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Abstract

This paper presents a method to optimize the timeout
value of computing jobs. It relies on a model of the job
execution time that considers the job management system
latency through a random variable. It also takes into ac-
count a proportion of outliers to model either reliable clus-
ters or production grids characterized by faults causing jobs
loss. Job management systems are first studied considering
classical distributions. Different behaviors are exhibited,
depending on the weight of the tail of the distribution and
on the amount of outliers. Experimental results are then
shown based on the latency distribution and outlier ratios
measured on the EGEE grid infrastructure1. Those results
show that using the optimal timeout value provided by our
method reduces the impact of outliers and leads to a 1.36
speed-up even for reliable systems without outliers.

1. Introduction

A growing number of distributed applications is rely-
ing on large scale workload management systems. These
applications usually trigger hundreds, thousands or even
more jobs. Although large scale systems provide very high
throughput as a direct consequence of the huge amount of
resources available, they also introducehigh andvariable
latencies that drastically impair the performances of the ap-
plications competing with other users’ computations. The
latency corresponds to the duration between the submission
date and the one at which the job execution really starts.
It includes the submission, scheduling and queuing times
but also data transfers and delays in the monitoring system.
Furthermore, less reliable systems such as production grids
are also impacted byoutliers.

The variability impacts jobs latency in anormal opera-
tion mode. It mainly comes from the heterogeneity of the
infrastructure (endogen hardware and software factors) and
from the load imposed to it (exogen factor). In this paper,
we model the system latency by a probabilistic distribution.

1http://www.eu-egee.org/

Outliers correspond tosystem faultsthat lead to huge la-
tencies prevailing on the ones of the other tasks of the appli-
cation. Those latency values can be considered as infinite.
Typical faults generating outliers are hardware failures,lo-
cally heavy load or scheduling errors leading to a job being
queued in a extremely long queue. This outlier mode can be
quantified by its proportion of jobs that never return.

Both variability and outliers penalize applications that
rely on the completion of a high number of jobs. Indeed, a
single job is then able to slow down the whole application.
In case where there are dependencies between the jobs (e.g.
in case of application workflows), the effects of variability
and outliers are even more critical and lead to accumulated
performance drops.

From the user point of view, strategies to reduce the im-
pact of variability and outliers include multi-submission[1]
(a given job is submitted many times and only the first
completion is considered), jobs grouping (many jobs are
grouped together to reduce the number of submissions) [2]
and timeouting [3, 4]. Timeouting and resubmitting abnor-
mally long jobs is a common strategy. Choosing the timeout
value is often let to the administrator or the end user. How-
ever, a non trivial trade off has to be found as a too long
timeout will penalize the jobs completion time too much,
while a too short one may be overkilling, causing the unnec-
essary resubmission of jobs that almost completed. Hence,
timeout strategies have been designed in areas as different
as TCP throughput optimization [5], HTTP requests [6, 7]
or power saving devices [8].

To determine an optimal timeout, we first model jobs ex-
ecution times in section2. We then present in section3
some results of timeout optimization on classical distribu-
tions. To show how the optimization behaves on a real in-
frastructure, we are particularly interested in the asymptotic
behavior of the system and on the impact of outliers. We
finally present in section4 some experimental results from
a distribution of the latency measured on the EGEE pro-
duction grid. Many of the proofs of the theoretical results
are omitted in this paper and are detailed in a more detailed
technical report [9].
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R grid latency
J total time of a job (with resubmissions)

fV/FV pdf/cdf of the random variableV
EV expectation of the random variableV
t∞ timeout value
q probability for a job to timeout
ρ outliers ratio
φ/Φ pdf/cdf of the standard normal distribution

Table 1. Notation table

2. Model of the job execution time

We adopted a probabilistic modeling of the large-
scale workload manager. This approach has already been
successfully reported to tackle related scheduling prob-
lems [10, 11]. We will denote random variables with capital
letters whereas fixed values will be lowercase. For a random
variableV, fV denotes its probability density function (pdf)
andFV denotes its cumulative density function (cdf). Nota-
tions are summarized in table1.

Let J be the total duration of a job (including all its
potential resubmissions) andt∞ be a user defined timeout
value. The system is seen as a black box introducing a posi-
tive latencyRon the job wall-clock timer in case of normal
operation. The outlier ratio is denotedρ. r is assumed to be
a fixed value depending only on the job nature whereasR is
a random variable.

We denote withq the probability for a job to timeout. A
job timeouts either if it is an outlier or if it faces a latency
which is superior tot∞. Thus:

q = ρ + (1− ρ)P(r + R>t∞)

and then, q = 1− (1− ρ)FR(t∞ − r). (1)

If the job timeouts, it is canceled and resubmitted. We
neglect the cost of canceling and resubmitting a job as well
as the resulting overload on the system, so that consecutive
submissions are considered as independent. LetJi be the
duration of the job from itsith submission to its completion.
Ji can be recursively defined as:

Ji =

{

r + R with probability 1− q
t∞ + Ji+1 with probabilityq.

(2)

For the sake of clarity, we will assume thatr = 0. This
hypothesis is not restrictive. In the rest of the equations,it
corresponds to the variable changeu = t − r. In case of
real job executions,r would have to be added to the timeout
value. The goal is to expressJ = J1 (through its cdfFJ)
with respect toR andt∞. J is superior tont∞ if and only if
the job timed-outn times. Thus:

P(J > nt∞) = qn so that P(J < nt∞) = 1− qn. (3)

We have the value ofFJ(x) = P(J < x) for every x =
nt∞. We now have to obtain a complete expression ofFJ.
We can notice thatFJ(t) represents the probability forJ to
be inferior tot, so thatfor all t in [nt∞, (n+ 1)t∞[:

FJ(t) = P(J < t|t ∈ [nt∞, (n+ 1)t∞])

= P(J < nt∞) + P(nt∞ < J < t | t ≤ (n+ 1)t∞)

and thus, according to equation3:

FJ(t) = 1− qn + P(nt∞ < J < t | t ≤ (n+ 1)t∞). (4)

Given thatt ≤ (n + 1)t∞, a job durationJ is in [nt∞, t] if
and only if the job timed-outn times (probabilityqn) and
succeeded on the (n+ 1)th attempti.e. it was not an outlier
(probability 1−ρ) andR≤ t−nt∞ (probabilityFR(t−nt∞)).
Therefore,P(nt∞ < J < t | t ≤ (n+ 1)t∞) = qn(1− ρ)FR(t −
nt∞). We finally get,∀t ∈ [nt∞, (n+ 1)t∞[:

FJ(t) = 1− qn + qn(1− ρ)FR(t − nt∞). (5)

Given thatR>0, FJ(0) = 0 and lim∞ FJ = 1. Moreover,
FJ is continuous at everynt∞. However, in general,FJ is
not differentiable innt∞,∀n.

Note that ifρ = 0, then equation5 resumes to:

FJ(t) = 1− qn + qnFR(t − nt∞) with q = 1− FR(t∞).

Thus, taking outliers into account corresponds to multiply-
ing FR by the (1− ρ) factor.

2.1. Expectation of J

Computing the expectation of a job execution time, gen-
eral conclusion can be made on its behavior when the time-
out value increases, independently from the system latency
distribution. The expectation ofJ is:

EJ(t∞)=
1

FR(t∞)

∫ t∞

0
u fR(u)du+

t∞
(1− ρ)FR(t∞)

− t∞. (6)

Equation6 compares to similar expressions derived for
modeling completion times probabilistically : equation 6
in [4] and equation 1 in [3]. In both cases, the authors intro-
duced a fixed cost penalty to resubmission that we consider
to be zero (there is almost no overhead induced by job re-
submission on a large scale system). In [4], the authors also
derives higher moments ofJ and some relevant properties
about them (e.g. their existence). Our hypotheses are sim-
ilar to theirs except that they do not take into account out-
liers that are of major importance on the infrastructures we
are targeting. As stated above, this parameter is character-
istic of unreliable systems and they are needed to properly
model a grid infrastructure. In [3], the authors do take into
account the outlier ratio (denotedL). However, the studied



hypotheses do not really match ours : the case of a client
being unable to hold more than one connection (so-called
simple client) is not developed, even if noticeable remarks
(such as the fact that the timeout values of all the resubmis-
sions have to be identical) are done.

EJ has the following limits:

lim
t∞→∞

EJ(t∞) = +∞ if ρ , 0 (7)

and lim
t∞→∞

EJ(t∞) = ER otherwise. (8)

If ρ , 0, the lineER +
ρ

1−ρ t∞ is an asymptote ofEJ(t∞).
The first limit can be explained by noticing that a sin-

gle outlier may lead to an infinite execution time. When
t∞ → +∞, the probability for encountering an outlier tends
towards 1 and the expected execution time tends towards
infinity. The second limit is also intuitive: in absence of
outliers, if no timeout value is set, then the system latency
would not be disturbed and the expectation of a job duration
would resume to the one of the system latency.

Equations7 and8 show thatρ has a major impact on the
system behavior. The caseρ = 0 corresponds to a reliable
cluster management system: faults causing jobs loss are
very unlikely (highly reliable LAN, robust schedulers). The
caseρ > 0 is needed to model grid infrastructures. Lower
reliability of WANs, scale effects and less mature workload
management middlewares lead to a significant number of
outliers. For instance on the EGEE infrastructure,ρ is in
the order of 2%. In case of outliers it is mandatory to set a
timeout value.

3. Results on classical distributions

In this section, we study some classical distributions
from a theoretical point of view in order to understand how
the timeout value impacts the expectation of the job du-
ration both with and without outliers. We explore distri-
butions with light tails (uniform and truncated Gaussian),
heavy tails (log-normal) and power tails (Pareto) to show
how they exhibit different behaviors. The exponential distri-
bution will constitute a transition between light and heavy-
tailed distributions. Light-tailed distributions are theones
that decay faster than the exponential. In this case, there ex-
istsa such that: limt→+∞ eat(1− F(t)) = 0. On the contrary,
heavy-tailed distributions decay more slowly than the expo-
nential : limt→+∞ eat(1− F(t)) = +∞. Power-tailed distri-
butions are a subset of the heavy-tailed ones. In this case,
there existsa andb such that limt→+∞

1−F(t)
ta = b.

For each distribution, our goal is to determine the opti-
mal timeout valuêt∞ = arg mint∞ {EJ(t∞)}. In case of very
reliable systems (when no outliers are present), the optimal
value of the timeout may be+∞, which means that no time-
out should be set. Another singular optimal timeout value

a+b
2

a b timeout value

EJ

a+b
2

a+b
2

+b
ρ

1−ρ

a b timeout value

EJ

Figure 1. Behavior of EJ(t∞) for the uniform
distribution without (left) and with (right) out-
liers.

is 0. This configuration occurs when the probability for the
job to face a null latency is so high that it is interesting to
resubmit the job as soon as one knows that it is going to face
a non null latency. This later result would only be realistic
if it was possible to resubmit an arbitrarily large number of
jobs at no additional cost. Obviously, the overhead induced
on any real system would finally slow down the process.

3.1. Uniform distribution

In this case, the pdf of the system latency is:

fR(t) =

{

1
b−a if t ∈ [a,b]
0 otherwise.

(9)

We can derive from equation6 the expectation ofJ:

EJ(t∞) =












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
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





















+∞ if t∞ ≤ a

t∞+a
2 + t∞

b−t∞+ρ(t∞−a)
(t∞−a)(1−ρ) if t∞ ∈ [a,b]

b+a
2 + t∞

ρ

1−ρ otherwise.

(10)

The curve ofEJ(t∞) is depicted on figure1. The optimal
timeout value isb both with and without outliers. Without
outliers, setting the timeout to+∞ is also optimal because
the expectation ofJ is constant in [b,+∞[.

3.2. Truncated Gaussian

Normal distributions are the most commonly used but
they do not exclude negative values. In our case, the latency
cannot be lower than 0. We are thus considering Gaussian
distributions with meanµ and standard-deviationσ trun-
cated above 0. The pdf and cdf of the system latency are:

fR(t) =















1
Φ( µσ )

1√
2πσ

e−
1
2(

t−µ
σ )2

if t ≥ 0

0 otherwise,

FR(t) =
Φ( µσ )−Φ(

µ−t
σ )

Φ( µσ )
with Φ(t) = 1√

2π

∫ t

−∞ e−
1
2 u2

du.
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Figure 2. Behavior of the expectation of J
for a truncated Gaussian distribution without
(left) and with (right) outliers.

The expectation of the job duration is then:

µ + σ
φ
(

µ

σ

)

− φ
(

µ−t∞
σ

)

Φ
(

µ

σ

)

− Φ
(

µ−t∞
σ

) +
1

1− ρ
t∞






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Φ
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)

Φ
(

µ

σ

)
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(
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σ

) + ρ

















.

with φ = Φ′.
The curve ofEJ is plotted on figure2. EJ exhibits differ-

ent behaviors depending on the presence of outliers or not.
If there are no outliers (ρ = 0), EJ is decreasing towards its
limit ER whent∞ → +∞. On the other hand, whenρ , 0,
then EJ exhibits a global minimum reached fort̂∞< + ∞.
The corresponding proof is based on the fact that the forth
derivative ofEJ is always positive, so that we can study the
existence of a root in the lower order derivatives.

If the distribution of the system latency is Gaussian and
ρ = 0, timeouting is not a solution to limit the impact of
variability, regardless of the variability order of magnitude.
In this case, other solutions such as multi-submissions or
job grouping have to be studied.

3.3. Exponential distribution

In this case, the cdf of the system latency is:

FR(t) = 1− e−αt.

And according to equation6, the expectation ofJ is:

EJ(t∞) =
1
α
+

ρt∞
(1− ρ) (1− e−αt∞ )

.

The curve ofEJ(t∞) is depicted on figure3. In case of out-
liers, EJ is increasing and the best timeout value ist̂∞ = 0.
If there are no outliers, the expectation ofJ is independent
from t∞, which is a singular behavior particular to the expo-
nential distribution. This characteristic of the exponential
distribution has to be related to the fact that this distribu-
tion is the only one to be memory-less. In this case, at a
given instant, knowing that a job is still in the system does
not give any information about its future behavior and the
timeout value thus does not impact the distribution ofJ.

timeout value
0

EJ

1
α α(1−ρ)

1

1
α

timeout value
0

EJ

Figure 3. Behavior of EJ for an exponential
distribution without (left) and with (right) out-
liers.

3.4. Log-normal distribution

The log-normal distribution is a typical example of
heavy-tailed distribution. In some cases, it is able to fit job
runtimes on clusters [12]. In this section, we assume thatR
has a log-normal distribution with parametersµ andσ. In
this case, the cdf and pdf of the system latency are:

FR(t) = Φ

(

ln t − µ
σ

)

and fR(t) =
1

t
√

2πσ
e−

(ln t−µ)2

2σ2 .

The expectation and standard-deviation ofR are:

ER = eµ+
σ2

2 and σR =
(

eσ
2 − 1

)

e2µ+σ2
. (11)

In this case, we can show thatEJ is:

ER.

(

Φ (x∞ − σ)
Φ(x∞)

+ eσx∞− σ
2

2

(

1
(1− ρ)Φ(x∞)

− 1

))

(12)

where x∞ =
ln(t∞) − µ
σ

This expression shows that the minimization ofEJ can be
performed independently fromµ on the transformed vari-
ablex∞. The obtained solution ˆx∞(σ, ρ) only depends onσ
andρ. The optimal timeout value can then be written as:

t̂∞(µ, σ) = eµK(σ, ρ) where K(σ, ρ) = eσx̂∞(σ,ρ) (13)

and:

x̂∞(σ, ρ) = arg minx∞

(

Φ (x∞ − σ)
Φ(x∞)

+

eσx∞− σ
2

2

(

1
(1− ρ)Φ(x∞)

− 1

))

.

K(σ, ρ) is actually the optimal timeout value forµ = 0.
We also have the following limit fort∞ = 0:

lim
t∞→0

EJ(t∞) = lim
x∞→−∞

EJ(x∞) = +∞.
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Figure 4. Evolution of the optimal timeout
value for µ=0 in the log-normal case.

This infinite limit proves that whenρ , 0, there exists a
finite non null optimal timeout value that minimizesEJ. In-
deed, in this case, the limit ofEJ when t∞ tends towards
infinity is infinite, according to equation7 andEJ thus has
to reach a global minimum.

The existence of a global minimum ofEJ(t∞) whenρ ,
0 is not straight-forward. Given the infinite limit ofEJ when
t∞ tends towards 0 and given thatEJ(+∞) = ER, it resumes
to the existence of at∞ for which EJ(t∞)<ER. If σ > 1, then
t∞ = eµ satisfies this relation. Indeed, in this case,x∞ = 0
and according to equation12, EJ(x∞ = 0) = ER(2Φ(−σ) +

e−
σ2

2 ). A numeric resolution then shows thatEJ<ER if and
only if σ & 0.9311. Numeric simulations suggest thatEJ

has a global minimum even for lower values ofσ. However,
an analytic proof still has to be done.

Figure 4 displays a simulation of the optimal timeout
value forµ=0, several values of the outlier ratio andσ rang-
ing from 1 to 2. We first can notice thatK(σ, ρ) seems de-
creasing with respect toρ. The timeout value thus has to
be reduced when the proportion of outliers is increasing,
which is coherent. Moreover, given an outlier ratio, the op-
timal timeout value forµ = 0 is decreasing asσ is grow-
ing. It is also coherent because the standard-deviation of
the log-normal distribution is increasing with respect toσ
(see equation11). The optimal timeout value thus has to be
reduced as the variability of the infrastructure is growing.

3.5. Pareto distribution

The Pareto distribution was introduced to represent the
distribution of wealth and proved to be very accurate to
model a large class of computer systems measurements
(jobs durations, size of the files, data transfers length on
the Internet. . . ) [13]. It is an example of power tailed distri-

a
ν

ν−1
a

tinf

EJ

tinf

EJ

ν (1−ρ)
a

Figure 5. Behavior of EJ for a Pareto distribu-
tion of R. Left: no outliers ; Right: ρ , 0.

bution. The cdf of the system latency is then:

FR(t) = 1−
( a
a+ t

)ν

with a and ν > 0.

The expectation is only defined forν>1. Then:

ER =
a

v− 1
.

In this case, the expression ofEJ can be directly derived
from equation6 and it is:

a+ t∞ν − a
(

a+t∞
a

)ν

(1− ν)
[(

a+t∞
a

)ν
− 1

] +
t∞

(1− ρ)
[(

a+t∞
a

)ν
− 1

] +
ρ

1− ρ
t∞.

We also have the following limit when the timeout value is
null:

lim
t∞→0

EJ(t∞) =
a

v(1− ρ)
.

We then can show that the expectation of the job duration
time is increasing with respect to the timeout value, regard-
less of theρ value. The optimal timeout value is thus 0. The
behavior ofEJ(t∞) is depicted on figure5.

3.6. Results summary and interpretation

Table2 displays a summary of the results we obtained
for various distributions of the system latency. Those re-
sults suggest that the weight of the tail of the distribution
of the system latency is a discriminatory parameter for the
timeout optimization when outliers are not present. Indeed,
only heavy-tailed distributions such as the log-normal, or
the Pareto ones lead to finite optimal timeout values. In this
case, which corresponds to the most realistic one [12], the
optimization speeds the execution up. On the other hand,
when the distribution of the system latency decays more
rapidly than the exponential, then setting a timeout value
always penalizes the execution and the optimal timeout is



Distribution ofR Without outliers With outliers
(ρ = 0) (ρ>0)

Uniform +∞ (or b) b
Trunc. Gaussian +∞ 0 < t̂∞ < +∞

Exponential any 0
Log-normal (µ,σ) t̂∞ = eµK(σ) < +∞ 0 < t̂∞ < +∞

Pareto (ν>1) 0 0

Table 2. Optimal timeout values

+∞. The exponential distribution stands in the middle and
is not affected by the timeout value.

As noticed in section2, taking into account the outliers
resumes to multiplyingFR by the factor (1-ρ). In this case,
the distribution of the system latency becomes heavy-tailed
as limx→+∞ eax(1− (1− ρ)FR(x)) = +∞ whena > 0. In-
deed, in this case the optimal timeout value that we found is
always finite, which is coherent with this interpretation.

3.7. Performance improvement

In case of reliable systems (without outliers), the expec-
tation of the job duration without timeout equals to the one
of the system latency. In this case, the ratioER

EJ(t̂∞) evalu-
ates the speed-up yielded by the optimization. If the latency
of the system is light-tailed, then setting a timeout value al-
ways penalizes the execution. The best strategy is thus to set
the timeout value to infinity. In this case, the optimization
does not provide any speed-up with respect to the expecta-
tion of the system latency. Concerning the limit case of an
exponential distribution, the expectation of the job duration
is independent from the timeout value and the optimization
does not lead to any speed-up.

The optimization becomes interesting for heavy-tailed
distributions as already suggested. For the log-normal case,
figure6 displays a numerical simulation of the evolution of
the speed-up of the optimization with respect toσ for a par-
ticular value ofµ showing that the speed-up is growing with
σ. In this case, bothER andσR are also growing withσ
(see equation11). Thus, the higher and the more variable
the latency, the more interesting the timeout optimization.

Concerning the Pareto distribution, the optimized expec-
tation of the job duration without outliers isa

ν
, whereas the

one obtained without setting any timeout isER =
a
ν−1. The

speed-up obtained by the optimization is thusν
ν−1. This

value is maximal forν = 1 and decreases towards 1 when
ν increases. Under Pareto assumption, the variance of the
system latency

(

νa2

(ν−2)(ν−1)2

)

is decreasing with respect toν.
Here again, the more variable the latency of the infrastruc-
ture, the higher the speed-up yielded by the optimization.

When outliers are present, the optimization of the time-
out prevents the expectation ofJ to be infinite. The im-
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pact of the optimization can then be evaluated by compar-
ing the optimized expectation of the job duration to the one
obtained without outliers. In case of a uniform distribution,
outliers add the termb ρ

1−ρ to the expectation of the job dura-
tion. This term is increasing with respect to the outlier ratio
and tends towards infinity whenρ tends towards 1. The ex-
ponential distribution and the Pareto one exhibit a similar
behavior: the outliers introduce an extra11−ρ factor on the
expectation of the job duration.

4. Experiments

In this section, we present experimental results obtained
by measuring the distribution of the latency of the EGEE
grid infrastructure on a particular time period. The EGEE
grid is a pool of thousands computers (standard PCs) and
storage resources accessible through the gLite middleware.
The resources are operated in computing centers, each of
them running its internal batch scheduler. Jobs are submit-
ted from a user interface to a central Resource Broker (RB)
which dispatches them to the computing centers. EGEE
is a production infrastructure with more than 25000 CPUs
spread in more than 190 computing centers. It is character-
ized by its high throughput but also by its high latency, high
variability and outliers. It is thus an ideal target to test our
optimization procedure.

4.1. Measure of the distribution

To measure the distribution of the system latency on the
EGEE grid, we submitted probe jobs that only consist in
the execution of a/bin/hostname and we measure their
round-trip time. We maintain a constant number of probes
inside the system by submitting a new one as soon as one
completed to avoid introducing any extra variability.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200  300  400  500  600  700  800  900  1000

F
R

(t
)

t (s)

Experimental cdf
Mixed Lognormal-Pareto model

Figure 7. Measured data (plain) and best fit-
ting Log-normal-Pareto model (dashed).

Our measure of the distribution ofR gathers 2137 probe
jobs spread over 3 different days and involving 3 RBs. The
maximal duration of those jobs was fixed totmax = 10000
seconds. Beyond this value, we consider a job as an out-
lier. Given those conditions, we obtained an outlier ratio of
2.5%. In normal operating mode, the measured distribution
of R is plotted on figure7 (plain red curve). Its expectation
is 393 seconds and its standard deviation is 792 seconds.

4.2. Timeout optimization

If we do not take outliers into account, the evolution
of EJ with respect to the timeout value is plotted on fig-
ure 8 (plain red curve). EJ then converges towardsER

as predicted by the theoretical analysis. In this case,EJ

reaches a minimum for̂t∞ = 360s. At this optimal point,
ÊJ(t̂∞) = 289s. The speed-up w.r.t to an execution without
timeout is 1.36.

The evolution ofEJ(t∞) taking the outliers into account
is plotted on figure8 (dashed green curve).EJ effectively
tends to its asymptote. The optimal timeout valuet̂∞ is now
358 seconds and̂EJ(t̂∞) has grown to 300 seconds. Set-
ting the optimal timeout value thus limits the impact of the
outliers to a 11-seconds loss, whereas it would be highly su-
perior if the timeout value is not properly set, as suggested
by figure8.

This figure also shows that the timeout value should bet-
ter be overestimated than underestimated. Both curves are
rapidly decreasing to the optimal timeout value whereas
they increase more smoothly after it.

4.3. Model of the measured distribution

To relate those experimental results to the ones presented
in the previous section, we here model the experimental dis-
tribution of the grid latency. The experimental data shown
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the experimental case.

on figure7 cannot be reasonably fitted with any of the stan-
dard distributions described in section3. However, the dis-
tribution appears to be close to a log-normal distribution for
low values (up to 500 seconds) and a Pareto distribution be-
yond. Based on this observation we fitted the experimental
data with the following distribution which is an interpola-
tion of the log-normal and Pareto ones, fort in [tmin, tmax]:

Fm
R(t) = (1− α(t))Φ

(

ln(t − tmin) − µ
σ

)

+ (14)

α(t)
(

1−
( a
a+ t

)ν)

with α(t) =

(

t − tmin

tmax− tmin

)k

.

tmin denotes the smallest latency measured among the data
(the cdf is zero below this value) andtmax the highest one.
There are thus five parameters fully describing this model
(µ, σ, a, ν, andk). α(t) is a weight function designed so
thatα(tmin) = 0 andα(tmax) = 1. The model thus tends to a
log-normal distribution intmin and to a Pareto one intmax.

We have estimated the best fit of the model14 with the
experimental data by least-square minimization. The opti-
mal model is displayed on figure7 (dashed green curve). A
Kolmogorov-Smirnov test was made to evaluate the quality
of the model. When considering an undersampling of up to
1000 measurements, the Kolmogorov-Smirnov test value is
D1000= 1.35 (we usedDn =

√
nsup|Fexp

R −Fm
R |), which cor-

respond to a p-valuep = 0.051. The tests is thus positive.
It shows that a simple model (5 parameters) can accurately
model the distribution measured over a very complex work-
load system (EGEE grid infrastructure) even when consid-
ering a very large data sample.

4.4. Practical use of the method

Exploiting our method in practice requires (i) the estima-
tion of the distribution of the grid latency and (ii) the deriva-



tion of the optimal timeout value. The first issue cannot rea-
sonably be addressed by an end-user. Collecting live statis-
tics about the grid latency implies the submission of several
probe jobs that may disturb the grid functioning without any
production usage of the resources. However, such an in-
formation should easily be available from logs of the grid
workload management system. A production grid such as
EGEE already includes a logging service which would be
able to compute and update the cdf of the grid latency over
time. Yet, more fundamental problems such as the handling
of non-stationarities of the workload still remains and are
addressed by works such as [14].

Once the distribution of the grid latency is available, de-
riving the optimal timeout value with our method is easily
automatable. The optimization criterion (i.e. the expec-
tation of the job execution time written in equation6) is
rapidly computable: it mainly includes the computation of
an integral ofu fR(u), which is a piecewise linear function
when an empirical distribution is considered. For instance,
plotting the curves of figure8 takes less than 2 seconds on
a modern PC. The optimization procedure itself is mono-
dimensional and easily implementable too.

5. Conclusion

We presented a probabilistic model of jobs execution
time taking into account timeouting and resubmissions. It
can describe both job management systems prone to face
outliers (grid) or not (cluster). The optimal timeout value
highly depends on the distribution of the system latency.
Without outliers, the heavy-tailed distributions lead to afi-
nite optimal timeout value whereas for the light-tailed ones
setting a timeout value always penalizes the execution.

When considering outliers, our model predicts that the
job execution time w.r.t the timeout value is diverging to
+∞ for every distributions. The expectation ofJ has an
asymptote whose slope only depends on the outlier ratio.
The optimal timeout value is then finite for all the studied
distributions since taking outliers into account lengthens the
tail of the distribution.

We finally presented some results from an empirical dis-
tribution from the EGEE grid. It is heavy-tailed and mod-
elizable through a mixture of log-normal and Pareto dis-
tributions. Even without outliers, a 1.36 speed-up can be
achieved by optimizing the timeout value. Considering out-
liers, optimizing the timeout value is even more critical and
the resulting expectation of the job duration is close to the
one obtained without outliers.
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