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Abstract

Medical image registration is pre-processing needed for many medical image analysis

procedures. A very large number of registration algorithms are available today, but

their performance is often not known and very difficult to assess due to the lack of

gold standard. The Bronze Standard algorithm is a very data and compute intensive

statistical approach for quantifying registration algorithms accuracy.

In this paper, we describe the Bronze Standard application and we discuss the

need for grids to tackle such computations on medical image databases. We demon-

strate MOTEUR, a service-based workflow engine optimized for dealing with data

intensive applications. MOTEUR eases the enactment of the Bronze Standard and

similar applications on the EGEE production grid infrastructure. It is a generic

workflow engine, based on current standards and freely available, that can be used

to instrument legacy application code at low cost.

1 The Bronze Standard application

Computerized medical image analysis is now a well established area that provides
assistance for diagnosis, modeling, and pathologies follow-up. With the growing
inspection capabilities of imagers and the medical data production growth, the need
for large amounts of data storage and computing power increases. Grids have been
identified as a tool suitable for dealing with medical data. Successful example of
grid application deployment for image databases analysis, optimization of medical
image algorithms, simulation, etc, have already been reported [7].

1.1 Medical images registration

Medical image registration algorithms are playing a key role in a very large num-
ber of medical image analysis procedures. Together with image segmentation al-
gorithms, they are fundamental processings often needed prior to any subsequent
analysis. Image registration consists in searching a 3D transformation between two
images, so that the first one can superimpose on the second one in a common 3D
frame. The transformation may be rigid (the composition of a translation and a ro-
tation) to express a 3D change of frame or non rigid to express local deformations
of space. A rigid registration is useful for aligning similar data (such as images
of a same patient acquired at different times) into a single frame. A non-rigid
registration is useful for computing the deformation map between different data
(such as data acquired from two different patients). In addition, the registration
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is said mono-modal when both images have been acquired using the same imaging
modality (thus sharing some common signal characteristics) or multi-modal when
the modalities differ (signal differences have then to be compensated for).

The computational load of these algorithms greatly varies depending on the
type of registration computed, the size of the images to process, and the algorithms
themselves. In general non-rigid, multi-modal algorithms are more costly than
rigid, mono-modal algorithms. On typical 3D images and using up-to-date PCs,
the computation time varies from a few minutes in the simplest cases to tens of
hours in most compute intensive registrations.

1.2 Registration algorithms assessment

Given the very common use of registration algorithms and the different contexts for
their application, a large number of new algorithms is developed by the research
community. There are approximately a hundred of new research papers published
on that subject each year. A difficult problem, as for many other medical image
analysis procedures, is the assessment of these algorithms robustness, accuracy and
precision [4]. Indeed, there is no well established gold standard to compare to the
algorithm results. Different approaches have been proposed to solve this issue.
It is possible to synthesize images by simulating the acquisition physics and to
experiment the algorithm on the synthetic images produced [1]. However, realistic
images are difficult to produce and hardly perfect enough for fine assessment of
the algorithms. Phantoms (manufactured objects with properties close to human
tissues for the imaging modality studied) can also be used to acquire test images.
However, it is also very difficult to manufacture realistic enough phantoms.

1.3 The Bronze Standard method

An alternative for assessing registration algorithms is a statistical approach called
the Bronze Standard [9]. The goal is basically to compute the registration of a
maximum of image pairs with a maximum number of registration algorithms so
that we obtain a largely overestimated system to relate the geometry of all the
images. It makes this application very compute and data-intensive.

Suppose that we have n images of the same organ of one patient and m reg-
istration algorithms. We have in fact only n − 1 free transformations to estimate
that relate all these images, say T̄i,i+1. The transformation between images i and
j is obtained using a compositions such as T̄i,j = T̄i,i+1 ◦ T̄i+1,i+2 ◦ . . . ◦ T̄j−1,j if
i < j (or the inverse of both terms if j > i). The free transformation parameters
are computed by minimizing the prediction error on the observed registrations:

min
T̄1,2,T̄2,3,...,T̄n−1,n

∑

i,j∈[1,n],k∈[1,m]

d
(

T k
i,j , T̄i,j

)2
(1)

where T k
i,j is the transformation computed between image i and j by the kth reg-

istration algorithm, and d is a distance function between transformations chosen
as a robust variant of the left invariant distance on rigid transformation [11]. The
estimation T̄i,i+1 of the perfect registration Ti,i+1 is called bronze standard because
the result converges toward Ti,i+1 as the number of methods m and the number
of images n become larger. Indeed, considering a given registration method, the
variability due to the noise in the data decreases as the number of images n in-
creases, and the registration computed converges toward the perfect registration
up to the intrinsic bias (if there is any) introduced by the method. Now, using
different registration procedures, based on different methods, the intrinsic bias of
each method also becomes a random variable, which is hopefully centered around

2



zero and averaged during the minimization procedure. The different biases of the
methods are now integrated into the transformation variability. To fully reach this
goal, it is important to use as many independent registration methods as possible.

In this process, we do not only estimate the optimal transformations, but also
the rotational and translational variance of the “transformation measurements”,
which are propagated through the criterion to give an estimated of the variance of
the optimal transformations. These variances should be considered as a fixed effect
(i.e. these parameters are common to all patients for a given image registration
problem, contrarily to the transformations) so that they can be computed more
faithfully by multiplying the number of patients.

An important variant of the Bronze Standard is to relax the assumption of
the same variances for all algorithms, and to unbias their estimation. This can be
realized by using only m−1 out of the m methods to determine the bronze standard
registration, and use the obtained reference to determine the accuracy of the last
method.

In this paper, we are considering m = 4 different registration algorithms in our
implementation of the bronze standard method: (1) Baladin and (2) Yasmina

are intensity-based. The former uses a block matching strategy while the later
optimizes a similarity measure on the complete images using the Powel algorithm.
(3) CrestMatch is a prediction-verification method and (4) PFRegister is based
on the ICP algorithm. Both CrestMatch and PFRegister register features (crest
lines) extracted from the input images. These algorithms are further described
in [9]. Figure 1 illustrates the application workflow. Each box in figure 1 represents
an algorithm and arrows show computation dependencies.

2 Enacting the application workflow on the EGEE

production grid

Even though registration computations are usually tractable on simple PCs, the
large number of input data and registration algorithms needed to compute the
bronze standard makes this method very compute intensive. A grid infrastructure
can handle the load of the computations involved and help in managing the medical
image database to process.

2.1 EGEE infrastructure

In order to evaluate the relevance of our prototype and to compare real executions
to theoretically expected results, we made experiments on the EGEE production
grid infrastructure1. This platform is a pool of thousands computers (standard
PCs) and storage resources accessible through the LCG2 middleware2. The re-
sources are assembled in computing centers, each of them running its internal batch
scheduler. Jobs are submitted from a user interface to a central Resource Broker
which distributes them to the resources available. On such a grid infrastructure,
the application parallelism can be exploited to optimize the execution time. Several
instances of each service will be concurrently submitted to the grid and executed
on different processors.

2.2 Application workflow

The Bronze Standard application is composed as a workflow of algorithms repre-
sented on figure 1. The two input image sources on top correspond to the image

1Enabling Grids for E-sciencE, http://www.eu-egee.org
2LCG2 middleware, http://lcg.web.cern.ch/LCG/activities/middleware.html
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sets on which the evaluation is to be processed. The upper box corresponds to an
initialization needed for the registration algorithms. Then come the registration
algorithms themselves and format conversion and result collection services. Finally,
the bottom (gray) service is responsible for the evaluation of the accuracy of the
registration algorithms, leading to the outputs values of the workflow. It computes
means from all the results of the registration services considered but one, and eval-
uates the accuracy of the specified registration method. This service has to be
synchronized: it must be enacted only once every data have been processed in the
workflow. The six services with a triple contour are compute intensive initializa-
tion and registration algorithms while the other boxes represent more lightweight
computation steps such as data format transformations.

2.3 Medical workflows

Similarly to the Bronze Standard application presented above, medical image anal-
ysis procedures are often not based on a single image processing algorithm but
rather assembled from a set of basic tools dedicated to process the data, model
it, extract quantitative information, and analyze results. Given that interoperable
algorithms packed in software components with a standardized interface enabling
data exchanges are provided, it is possible to build complex workflows to represent
such procedures for data analysis. High level tools for expressing and handling the
computation flow are therefore expected to ease computerized medical experiments
development.

When dealing with medical experiments, the user often needs to process datasets
made of e.g. hundreds of individual images. The workflow management is therefore
data driven and the scheduler responsible for sharing the load of computations
should take into account the input data sets as well as the workflow graph topology.

3 MOTEUR workflow engine

We implemented an hoMe-made OpTimisEd scUfl enactoR (MOTEUR) prototype
to manage application workflows. MOTEUR is written in Java, in order to be plat-
form independent. It is available under CeCILL Public License (a GPL-compatible
open source license) at http://www.i3s.unice.fr/∼glatard. The workflow de-
scription language adopted is the Simple Concept Unified Flow Language (Scufl)
used by the Taverna workbench [10].

Figure 1 shows the MOTEUR web interface representing a workflow that is
being executed. Each service is represented by a color box and data links are
represented by curves. The services are color coded depending on their current
status: gray services have never been executed; green services are running; blue
services have finished the execution of all input data available; and yellow services
are not currently running but waiting for input data to become available.

MOTEUR is interfaced to the job submission interfaces of both the EGEE in-
frastructure and the Grid50003 experimental grid. In addition, lightweight jobs exe-
cution can be orchestrated on local resources. MOTEUR is able to submit different
computing tasks on different infrastructures during a single workflow execution.

3.1 Service-based approach

To handle user processing requests, two main strategies have been proposed and
implemented in grid middlewares:

3Grid5000, http://www.grid5000.org
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Figure 1: MOTEUR interface representation

1. In the task based strategy, also referred to as global computing, users define
computing tasks to be executed. Any executable code may be requested
by specifying the executable code file, input data files, and command line
parameters to invoke the execution. The task based strategy, implemented
in GLOBUS [3], LCG2 or gLite 4 middlewares for instance, has already been
used for decades in batch computing. It makes the use of non grid-specific
code very simple, provided that the user has a knowledge of the exact syntax
to invoke each computing task.

2. The service based strategy, also referred to as meta computing, consists in
wrapping application codes into standard interfaces. Such services are seen
as black boxes from the middleware for which only the invocation interface
is known. The services paradigm has been widely adopted by middleware
developers for the high level of flexibility that it offers. However, this approach
is less common for application code as it requires all codes to be instrumented
with the common service interface.

The service-based approach is naturally very well suited for chaining the execu-
tion of different algorithms assembled to build an application. Indeed, the interface
to each application component is clearly defined and the middleware can invoke each
of them through a single protocol. In addition, the service-based approach offers
a large flexibility for managing applications requiring the processing of complete
image databases such as the Bronze Standard described above. The input data are
treated as input parameters, and the service appears to the end user as a black box
hiding the code invocation.

4gLite middleware, http://www.glite.org
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When a service is dealing with two input data sets or more, the semantics of
the service with regard to the data composition needs to be specified. MOTEUR
implements two data composition patterns:

• The one-to-one composition: each input of the first data set {A}i∈[1,m] is
processed with each input of the second data set {B}i∈[1,n], thus producing
min(m,n) output data.

• The all-to-all composition: all input of {A}i∈[1,m] are processed with all input
of {B}i∈[1,n], thus producing m × n output data.

The use of these two composition strategies, embedded in the Scufl language, sig-
nificantly enlarges the expressiveness of the workflow language. It is a powerful tool
for expressing complex data-intensive processing applications in a very compact
format.

MOTEUR is implementing an interface to both Web Services [13] and GridRPC [8]
application services. We developed an XML-based language to be able to describe
input data sets. This language aims at providing a file format to save and store the
input data set in order to be able to re-execute workflows on the same data set.

3.2 Enabling legacy codes

In the service based approach, all application codes need to be wrapped into a
standard service envelope. This increases the code complexity on the application
developer side and this prevent the use of legacy code which cannot necessarily be
modified and recompiled for various reasons.

In order to face this limitation, we have developed a legacy code application
wrapping service similar to GEMLCA [5]. The idea is to propose a standard web
service capable of submitting any legacy executable on the target grid infrastructure.
This generic application service, is dynamically composing the executable invoca-
tion command line before submission. For this purpose, it needs a description of
the executable command line parameters. We have defined a simple XML-based
parameters description format. For each legacy code to gridify, the user only needs
to produce the corresponding XML document. The generic service is taking as
input both the executable and the description document.

The generic application service is installed on the grid user interface and it does
not require any deployment on the grid computing resources. It submits jobs to the
grid through the standard workload management system.

3.3 Optimizing the execution of data intensive applications

Some workflow managers, such as the CONDOR DAGMan 5 have adopted the task-
based approach, coupling processings and data to be processed. This static and
complete description of the graph of tasks to be executed eases the optimization
of the workflow execution as it provides all information necessary for mapping the
workflow and data to available resources (see for instance the Pegasus system [2]).
However, it poorly deals with large data sets since a new task need to be explicitly
written for each input data to be processed.

In service-based workflow managers such as MOTEUR, Kepler [6], Taverna [10]
or Triana [12], each processor is invoking external services whose data is dynami-
cally transmitted as parameter. However, the services invocation is an extra layer
between the workflow manager and the execution grid infrastructure. The work-
flow manager has no direct access to the grid resources and therefore it cannot di-
rectly optimize the job submissions scheduling. Performances are critical in the case

5CONDOR DAGMan, http://www.cs.wisc.edu/condor/dagman
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of data-intensive applications and MOTEUR is implementing several optimization
strategies to ensure optimal workflow execution by exploiting the massively parallel
resources available on the grid infrastructure.

Workflow parallelism. The workflow encompasses an inherent degree of paral-
lelism as several independent services may be invoked in parallel asynchronously by
the workflow engine.

Data parallelism. The computations described in the workflow can be performed
independently for each input data segment. When dealing with large input data sets,
this is a considerable potential optimization that consists in processing all these data
in parallel on different grid resources. Also quite obvious, the data parallelism is not
straight forward to implement. Indeed, parallel execution over different data leads
to loose computation sequences (a data can overtake another one in the workflow)
and potential causality problem if the ordering is not reestablished. MOTEUR’
strategy to avoid this problem is to associate to each processed data segment a
complete history tree of the former processings that unambiguously describes the
data provenance. To deal with the all-to-all composition strategy, MOTEUR also
keeps in memory all data segments sent to the input of each service. Thus, when a
delayed data arrives it can be composed with all formerly identified input data by
repetitive invocations of the service.

Services parallelism. The computations of different services over different input
data sets can overlap in time. Parallel computing of such tasks enables a pipelining
optimization similar to the one exploited inside CPUs. Theoretically, this service
parallelism should not bring an extra level of parallelism when data parallelism is
exploited. If all data could be processed in parallel in constant time, there would be
no overlap of successive services. In practice though, execution times on a loaded
production infrastructure are highly variable and unpredictable. The desynchro-
nization of the computations creates the need for service parallelism optimization.

Jobs grouping. Finally, sequential jobs might be grouped and executed to lower
the number of services invocation and minimize the grid overhead resulting from
jobs submission, scheduling and data transfers. Jobs grouping is not feasible in
general on a service-based infrastructure as services are completely independent
and can only be invoked separately by the workflow engine. The internal logic of
all services implemented through the generic wrapping service is known though.
The workflow engine is thus capable of translating the calls to two consecutive
generic services into a call to a single service submitting a compound job with two
consecutive executable command line invocations.

To our knowledge, MOTEUR is the first service-based workflow manager imple-
menting all these levels of parallelism.

4 Results and conclusions

MOTEUR is evaluated on the Bronze Standard application with a realistic experi-
mental setting. We executed our workflow on different inputs data sets, with various
sizes. Input image pairs are taken from a database of injected T1 brain MRIs from
the cancer treatment center ”Centre Antoine Lacassagne” in Nice, France, courtesy
of Dr Pierre-Yves Bondiau. All images are 256×256×60 and coded on 16 bits, thus
leading to a 7.8 MB size per image. Each of the input image pair was registered
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Figure 2: Execution times of MOTEUR vs Taverna on the EGEE production in-
frastructure

with the 4 algorithms and leads to 6 grid job submissions (triple contour services
in figure 1). The 4 rigid registration algorithms used reached a sub-voxel accuracy
of 0.15 degree in rotation and 0.4 mm in translation for the registration of these
images.

4.1 MOTEUR performances

The first experiment, reported in figure 2, is a comparison of MOTEUR perfor-
mances against the Taverna workflow manager [10]. Taverna is a service-based
workflow manager targeting bioinformatics application that is being developed in
the UK eScience MyGrid project. Taverna has become a reference workflow man-
ager in the eScience community. The figure displays the execution times obtained
with Taverna and MOTEUR w.r.t. the number of input data sets. The figure shows
that MOTEUR introduces an average speed-up of 2.03. Even more interesting, this
speed-up is growing with the number of input data sets to process. The performance
gain is due to the full exploitation of the data and services parallelism: Taverna does
not provide service parallelism and data parallelism is limited to a fixed number of
parallel invocations.

The second experiment reported in figure 3 quantifies the performance gain
introduced by the different level of optimization implemented in MOTEUR. We
executed the Bronze Standard workflow on 3 different inputs data sets composed
by 12, 66 and 126 image pairs, corresponding to images from 1, 7 and 25 patients
respectively. In total, the workflow execution resulted in 6 times more job submis-
sions (72, 396 and 756 jobs respectively). We computed the Bronze Standard with
different optimization configurations in order to identify the specific gain provided
by each optimization.

The reference curve (plain curve, labeled NOP) corresponds to a naive execu-
tion where only workflow parallelism is activated. The Job Grouping optimization
(JG curve) reduces the jobs submission overhead as expected. The time gain is
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Figure 3: Comparison of the execution times obtained for different optimization
configurations

almost constant independently of the number of input data. Unsurprisingly, the
most drastic optimization is the Data Parallelism (DP curve) for this data inten-
sive application. The speed-up grows with the number of images to be processed
(the DP curve slope is lower than the reference curve slope). Theoretically, the
DP curve should be horizontal (no overhead introduce by the increasing number of
data) given that the number of grid processing units exceeds the number of jobs sub-
mitted. However, the EGEE grid is exploited in production mode (24/7 workload)
by a large multi-users community. Therefore, the Service Parallelism optimization
(DP+SP curve) further improves performances. Finally, combining all these opti-
mizations (SP+DP+JG curve) provides the best result. The final speed-up is higher
than 9.1 when considering the largest scale experiment.

4.2 Conclusions

Data intensive applications are common in the medical image analysis community
and there is an increasing need for computing infrastructures capable of efficiently
processing large image databases. The Bronze Standard application is a concrete
example to registration algorithms assessment with an important impact for medical
image analysis procedures. The application is assembled from a set of legacy code
components, wrapped into a generic web service and enacted on the EGEE grid
through the MOTEUR workflow enactor.

We demonstrated MOTEUR capabilities and performances. This workflow en-
gine is conforming to the Scufl workflow description language. It implements inter-
faces to Web and GridRPC services. MOTEUR has been interfaced to the EGEE
production grid infrastructure and the Grid5000 experimental infrastructure. The
workflow execution is optimized using different parallelization strategies enabling
the exploitation of the grid parallel resources. MOTEUR is freely available for
download under a GPL-like license.
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