6 minutes (351 s), may come from (i) the size of the in-
frastructure, which leads to high communication costs and
(ii) its load, which leads to never empty waiting queues and
processing delays on the middleware services. This huge
nominal overhead is a characteristic of production infras-
tructures. On the contrary, the nominal overhead of the
Grenoble cluster of Grid5000 is far lower. Accessing the
infrastructure requires less than a second. This performance
comes from (i) the relative low load of the infrastructure and
(ii) the reduced size of the infrastructure that makes com-
munication costs lower. The Sophia cluster of Grid5000 is
not very far from Grenoble, with an access time of 8.25 sec-
onds.

Conversely, the scalability of the systems is improving
with their size. The job scalability of the EGEE system
constitutes its main advantage. The overhead only grows
by 3.5 minutes from the submission of 5 jobs to 1000 jobs
and the overhead due to the submission of one extra job is
0.24 second (A metric). Conversely, the scalability of the
Grenoble cluster of Grid5000 is weak. Submitting a single
extra job leads to an overhead growth of 3.44 seconds. Here



again, the Sophia cluster stands in the middle: its A metric
is 0.74 seconds. It is three times weaker than on EGEE and
4.65 better than on the Grenoble cluster.

3.5 Improving scalability

The submission procedure plays a strong role in the
growth of the median overhead w.r.t the number of jobs. In-
deed, on all the evaluated systems, submission is done from
a single entry point (the user interface) to a central workload
manager (OAR or RB host) through the network. These two
hosts and the network connection may become bottlenecks
beyond a critical stressing level.

If we compute again the A metric on the values without
submission time, we obtain 0.07 s/job for the EGEE sys-
tem, 0.34 s/job for the Sophia cluster and 2.93 s/job for the
Grenoble one. Comparing those values to the ones obtained
in table1, one can thus conclude that the submission proce-
dure respectively leads to a 3.24, 2.15 and 1.18 slow-down
ratios on the job scalability.

A solution to improve scalability could therefore be to
distribute the submission system, which is a real bottleneck
on all the systems studied, as shown above. Many Resource
Brokers are available on the EGEE system. Nevertheless,
they do not communicate between each others and seri-
ous performance drops can be forecasted in the scheduling
when the load reaches a critical point. Solutions such as the
DIET middleware [2], where many collaborative schedulers
(so-called Master Agents) are able to administrate the same
pool of resources should thus be studied.

3.6 Analysis of the variability

Variability around the median overhead values is an im-
portant parameter as it may strongly influence the validity
of experimental measures.

The main factor of variability is the load of the system
that can be defined, at a given instant, as the number of jobs
being currently handled by the platform. The variability of
the overhead may thus come from (i) the amount of jobs
submitted by the application itself and (ii) the amount of
jobs currently submitted by other users.

To have an idea of the order of magnitude of variabil-
ity on the studied systems, we plotted on figure3, for each
3-hours measure, the inter-quartile range (IQR) of the over-
head time of the submitted jobstover.

On the Sophia cluster, the amount of running jobs from
other users was stable along the experiment. The evolution
of the variability thus strictly comes from the amount of
jobs submitted during our experiment. We can see that the
variability is growing with the number of jobs. This growth
comes from (i) the waiting duration in the OAR queue and

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600  700  800  900  1000

IQ
R

 (
s)

Number of jobs n

EGEE
Sophia

Grenoble

Figure 3. IQR of the overhead vs job number

(ii) the submission time. Both of those processes are se-
quential and the variability between the first and the last
submitted jobs is thus growing with the number of jobs. On
the Grenoble cluster, the situation is almost the same, except
for two measures done around 80 jobs. Those two measures
are clearly outliers. It can be explained by the load coming
from other users at that time. On those two last systems,
the variability for a low number of submitted jobs remains
lower than 15 seconds. Indeed, a few number of processors
may always be available and accessible without any delay.

On the EGEE infrastructure, the situation is quite differ-
ent. Variability is around 3 minutes, even for a low number
of submitted jobs. The order of magnitude of the variabil-
ity remains constant for less than 600 jobs. We can thus
conclude that this variability mainly comes from the load
introduced by other users. Conversely, for more than 600
jobs, the variability is highly growing. This growth may
come from the load introduced by our experiment, either on
the waiting queues of the system or on the submission pro-
cedure. As already mentioned before, the Resource Broker
constitutes a critical bottleneck as it sequentially treats the
submission requests, thus increasing the variability of the
overhead among the jobs.

This high variability, even for a low number of concur-
rently submitted jobs leads to a problem specific to large-
scale production infrastructures: a single job is likely to
penalize the whole application performance if it remains
blocked in a waiting queue of the system. We proposed
in [4] a probabilistic framework addressing this problem by
optimizing the job granularity. We believe that probabilis-
tic approaches are suited to cope with this emerging prob-
lem and plan to extend this approach to the optimization of
other variables such as the timeout value whose determina-
tion plays a key role in the limitation of jobs overheads.



4. Data management performances

Experimental setting. To compare the performances of
the data management systems of EGEE and Grid5000 in-
frastructures, we submitted to the infrastructures a number
of jobs doing nothing but transferring a known amount of
data on their execution resource. To limit the overhead due
to concurrent job submissions, only a few of them (5) were
submitted in parallel. To get information about the variabil-
ity of the results along time, measures were done on a 3
hours time duration.

Data was made of 7.8MB files that were sequentially
transfered to the resource. This granularity corresponds
to the size of the images used in our application (see sec-
tion 6 for details). We measured the median running time
of those jobs by subtracting the median overhead measured
in section3 to the median execution timetexec of those jobs,
which includes data transfers.

Results. The results of this experiment are displayed on
figure4, where the EGEE system is compared to the Greno-
ble cluster of Grid5000. Medians and IQRs segments are
plotted. The total number of jobs submitted was460 for
EGEE and1137 for the Grenoble cluster.

Median performances of both data management systems
are quite similar. The mean speed-up of the Grenoble clus-
ter data management system with respect to the EGEE one
is 1.19. This result indicates a good level of performances
for the EGEE data management system as this experiment
implied inter-clusters transfers, whereas only intra-clusters
transfers were performed on Grid5000.

Here again, the variability of the data transfers time on
the EGEE infrastructure is far more important than on the
Grenoble one. The mean IQR measured on the EGEE in-
frastructure is indeed2059 seconds, whereas it is214 sec-
onds on the Grenoble cluster. This experiment again high-
lights the importance of variability around median parame-
ters on production grid systems.

5 Multi-grids modeling

Grid5000 and EGEE exhibit different behaviors under
load. It is therefore interesting to determine, given a number
of jobs to process, the optimal fraction of these jobs that
should be submitted to each infrastructure to minimize the
total execution time. In this section, we propose a multi-
grids model, based on the experiments of section3. We
will show that the analysis of this model also provides new
metrics to compare the infrastructures.
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5.1 Principle

Let us consider two systems and a total numbern of jobs
to submit in parallel. Letδ ∈ [0, 1] be the fraction of jobs
to submit on the first system. Lett(i)over(n) be the median
overhead time introduced by systemi when it deals with the
submission ofn concurrent jobs. The goal is to minimize
the mean overhead time of the submitted jobs which is:

H(δ) = δ.t(1)over.(δ.n) + (1 − δ).t(2)over. ((1 − δ).n)

Our problem then resumes to the minimization ofH w.r.t
δ. If we consider the linear model presented in section3.3,
H(δ) becomes:

H(δ) = δ(A1.δ.n + B1) +

(1 − δ)(A2.(1 − δ).n + B2)

where,Ai andBi are the model parameters of theith sys-
tem.H has a unique minimum reached for the optimal pro-
portion of jobsδ̂ to submit on the first system:

δ̂(n) =
B2 − B1 + 2.A2.n

2.n.(A2 + A1)
(1)

We have to determine when̂δ(n) is in [0,1]. In the fol-
lowing, we suppose that system 1 is larger than system 2.
According to section3.4, it implies thatB1 > B2. Indeed,
our experimental results showed that the nominal overhead
of the largest system is higher than the one of the small-
est one. Conversely,A1 < A2 because the scalability of
the largest system is better than the one of the smallest one.
In this case, it is straightforward to prove thatδ̂(n) < 1.
This result shows that the proportion of jobs to submit on
the smallest infrastructure is never null. Indeed, the small-
est but fastest infrastructure has to be overwhelmed before



starting submitting on the largest one. Moreover, we can
show that̂δ(n) is positive if and only ifn ≥ n0 = B1−B2

2.A2

.
This result identifies three phases of job submission. In the
first one, whenn ≤ n0, the number of jobs is low enough
to submit all of them on the smallest infrastructure. This
first phase is an initialization one. Whenn exceeds the crit-
ical valuen0, the transient phase begins: a proportionδ̂(n)
of jobs have to be submitted on the largest platform. Dur-
ing this second phase, another variable of interest isn0.5,
the number of jobs for whicĥδ(n) is 0.5, thus implying
that the same number of jobs is submitted to both infras-
tructures (n0.5 = B1−B2

A2−A1

). Beyond this point, the largest
system starts being preponderant. The model finally enters
a saturation phase, wherêδ tends to its asymptotic value
δ̂(∞) = A2

A1+A2

. This value is inferior to1 and denotes the
remaining proportion of jobs that would always be submit-
ted to the largest platform, even if the number of concur-
rently submitted jobs becomes very high.

5.2 Application to the studied systems

The variables of interest identifying the 3 phases de-
scribed in the previous section are displayed, for each pair
of systems, in table2. The first line of this table compares
EGEE to the Sophia cluster of Grid5000. The value ofn0

indicates that there is no need for using EGEE if the number
of jobs is less than232. The transient phase starts from this
critical number of jobs. This value is twice as high as the
number of processors of the Sophia cluster. On the next line,
comparing EGEE to the Grenoble cluster, the critical num-
ber of jobs is51, which is 4 times higher than the number of
processors of the Grenoble cluster. Those values ofn0 are
high, compared to the number of processors of the infras-
tructures. They are another way to perceive the difference
between a production and an experimental infrastructure.

On the contrary, the last line of this table indicates that
the critical number of jobs from which it is necessary to sub-
mit on the Sophia cluster rather than only on the Grenoble
one is1. Indeed, even if those two clusters differ in their
number of processors, the nominal overhead of Sophia’s
cluster has the same order of magnitude as the one of Greno-
ble’s cluster. Thus, it is not penalizing to submit jobs on the
Sophia cluster even if the Grenoble one is not overwhelmed.

Then0.5 value of the same table can lead to similar in-
terpretations. This value corresponds to the abscissa where
the lines cross on figure2. We thus can see that the EGEE
infrastructure and the Sophia cluster lead to the same over-
head if686 jobs are submitted on each infrastructure. This
number of jobs is110 when comparing EGEE to the Greno-
ble cluster and3 for the Sophia versus Grenoble compari-
son.

To have an idea of how the proportion of jobs to sub-
mit on the largest system grows, we plotted on figure5 the

Largest Smallest n0 n0.5 δ(∞)
system system
EGEE Sophia 232 jobs 686 jobs 76%
EGEE Grenoble 51 jobs 110 jobs 93%
Sophia Grenoble 1 job 3 jobs 82%

Table 2. Variables of the multi-grids model

evolution of δ̂ for each pair of systems. All those curves
are growing with the number of jobs, as it could be pre-
dicted from equation1. The bottom one, comparing the
Sophia and the Grenoble clusters, grows rapidly and con-
verges toδ(∞) = 82%. This value characterizes the satu-
ration phase. It indicates the proportion of jobs to submit to
the Sophia cluster when the total number of jobs to submit
is high. This result is close to the proportion of nodes on
the Sophia cluster in the total number of nodes on the two
systems: 105

105+20 = 84%.
Looking at the two upper curves of figure5, we can see

that they are growing as rapidly as the difference of scale
between the two compared systems is high. Concerning the
comparison between EGEE and Grenoble, the curve con-
verges toδ(∞) = 93%. This limit is 76% for the com-
parison between EGEE and the Sophia cluster. This result
indicates that whatever the number of concurrently submit-
ted jobs is, there is no need to submit more than76% of
them on the EGEE infrastructure.

5.3 Validity of the results

The results presented in the beginning of this section are
all inferred from the experiment described in section3.2,
where all the submitted jobs are of identical running time
(1 minute). On a real application, execution times may
strongly vary among the jobs and they would depend on the
performance of the machines, which is not measured here.

Moreover, the multi-infrastructures execution model
does not include parameters such as data transfers between
infrastructures and variable job times that would appear on
a real application. Developping this model is one of our
future goals.

6. Real application case

The goal of this section is to see whether the conclusions
of the previous sections on controlled experiments still hold
on a real application workflow. To better understand the be-
havior of the application on each system, we will compare
the effects of different kinds of parallelism on the applica-
tion execution time.

Our application aims at assessing the accuracy of medi-
cal image registration which is a fundamental processing in
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medical imaging. It consists in searching a 3D transforma-
tion between two images, so that the first one can superim-
pose on the second one in a common 3D frame.

The assessment method implemented by this application
is the Bronze-Standard [5]. This method computes the ac-
curacy of a given registration algorithm by comparing its
results to the ones obtained by other algorithms. The more
important the number of input image pairs is, the more rele-
vant the obtained accuracy results are, as they are based on a
statistical analysis. The same computation workflow needs
to be processed on large input image databases. This appli-
cation is particularly adapted to a grid execution because of
its intrinsic data parallelism.

6.1 Experiment

This application was deployed using MOTEUR, a
service-based workflow enactor that we previously devel-
oped [3]. It is able to optimize the iteration of a single work-
flow on a large number of data sets. MOTEUR is run on the
application host of figure1.

Three different kind of parallelism are present in such
service-based workflows.Workflow parallelismis the first
level of parallelism that can be exploited. It is intrin-
sic to the workflow and depends on the graph topology.
Yasmina can be executed in parallel.Data parallelism
occurs when data sets are processed independently from
each other. Therefore, different input data can be processed
in parallel on different resources. This kind of parallelism
leads to considerable performance improvements.Services
parallelism occurs when the processing of two different
data sets by two different services are totally independent.
This pipelining model, very successfully exploited inside
CPUs, can be adapted to sequential parts of service-based
workflows.

To compare the performances of the Grid5000 and
EGEE systems on our application, we executed it on those
two platforms with12, 66 and126 image pairs, respectively
leading to the submission of 72, 396 and 756 jobs. Each
image is a 256×256×60 16 bits MRI (7.8MB). The run-
ning time of the jobs of a single service may thus be almost
constant (a few minutes for each algorithm).

For each dataset, we also enabled different parallelism
configurations, to study the impact of each of them on the
execution, with respect to the execution system. In the first
configuration (CSP), we enabled service parallelism only.
In the second one (CDP), only data parallelism was present.
And in a third one (CSP+DP), both data and service paral-
lelism were activated. Workflow parallelism was present in
each of the configurations.

Because of the systems variability underlined before, set-
ting a timeout value and a retry number is mandatory. For
our experiment, we set the timeout value to 3000 seconds
and allowed 3 retries.

6.2 Results.

Figure 6 presents the evolution of the application exe-
cution time with respect to the size of the input data set
for each parallelism configuration and for the EGEE system
and the Sophia cluster of Grid5000. A total number of 7350
jobs were submitted for this experiment.

6.3 Discussion

The first striking fact is that for a given configuration,
the execution on the Sophia cluster of Grid5000 is always
faster than on the EGEE system. Even for126 input image
pairs and in theCDP configuration, the execution on EGEE
was slower than on the Sophia cluster. This result means
that we never reached the number of jobs from which the
proportion of jobs to submit on the EGEE infrastructure is
larger than the one to submit on the Sophia cluster.
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Figure 6. Comparison on our application

The influence of data parallelism can be studied from
configurationsCSP and CSP+DP. On the Sophia cluster,
data parallelism respectively leads to a6.04, 7.74 and9.46
speed-ups for12, 66 and126 image pairs. On the EGEE
infrastructure, corresponding speed-ups are2.34, 5.22 and
6.76. It is interesting to notice that for every input data set
size, the speed-up introduced by data parallelism is higher
on the Sophia cluster of Grid5000 than on the EGEE sys-
tem, whereas this last system offers a number of CPUs
highly superior to the one of the Sophia cluster. The rea-
son that could explain it is the high variability of the over-
head introduced by the EGEE platform, as already sug-
gested in section3.6: outlier jobs strongly penalize the
whole application execution. This high variability of the
overhead mainly comes from the load introduced by other
users which are numerous on EGEE. To cope with this prob-
lem, properly setting and dynamically adapting the timeout
value and retry number of the jobs is part of our future work.

The influence of service parallelism can be studied from
configurationsCDP andCSP+DP. On the Sophia cluster,
service parallelism respectively leads to a0.86, 2.9 and
2.86 speed-up for12, 66 and126 input image pairs. On
the EGEE infrastructure, corresponding speed-ups are2.26,
2.17 and1.90.

7. Conclusions

We compared the characteristics of Grid5000 clusters
and EGEE infrastructures. Leading experiments on the
workload management and the data management systems
we experimentally determined parameters matching both
systems behavior under load. This analysis shows that the
job submission procedure introduces an important penalty
on both systems, although they have different saturation lev-
els. Distributing the workload management system would
lead to a major improvement of the applications execution.
For both workload and data management, variability is a

key parameter of production grid infrastructures. Variabil-
ity is demonstrated in stress testing condition and it is also
underlined by the impact of service parallelism on a real
application execution.

We proposed a new multi-grids model based on our pa-
rameterization of the infrastructures. It aims at optimizing
the applications computing time by determining the propor-
tion of jobs to submit on each system.

We finally presented the deployment of the same medical
imaging application on the two systems through a unique
workflow manager. Even on large input data sets, experi-
ments done on this application could not exhibit a case for
which execution was faster on the EGEE infrastructure than
on the Sophia cluster of Grid5000.

This evaluation led to the total submission of90, 000
jobs.
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