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Abstract

Workflow engines are powerful tools to implement data-
intensive scientific applications exploiting parallel grid re-
sources transparently. We discuss the advantages of imple-
menting applications as workflows of services when dealing
with large data sets. We show how the graph of services
associated with data composition operators enable the de-
scription of complex data flows in a very compact format.
We define a strict semantics for two common composition
operators and we propose an algorithm to consistently sat-
isfy this semantics all along the workflow execution. Fi-
nally, we show how our approach enables parallel execu-
tion of the application while preserving the data flow se-
mantics. We implemented the algorithm proposed in MO-
TEUR, an open source workflow engine designed to execute
parallel and data-intensive applications.

1. Introduction

Assembling basic processing components is a powerful
mean to develop new scientific applications. The reusabil-
ity of data processing software components considerably re-
duces applications development time. Workflow description
languages and execution engines ease the development of
such applications by enabling an abstract definition of the
applications logic through a high level representation. They
provide the ability to chain the application components exe-
cution while respecting causality and inter-components de-
pendencies expressed with this abstract representation.

We are focusing on the execution of scientific workflows
requiring the manipulation of large amounts of data. In this
context, it is common to build a scientific data analysis pro-
cedure and to execute it on a large amount of different data
segments to be analyzed. The input data is usually com-
posed of both scientific measurements to be processed and
algorithms parametrization values. It is therefore important
not only to describe the workflow graph, but also the differ-
ent data sets to be processed resulting in multiple data flows.
The description of the input data needs to be independent

from the workflow description itself to enable re-execution
on different data sets and/or with different parameter values
without completely rewriting the workflow.

The description of data flows is better handled through
the service-basedsubmission strategy as discussed in sec-
tion 2. This strategy enables the definition of powerful data
composition patterns (section3) in a compact way. In this
paper, we propose an algorithm for helping the user in com-
posing data flows intuitively (section4). We discuss the
problems arising when exploiting parallelism for optimiz-
ing the use of grid resources in section5 and we illustrate
our approach through a real application to medical images
analysis in section6.

2. Handling data flows

Workflow managers can be broadly classified into two
main categories:control-centric and data-centric. The
control-centric managers, are more focused on the descrip-
tion of complex application flows. They provide an exhaus-
tive list of control structures such as branching, conditions
and loop operators. They can describe very complex con-
trol composition patterns [1, 10, 18] and some of them are
comparable to small programming languages, including a
graphical interface for designing the workflow and an in-
terpreter for its execution. Conversely, data-centric man-
agers usually provide a more limited panel of control struc-
tures and rather focus on the execution of heavy-weight al-
gorithms designed to process large amounts of data. The
complex application logic is supposed to be embedded in-
side the basic application components. Although there isa
priori no contradiction in implementing a workflow man-
ager that is both control and data-centric, the optimization
of different managers for different needs often leads to the
splitting between these two trends. Control-centric man-
agers are commonly implemented to fulfill the e-business
community needs. Applications are often not so compute
nor data-intensive and can be described in a high level lan-
guage suitable for non-experts. Conversely in the scientific
area, complex application codes, both compute and data in-
tensive, are frequently available. The workflow description
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languages are not so rich but the execution engines are bet-
ter taking into account execution efficiency and data transfer
issues [20]. In the remaining of this paper, we will consider
scientific workflow managers only.

With the arising of production grid infrastructures[4, 16,
14], data-intensive applications have emerged in many sci-
entific areas for which workflow processing is particularly
well adapted. In these applications, the workflow manager
should not only enable the description and the control of
the application logic, but it should also provide means of
describing and controlling the data flows. Following on
the main job submission and control strategies used in grid
computing, two main approaches have been proposed to
handle scientific workflows. We refer to them as the the
task-basedand theservice-basedapproaches:

1. In the task-basedstrategy, also referred to asglobal
computing, users define computing tasks to be exe-
cuted. Any executable code may be requested by
specifying the executable code file, input data files,
and command line parameters to invoke the execution.
The task-based strategy, implemented in GLOBUS [5],
LCG21 or gLite2 middlewares for instance, has already
been used for decades in batch computing. An em-
blematic workflow manager using the task-based ap-
proach is the Directed Acyclic Graph Manager (DAG-
Man) from Condor3. Many other works in this frame-
work, such as VDS [7] and Pegasus [3], are built on
top of DAGMan.

2. The service-basedstrategy, also referred to asmeta
computing, consists in wrapping application codes into
standard interfaces. Such services are seen as black
boxes from the workflow manager for which only the
invocation interface is known. Various interfaces such
as Web Services [19] or gridRPC [13] have been stan-
dardized. The services paradigm has been widely
adopted by middleware developers for the high level
of flexibility that it offers (e.g. in the OGSA [6] and
the WS-RF extension to web services). However, this
approach is less common for application codes as it re-
quires all codes to be instrumented with the common
service interface. For instance, the globus toolkit is
built on service-oriented framework. The GRAM-WS
services enable user tasks submission and monitoring.
Yet, the user codes executed are tasks initiated through
a command line call.

The service-based approach has been adoptedfor user
code submissionin well-known workflow managers such
as the Kepler system [11], Taverna [15], Triana [17] or MO-
TEUR [8].

1LCG2 middleware,
http://lcg.web.cern.ch/LCG/activities/middleware.html

2gLite middleware,http://www.glite.org
3Condor DAGMan,http://www.cs.wisc.edu/condor/dagman/

The main difference between the task-based and the
service-based approaches is the way the data sets to be pro-
cessed are handled. In the task-based approach, input data
are specified with each task. This representation mixes data
and processing descriptions. The dependency between two
tasks is explicitly stated as a data dependency in these two
task descriptions. This representation is static and conve-
nient for optimizing the corresponding computations: the
full oriented graph of tasks is known when the computations
are scheduled, thus enabling many optimization opportuni-
ties for the workflow scheduler [2].

Conversely, the service-based approach decouples data
and processings. Input data are dynamically specified at
execution time as input parameters to the workflow man-
ager. Each service is defined independently from the data
to be processed and it is only at the service invocation time
that the input data is sent to the service. This eases the re-
execution of application workflows on different input data
sets. In this framework, the dependencies between conse-
quent services are logically defined at the level of the work-
flow manager. Each service is designed independently from
each other.

2.1. Data-intensive applications on grids

When considering data-intensive applications for which
grids offer a proper computing support, a user often needs to
define a processing workflow that will not apply to a single
piece of input data, but rather to full data sets. Each piece of
data in the input data set has to follow the same processing
flow, independently from the other inputs.

In the task-based approach, two input data, even be-
ing processed by a same algorithm, result in the defini-
tion of two independent tasks. This becomes very te-
dious, and even quickly humanly intractable, when con-
sidering very large data sets to be processed. Additional
tools are needed to automatically produce the huge result-
ing Directed Acyclic Graphs (DAGs). Even so, DAGs pro-
duced can hardly be visualized, especially when consider-
ing the complexity of composition operators introduced in
section3. Conversely, workflows of services easily handle
the description of input data sets independently from the
workflow topology itself. Adding extra inputs does not re-
sult in any additional complexity.

2.2. Dynamic data sets

The non-static nature of data description in the service-
based approach also enables dynamic extension of the data
sets to be processed: a workflow can be defined and exe-
cuted although the complete input data sets are not known in
advance. It will be dynamically fed in as new data are being
produced. Indeed, it is common in scientific applications
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that data acquisition is an heavy-weight process and that
data are being progressively produced. Some workflows
may even act on the data production source itself: stopping
data production once computations have shown that suffi-
cient inputs are available to produce meaningful results.

Moreover, due to the explicit specification of data in
workflows of tasks, it is not possible to define a loop. If
there were a loop, a data would depend on itself. Hence,
task-based workflows are always Directed and Acyclic
Graphs (DAGs). Only in the case where the number of it-
erations is statically known, a loop may be expressed by
unfolding it in the DAG. However, if the loop condition is
dynamically determined (e.g. in optimization loops that are
very frequent in scientific applications), the task-based ap-
proach cannot be used. In a workflow of services, there may
exist loops in the graph of services since it does not imply
a circular dependency on the data. This enables the imple-
mentation of more complex control structures.

Some services may need to consider the complete data
sets simultaneously to perform computations such as statis-
tical parameters (e.g. the mean of all data). These services
are synchronization barriers inside the workflow execution.
Such constraints can easily be expressed in the service-
based framework. The execution engine just needs to know
the specific nature of the service for calling it only one time
once the complete input data sets have be produced.

Most importantly, the dynamic extensibility of input data
sets for each service in a workflow can also be used for
defining different data composition strategies as introduced
in section3. The data composition patterns offer a very
powerful tool for describing complex data processing sce-
narios as needed in scientific applications. For the users,
this means the ability to describe and schedule very com-
plex processings in an elegant and compact framework.

2.3. Efficient processings of data-intensive
workflows

Although very convenient for representing workflows in-
dependently from data to be processed, the service-based
approach introduces an extra layer between the workflow
manager and the execution infrastructure that hides the one
from the other [9]. Conversely, the task-based approach
does not suffer this limitation. When considering grid in-
frastructures with a large potential for parallelism and op-
timization in data-intensive applications, this needs to be
taken into account to avoid performance drops. This prob-
lem is addressed in section5 of this paper.

3. Data composition strategies

Each service in a data-intensive workflow of services is
receiving input data on its input ports. Depending on the de-

sired service semantic, the user might envisage various in-
put composition patterns between the different input ports.

3.1. Basic data composition patterns

Although not exhaustive, there are two main data com-
position patterns very frequently encountered in scientific
applications that were first introduced in the Taverna work-
bench [15]. They are illustrated in figure1. Let A =
{A0,A1, . . . ,An} andB = {B0,B1, . . . ,Bm} be two in-
put data sets.

The one-to-onecomposition pattern (left of figure1) is
the most common. It consists in processing two input data
sets pairwise in their order of arrival. This is the classical
case where an algorithm needs to process every pair of input
data independently. An example is a matrix addition oper-
ator: the sum of each pair of input matrices is computed
and returned as a result. We will denote⊕ the one-to-one
composition operator.A ⊕ B = {A1 ⊕ B1, A2 ⊕ B2, . . .}
denotes the set of all outputs. For simplification, we will
denoteA1 ⊕ B1 the result of processing the pair of input
data(A1, B1) by some service. Usually, the two input data
sets have the same size (m = n) when using the one-to-one
operator, and the cardinality of the results set ism = n. If
m 6= n, a semantics has to be defined. We will consider that
only themin(m,n) first pieces of data are processed in this
case.

Theall-to-all composition pattern (right of figure1) cor-
responds to the case where all inputs in one data set need to
be processed with all inputs in the other data set. A com-
mon example is the case where all pieces of data in the
first input set are to be processed with all parameter con-
figurations defined in the second input set. We will denote
⊗ the all-to-all composition operator. The cardinality of
A⊗B = {A1⊗B1, A1⊗B2 . . . A1⊗Bm, A2⊗B1 . . . A2⊗
Bm . . . . . . An ⊗ B1 . . . An ⊗ Bm} is m × n.

Note that other composition patterns with different se-
mantics could be defined (e.g. all-to-all-but-onecomposi-
tion). However, they are more specific and consequently
more rarely encountered. Combining the two operators in-
troduced above enable very complex data composition pat-
terns, as will be illustrated below. Adding different opera-
tors with a defined semantic would not change significantly
the remaining of this paper and we will limit ourselves to
the one-to-one and the all-to-all operators.

3.2. Combining data composition patterns

As illustrated at the left of figure2, the pairwise one-
to-one and all-to-all operators can be combined to compose
data patterns for services with an arbitrary number of input
ports. In this case, the priority of these operators needs to
be explicitly provided by the user. We are using parenthesis
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Figure 1. Action of the one-to-one(left) and all-
to-all (right) operators on the input data sets

in our figures to display priorities explicitly. If the input
data sets areA = {A0, A1}, B = {B0, B1}, andC =
{C0, C1, C2}, the following data would be produced in this
case:

A⊕(B⊗C) =

{

A0 ⊕ (B0 ⊗ C0), A1 ⊕ (B1 ⊗ C0),
A0 ⊕ (B0 ⊗ C1), A1 ⊕ (B1 ⊗ C1),
A0 ⊕ (B0 ⊗ C2), A1 ⊕ (B1 ⊗ C2)

}

(1)

Successive services may also use various combinations
of data composition operators as illustrated at the right of
figure 2. The example given corresponds to a classical
situation where an input data set, say two pieces of data
A = {A0, A1}, is processed by a first algorithm (using
different parameter configurations, sayP = {P0, P1, P2}),
before being delivered to a second service for processing
with a matching number of data, sayB = {B0, B1}. The
output data set would be:

B⊕(A⊗P) =

{

B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A1 ⊗ P0),
B0 ⊕ (A0 ⊗ P1), B1 ⊕ (A1 ⊗ P1),
B0 ⊕ (A0 ⊗ P2), B1 ⊕ (A1 ⊗ P2)

}

(2)

As can be seen, composition operators are a powerful
tool for data-intensive application developers who can rep-
resent complex data flows in a very compact format. Al-
though the one-to-one operator preserves the input data sets
cardinality, the all-to-all operator may leads to drastic in-
creases in the number of data to be processed.

3.3. State of the art in data composition

Taverna [15].
The one-to-one and the all-to-all data composition opera-
tors were first introduced and implemented in the Taverna
workflow manager. They are part of the underlying Scufl
workflow description language. In this context, they are

Service 1

Service 2

A B C

Ternary service

( )

PAB

Figure 2. Combining composition operators:
multiple input service (left) and cascade of
services (right)

known as thedot productandcross product iteration strate-
giesrespectively. The strategy of Taverna for dealing with
input sets of different sizes in a one-to-one composition is
to produce themin(m,n) first results only. However, the
semantics adopted by Taverna when dealing with a compo-
sition of operators as illustrated in figure2 is not straight
forward. In the ternary service (left of figure2), Taverna
will produce the:

A⊕Taverna(B⊗C) = { A0 ⊕ (B0 ⊗ C0), A1 ⊕ (B1 ⊗ C0) }
(3)

output set. Given that only two input data are available on
the first service port, themin(m,n) truncation rule of the
one-to-one (dot product) operator applies. Note that chang-
ing the priority of operators will produce a different output.
Indeed,

(A ⊕Taverna B) ⊗ C =
{

∀i, (A0 ⊕ B0) ⊗ Ci,
∀i, (A1 ⊕ B1) ⊗ Ci

}

(4)

Taverna proposes a graphical interface for allowing the user
to define the desired priority on the data composition oper-
ators.

In the case of the example given in the right of figure2,
the priority on the data composition is implicit in the work-
flow. There is no user control on it. In this case, Taverna
will produce:

B⊕Taverna (A⊗P) = { B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A1 ⊗ P0) }
(5)

More data will be produced at the output of the Service1
(namely,A0 ⊗ P1, A1 ⊗ P1, A0 ⊗ P2, A1 ⊗ P2) but the
truncation semantics of the one-to-one operator will apply
in the second service and only two output data will be pro-
duced. Note that this semantics differs from the one that we
consider and that is illustrated in equation2.
Kepler [11] and Triana [ 17].
The Kepler and the Triana workflow managers only imple-
ment the one-to-one composition operator. This operator is
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implicit for all data composition inside the workflow and it
cannot be explicitly specified by the user.

We could implement an all-to-all strategy in Kepler by
defining specific actors but this is far from being straight
forward. Kepler actors are blocking when reading on empty
input ports. The case where two different input data sets
have a different size (common in the all-to-all composition
operator) is not really taken into account. Similar work can
be achieved in Triana using the variousdata streamtools
provided. However, in both cases, the all-to-all semanticsis
not handled at the level of the workflow engine. It needs to
be implemented inside the application workflow.
MOTEUR.
We designed the MOTEUR workflow engine so that it im-
plements the semantics of the operators defined in this pa-
per. MOTEUR recognizes both one-to-one and all-to-all op-
erators (it does recognize Scufl workflows) but it uses the
algorithm introduced in section4 to define the combination
semantics.

4. Data composition algorithm

Even considering simple examples such as the ones
shown in figure2, the semantics of combining data compo-
sition operators is not straight forward. Different workflow
engines have different capabilities and implement different
combination strategies. Our goal is to define a clear and
intuitive semantics for such combinations. We propose an
algorithm to implement this data combination strategy.

Even though Taverna provides the most advanced data
composition techniques, the semantics described in equa-
tion 5 is not intuitive. Given that two correlated input data
setsA andB, with the same size, are provided, the user can
expect that the dataAi will always be analyzed with the cor-
related dataBi, regardless of the algorithm parametersPj

considered. We therefore adopt the semantics proposed in
equation2 whereAi is consistently combined withBi.

To formalize and generalize this approach, we need to
consider the complete data flows to be processed in the ap-
plication workflow. In the reminder of this paper, we will
consider the very general case, common in scientific appli-
cations, where the user needs to independently process sets
of input dataA,B,C . . . that are divided intodata groups.
A group is a set of input data tuples that defines a relation
between data coming from different sets. For instance:

G = {(A0, B0, C0), (A1, B1, C1), (A2, B2, C2)}
H = {(A4, B0), (A1, B2), (A2, B5), (A6, B6)}

(6)

are two groups establishing a relation between 3 data triplets
and 4 data pairs respectively. The relations between input
data depend on the application and can only be specified by
the user. However, we will see that this definition can be
explicit (as illustrated above) or implicit, just considering

the workflow topology and the order in which input data
are received by the workflow manager.

4.1. Data composition operator semantics

We consider that the one-to-one composition operator
does only make sense when processing related data. There-
fore, only data connected by a group should be considered
for processing by any service. When considering a service
directly connected to input data sets, determining relations
between data is straight forward. However, when consider-
ing a complete application workflow such as the one illus-
trated in figure3, other services (e.g.S4) need to determine
which of their input data are correlated. The one-to-one
composition operator does introduce the need for the algo-
rithm described below.

Conversely, the all-to-all operator does not rely on any
pre-determined relation between input data. Any number of
inputs can be combined, with very different meaning (such
as data to process and algorithm parameters). Each data
received as input yields to one or more invocations of the
service for processing.

4.2. Combination semantics

The left of figure3 represents a sample workflow made
of 4 application services and combining the one-to-one and
the all-to-all composition operators. In the center of the fig-
ure is represented the directed graph of the data sets pro-
duced. Given 4 input data sets,A,B,P andQ, the com-
plete workflows produces

((A ⊕ B) ⊗ P) ⊕ ((A ⊕ B) ⊗ Q). (7)

as output of theS4 service. Given the one-to-one operator
semantics described above, the data setA⊕B produced by
the first service will be non empty if and only if data inA
andB are related through a group G that is represented at
the top of the figure (Ai, theith element ofA, is correlated
with Bi, theith element ofB).

Considering the serviceS4, it is not trivial to determine
the content of the output data set, resulting from a one-
to-one composition of the two inputs(A ⊕ B) ⊗ P and
(A ⊕ B) ⊗ Q. Intuitively, two input data(Ai ⊕ Bi) ⊗ Pk

and (Aj ⊕ Bj) ⊗ Ql should be combined only ifi = j.
Indeed, combiningAi with Bi, or a subsequent processing
of these data, does make sense given that the user estab-
lished a relation between this input pair through the group
G. Conversely, there is no relation betweenAi ⊕ Bi on the
one side and anyPk or Ql that are combined in an all-to-
all operation on the other side. Therefore, the processing of
((Ai ⊕Bi)⊗Pk)⊕ ((Ai ⊕Bi)⊗Ql) does make sense for
all k and alll.
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Figure 3. Workflow example (left), associated data sets dire cted graph (center), and part of the asso-
ciated directed acyclic data graph.

To formalize this approach we need to consider the data
production Directed Acyclic Graph that is represented in
right of figure3. This graph shows how all pieces of input
are combined by the different processings. At the roots of
the graph, theinput data are parents of allproduceddata.
The formal relation between each data pair (Ai, Bi) is rep-
resented through a group instantiationGi, parent of bothAi

andBi. We will nameorphandata, input data that have no
group parent such asP0 andQ0. The directed data graph
is constructed from the roots (workflow inputs) to the leafs
(workflow outputs) by applying the two following simple
rules implementing the semantics of the one-to-one and the
all-to-all operators respectively:

1. Two data are always combined in an all-to-all opera-
tion.

2. Two data (graph nodes) are combined in a one-to-one
operationif and only if there exists a common ancestor
to both data in the data graph.

The interpretation of the first rule is straight forward. The
second rule is illustrated by the full data graph displayed
at the right of figure3. For instance, the dataA0 ⊕ B0 is
produced fromA0 andB0 because there exists a common
ancestorG0 to bothA0 andB0. Similarly, ((A0 ⊕ B0) ⊗
P0)⊕ ((A0 ⊕B0)⊗Q0) is computed becauseA0 ⊕B0 is a
common ancestor to(A0 ⊕B0)⊗P0 and(A0 ⊕B0)⊗Q0.
There exists other common ancestors such asA0, B0, and
G0 but it is not needed to go back further in the data graph
as soon as one of them has been found. Note that in a more
complex workflow topology, the common ancestor does not

need to be an immediate parent. It can be easily demon-
strated by recurrence that following this rule, two input data
sets may be composed one-to-one if and only if there ex-
ists a grouping relation between them at the root of the data
graph.

4.3 Algorithm and implementation

To implement the data composition operators semantic
introduced above, MOTEUR dynamically resolves the data
combination problem by applying the following algorithm:

1. Build the directed graph of the data sets to be pro-
cessed.

2. Add data groups to this graph.
3. Initialize the directed acyclic data graph:

(a) Create root nodes for each group instanceGi and
add a child node for each related data.

(b) Create root nodes for each orphan data.

4. Start the execution of the workflow.
5. For each tuple of data to be processed:

(a) Update the data graph by applying the two rules
corresponding to the one-to-one and the all-to-all
operators.

(b) Loop until there are no more data available for
processing in the workflow graph.

To implement this strategy, MOTEUR needs to keep rep-
resentations of:

• the topology of the services workflow;
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• the graph of data;
• the list of input data that have been processed by each

service.

Indeed, the data graph is dynamically updated during the
execution. When a new data is produced, its combination
with all previously produced data is studied. In particular
in an all-to-all composition pattern, a new input data needs
to be combined with all previously computed data. It po-
tentially trigger several services invocation. The history of
previous computations is thus needed to determine the ex-
haustive list of data to produce.

The graphs of data also ensures a full traceability of the
data processed by the workflow manager: for each data
node, the parents and children of the data can be deter-
mined. Besides, it provides a mean to unambiguously iden-
tify each data produced. This becomes mandatory when
considering parallel execution of the workflow introduced
in section5.

4.4. Implicit combinations

The algorithm proposed aims at providing a strict se-
mantics to the combination of data composition operators,
while providing intuitive data manipulation for the users.
Data groups have been introduced to clarify the semantics
of the one-to-one operator. However, it is very common
that users are writing workflows without explicitly specify-
ing pairwise relations between the data. The order in which
data are declared or send to the workflow inputs are rather
used as an implicit relation.

To ease the workflow generation from the user point of
view, groups can be implicitly generated when they are not
explicitly specified by the user. Figure4 illustrates two dif-
ferent cases. On the left side, the reason for generating an
implicit group is straight forward: two input data sets are
being processed through a one-to-one service. But there
may be more indirect cases such as the one illustrated on
the right side of the figure. The systematic rule that can
be applied is to create an implicit group for eachone-to-
oneoperator whose input data are orphans. For example,
in the case illustrated in left of figure4, the input data sets
A andB are orphans and boundone-to-oneby theS1 ser-
vice. An implicit group is therefore created betweenA and
B. In the case illustrated in the right side of figure4, the
implicit group will be created between the two inputs of
serviceS2. There will therefore be an implicit grouping re-
lation between each output of the first serviceS1(Ai) and
Bi.

The implicit groups are created statically by analyzing
the workflow topology and the input data sets before start-
ing the execution of the workflow.

S1 S2

S1

Implicit groups

A B

B

A

Figure 4. Implicit groups definition.

4.5. Coping with data fragments

So far, we have only considered the case were the num-
ber of outputs of a service matches the number of inputs.
In some cases though, an application service will split input
data in smaller fragments, either for dealing with smaller
data sets (e.g. a 3D medical image is split in a stack of 2D
slices) or because the service code function implies that it
produces several outputs for each input. The workflow dis-
played in figure5 illustrates such a situation. The service
S1 is splitting each input data (e.g.A0) in several fragments
(A0

0, A1
0 andA2

0).
In the example given in figure5, it is expected that ser-

vice S2 will receive the same number of data on both input
ports (one-to-one composition operator). However, there is
no way for the user to specify an explicit grouping between
two data sets. Grouping the data setsA with B would only
create a relation betweenA0 andB0. Therefore, the frag-
mentsA0

0, A1
0 andA2

0, children ofA0, would all be related
to B0 and the serviceS2 would produce

A ⊕ B = {A0
0 ⊕ B0, A

1
0 ⊕ B0, A

2
0 ⊕ B0}. (8)

Instead, the implicit grouping strategy will groupS1(A0)
outputs withB. Consequently, the grouping will result in
the data graph shown in right of figure5 and the output pro-
duced will be

A ⊕ B = {A0
0 ⊕ B0, A

1
0 ⊕ B1, A

2
0 ⊕ B2} (9)

as expected. Note that the number of inputs to serviceS2

needs to be consistent in this case.

5. Exploiting grid parallelism

The main interest for using grid infrastructures in the
processing of data-intensive applications is to exploit the
potential application parallelism thanks to the distributed
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Figure 5. Implicit groups relating data fragments ( A0
0, A1

0, A2
0) and input B.

grid resources available. There are three different levelsof
parallelism that can be exploited when considering any ap-
plication workflow. The parallel processing of a workflow
requires to cautiously handle the data flows to avoid causal-
ity errors that would lead to incorrect computations.

5.1. Three parallelism levels

Workflow parallelism . The first level of parallelism that
can be exploited is the intrinsic workflow parallelism de-
pending on the graph topology. For instance if we consider
the simple example presented in figure3, servicesS2 and
S3 can be executed in parallel.

Data parallelism. Data are processed independently
from each other. Therefore, different input data can be pro-
cessed in parallel on different resources. This optimization
may lead to considerable performance improvements given
the high level of parallelism achievable in data-intensiveap-
plications.

Services parallelism. The processing of two different
data sets by two different services are totally independent.
This pipelining model, very successfully exploited inside
CPUs, can be adapted to sequential parts of service-based
workflows. Considering the simple workflow represented
on right side of figure4 for example,S1(A1) first needs
to be computed beforeS2 may be invoked. Once this re-
sult is available,S2(A1, B1) may be computed in parallel of
S1(A2). In theory, service parallelism brings an additional
level of performance improvement beyond data parallelism
only if all data could not be processed in parallel at the same
time by lack of resources or if the time for processing dif-
ferent data is not constant. In practice this is always the
case on production grid infrastructures as the number of re-
sources is bounded and the load of the infrastructure leads
to variable execution times.

5.2. State of the art in service-based work-
flow managers

Workflow parallelism is usually implemented in existing
workflow managers.

Taverna implements data parallelism (known asmultiple
threadsin this context). However, data parallelism is lim-
ited to a fixed number of threads specified in the Scufl work-
flow description language. It cannot dynamically adapt to
the size of data sets to be processed. Service parallelism is
not supported yet but this feature has been proposed for the
next major release of the engine (version 2).

Kepler implements services parallelism through the
Physical Network(PN) director. There is no data paral-
lelism in Kepler.

MOTEUR was designed to optimize the performance of
data-intensive applications on grids by implementing the
three level of parallelism. To our knowledge, this is the first
service-based workflow engine doing so.

5.3. Parallel processings and data flows

Executing a workflow with data and service parallelism
has non trivial consequences on the application processing
and data flows. MOTEUR is making concurrent calls to
grid submission services wrapping application codes using
the Web Services or GridRPC interfaces. Although Web
Services are stateless, MOTEUR is holding the state of each
service invocation. It is handling the concurrency without
requiring the use of stateful services such as defined in the
WSRF framework.

Data parallelism leads to a disordering of the data flows
and causality problems as a data may overtake another one
during the workflow processing (depending on the compu-
tation time required and the grid resources used for process-
ing [9]). To properly tackle this problem, computed data
have to be traced during the execution. The data graph built
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by MOTEUR unambiguously identifies each processed data
through its processing history. This ensures that data are
correctly combined, ignoring their order of arrival and only
considering their provenance.

Service parallelism implies that data are progressively
delivered to all workflow services as they are being pro-
duced by their parents. The complete input data set for each
service is not known until the end of the workflow execu-
tion. Therefore, MOTEUR needs to cache and dynamically
update the data already received for processing by each ser-
vice in order to decide of the data compositions to be sched-
uled when a new piece of data is delivered to a service. If
the new data matches the composition operator rule, it trig-
gers one or more service invocations.

6. Concrete application example

We are using MOTEUR to develop applications to med-
ical image analysis. 3D medical images are large (com-
monly in the order of tens to hundreds of megabytes per
image) and many medical imaging application require pro-
cessing of full databases [12]. A good example is thebronze
standardapplication [9] which aims at assessing medical
image registration algorithms.

MethodToTest

getFromEGEE

formatConversion

formatConversion

writeResults formatConversion

writeResults writeResults

formatConversion

crestLines

accuracy_translation accuracy_rotation

MultiTransfoTest

Params

crestMatch
ParamsParams

PFMatchICP

PFRegister

Params getFromEGEE Yasmina Baladin

Params Params

getFromEGEE getFromEGEE

writeResults

Params

A B

Figure 6. Application workflow

Figure6 displays the bronze standards application work-
flow. Each one of the 19 application services involved is

represented by a box and data flows are represented by ar-
rows. The bottom service (MultiTransfoTest) is surrounded
by a double square to indicate that it corresponds to a data
synchronization barrier (see section2.2). It can be seen that
both data composition operators are used intensively.

This application is using pairs of input image lists (in-
putsA andB). We made runs involving images acquired
from 1, 7 and25 patients leading to the processing of 6 to
126 images as reported in figure7. The execution results
reported show two kinds of execution: a reference execu-
tion (red curve) where only intrinsic workflow parallelism
is exploited (as available in most service-based workflow
engines) and a fully parallel execution (blue curve) exploit-
ing all levels of parallelism implemented in MOTEUR (see
section5). Both executions were using the EGEE [4] pro-
duction grid infrastructure. EGEE is providing thousands
of CPUs distributed all over Europe and beyond for parallel
processing of applications. It can be seen that MOTEUR
provides very good performances with a speed-up in the
order of 10 when considering a full run (126 images) as
compared to a reference execution on the same grid infras-
tructure.
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Figure 7. Execution performances

Note that the execution on 1 to 25 patients (6 to 126 im-
ages) of the full workflow leads to the execution of 72 to 756
computing tasks on the grid infrastructure. In a task-based
approached, the user would need to draw graphs made of 72
to 756 tasks to represent such executions. In our framework,
the application workflow representation remains relatively
simple (19 services) and it is independent on the size of the
input data sets.
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7. Conclusions

Workflow description languages and execution engines
ease the development of scientific applications as they pro-
vide a high level representation to describe the applica-
tion logic. In addition, data composition operators pro-
vide a powerful, compact and intuitive mean for describ-
ing complex data flows. Parallel execution of these data-
intensive workflows provide a support for transparently ac-
cessing distributed grid resources and improving the appli-
cation performances.

In this paper we define a precise and coherent semantics
for data composition operators and we introduced an algo-
rithm that implements it in the workflow execution engine.
The algorithm is based on the construction of a data directed
acyclic graph that is also used to overcome the causality
problems arising during parallel execution.

We have shown how implicit grouping of data inputs en-
ables transparent implementation of the operators semantics
when the user is designing a workflow. This grouping strat-
egy also coherently enables data splitting.

Our algorithm has been implemented in the MOTEUR
data-intensive workflow engine. MOTEUR is freely avail-
able under CeCILL (a GPL-like) license4.
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