
HAL Id: hal-00683168
https://hal.science/hal-00683168

Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Merging overlapping orchestrations: an application to
the Bronze Standard medical application

Clémentine Nemo, Tristan Glatard, Mireille Blay-Fornarino, Johan Montagnat

To cite this version:
Clémentine Nemo, Tristan Glatard, Mireille Blay-Fornarino, Johan Montagnat. Merging overlapping
orchestrations: an application to the Bronze Standard medical application. International Conference
on Services Computing (SCC 2007), IEEE Computer Engineering, Jul 2007, Salt Lake City, Utah,
United States. pp.364-371, �10.1109/SCC.2007.79�. �hal-00683168�

https://hal.science/hal-00683168
https://hal.archives-ouvertes.fr


Merging overlapping orchestrations: an application to the Bronze Standard

medical application∗

Clémentine Nemo-Cailliau1, Tristan Glatard1,2, Mireille Blay-Fornarino1, Johan Montagnat1

1 UNSA-CNRS, I3S laboratory, RAINBOW team, Sophia Antipolis, France
2 INRIA Sophia-Antipolis, Asclepios project, France

Abstract

Merging orchestrations is a crucial issue in the

development process of service-based applications.

However, merging orchestrations with overlaps is a

manual and tedious process today. In this paper, we

present a case-study on the Bronze-Standard, a medi-

cal imaging application built from Web-Service based

orchestrations. We introduce the OMSM, an orches-

tration model supporting merging, that we designed

to assist this process. Through a detailed analysis of

the use-case, we show how our model helps the devel-

oper to obtain a proper composition of the application.

There is still room for generalizing the approach to a

broader set of orchestrations as discussed.

1. Introduction

Workflows have for long been developed in the con-

text of the eBusiness community to provide a flex-

ible and generic framework for compound tasks de-

scription and execution [1]. More recently, the sci-

entific community has defined its own workflow lan-

guages and engines to take into account its needs for

performance and data-intensive treatments [2, 3, 4].

The scientific workflows are often adopting a Service-

Oriented Architecture (SOA) to achieve loose cou-

pling among the services and to maximize code reuse.

In particular, the Web-Services (WS) standard was

massively adopted for designing SOAs [5].

Orchestrations are service-oriented workflows en-

abling the integration of different services, without

giving up the loose coupling property [5]. Orchestra-

∗This work is partially funded by the AGIR French research

program “ACI Masse de données” http://www.aci-agir.org.

tions are composed of basic services, such as Web-

Services, and may also include other orchestrations,

then called compound services [6]. When a compound

service shares a basic service with other parts of the

orchestration, those orchestrations are said to overlap.

Creating an orchestration is very demanding in

terms of effort and domain knowledge. Different com-

position systems exist (Oracle BPEL Designer1, the

ADAPT framework [6]) but they rarely support com-

pound services [7]. Moreover, composing overlapping

orchestrations requires a particular merging procedure

that detects shared variables and services and modi-

fies the resulting orchestration accordingly, in partic-

ular to avoid redundant calls to services. None of the

known composition approaches take it into account.

For now when a developer has to compose overlapping

orchestrations manually. She has to optimize the re-

sult: comparing the orchestration codes, checking the

multiple service calls and merging the orchestration

graphs. Even if some environments help the global un-

derstanding of the code by graphical notations [6, 8],

the merge process cannot be automated, because the

semantic of the services has to be understood.

Our goal is to automate the merge process as much

as possible. We defend the idea that even if we cannot

fully automatically deduce the merged orchestration,

it is possible to merge some parts of the orchestrations

and to identify potential conflicts for the developers in

charge of resolving them based on their knowledge of

the services semantics. In this paper, we propose an

approach for merging overlapping orchestrations, by

defining an Orchestrations Model Supporting Merg-

ing (OMSM) and guiding the developers with transfor-

1http://www.oracle.com/technology/bpel



mation rules to create new orchestrations. This model

comes from a detailed analysis of the structure of or-

chestrations and is here applied to a particular medical

imaging application. Our method is based on first or-

der logic implemented by a set of Prolog rules.

Our work is illustrated on the Bronze Standard [9],

a medical imaging application which involves the ag-

gregation of several orchestrations as described in Sec-

tion 2. Section 3 explains our merging algorithm and

Section 4 details how the application is modeled. Fi-

nally, Section 5 explains the transformation rules.

2. The Bronze Standard application

The Bronze Standard application aims at statisti-

cally assessing the accuracy of various medical im-

age registration algorithms in the absence of ground

truth. Medical image registration is the process by

which a geometrical transformation between two im-

ages acquired independently (usually a rigid transfor-

mation: translation and rotation) is estimated. The ob-

tained transformations superimpose more or less pre-

cisely the 3D frame of the first image to the 3D frame

of the second one. The inputs of a registration al-

gorithm are a pair of images and a list of algorithm-

specific parameters. The output is a rigid transfor-

mation (usually represented as a 4x4 transformation

matrix). One important information about the Bronze

Standard is that it uses multiple input image pairs and

multiple registration algorithms to provide a statisti-

cal estimate. In particular, there is no fixed number

of registration algorithms that can be used: the more

algorithms available, the more accurate the procedure.

The Bronze Standard orchestration needs to be recom-

posed, depending on the list of algorithms used. To

ease this composition process, we have embedded all

algorithms used in web services. More details on the

Bronze Standard application can be found in [9].

2.1. Basic orchestrations

The Bronze Standard orchestration can be assem-

bled from several basic orchestrations, each embed-

ding a single registration algorithm. For the sake of

clarity, we will only consider two registration algo-

rithms in our example (namely CM and PFM) although

much more could be envisaged as explained above.

Figure 1 displays the two basic orchestrations (left and

center) that have been designed by the developers us-

ing classical composition.

Each basic orchestration is made of an algorithmic

part (upper part), in charge of the registration estima-

tion, connected to an evaluation part (lower part), in

charge of the accuracy evaluation. The algorithmic

part includes the registration algorithm (CM on the left,

PFM in the center). Both need a pre-processing step

provided by the common CL service. CL service takes

as input a pair of images and a numeric parameter. It

returns 2 files (CrestLines) that are forwarded to the

CM or PFM service. Further, the orchestrations differ:

in addition to the two CrestLines files the CM registra-

tion algorithm takes as inputs the two images to regis-

ter while the PFM registration algorithm takes as inputs

an initial transformation parameter plus algorithm spe-

cific parameters (a string constant). The initial trans-

formation matrix is an input for this basic orchestration

but in the final Bronze-Standard orchestration, it needs

to be computed by a former service, e.g. using the CM

algorithm. Two files (keys) are produced by PFM and

transferred to the PFR web service which also requires

a numeric input parameter defined as a string constant.

Both CM and PFR finally produce a transformation ma-

trix and a comment string that are transferred to the

common evaluation part of the orchestration.

The evaluation part of all the basic orchestrations is

composed of 3 Web-Services sequentially linked (see

bottom of figure 1). Convert, the first one, converts

the transformation matrix resulting from the algorith-

mic part to a vector. This format conversion depends

on the registration algorithm output. The vector is then

concatenated to the input images names and to a com-

ment string and written in a result file by the Write

Web-Service. Once the whole data set has been pro-

cessed by the Write Web-Service, the Eval one per-

forms the evaluation of the accuracy. There is thus

a coordination constraint between the Write and the

Eval Web-Services. The inputs of the Eval service

are the file where the results are stored and the name

of the method to assess. This service finally produces

the results of the accuracy evaluation.

The result of merging the CM and the PFM registra-

tion orchestrations is displayed on the right part of fig-

ure 1. The two input orchestrations have partial over-

laps. The manual merging process is not trivial and



Rotation
accuracy

accuracy
rotation translation

accuracy

Translation
accuracy

init
Transfo

floating

Image
reference

Image

reference

Image

floating

Image

Rotation
accuracy

accuracy
rotation translation

accuracy

Translation
accuracy

reference

Image

im1 fileim2commentvect

Write

floating

Image

accuracy
rotation translation

accuracy

Rotation
accuracy

Translation
accuracy

filemethod

Eval

methodToEval2

accuracy
rotation translation

accuracy

Rotation
accuracy

Translation
accuracy

Evaluation

Algorithmic

im1

c1 c2

scale im2

CL

im1 fileim2commentvect

fileName

methodToEval

vector

filemethod

Write

matrix

Eval

Convert

k2k1

PFM

c1param initc2

commentresult

PFR

param k1 k2

CL

im1

c1 c2

scale im2

commentresult

im1 fileim2commentvect

fileName

methodToEval

CM

vector

filemethod

Write

matrix

c2 im2c1im1

Eval

Convert

im1

c1 c2

scale im2

CL

fileName

vector

matrix

Convert

commentresult

CM

c2 im2c1im1

k2k1

PFM

c1param initc2

commentresult

PFR

param k1 k2

methodToEval1

filemethod

Eval

im1 fileim2commentvect

Write

vector

matrix

Convert

CLParam

CLParam

PMParam

PRParam

CLParam

PMParam

PRParam

Figure 1. CM (left), PFM (center) and merged (right) orchestrations.

would become extremely tedious if considering many

more registration algorithms. This application has a

strong need for automated orchestration merging as it

eases the inclusion of new algorithms that strengthen

the evaluation results. However, some decisions de-

pend on the semantics of the operation and can only be

taken by the orchestration designer (e.g. using CM out-

put as initialization parameter for PFM, invoking two

Eval and two Write services independently, etc).

3. Semantic orchestrations merging

Currently, the known orchestration environments

rely on the developers to perform orchestrations merg-

ing manually when overlapping orchestrations are in-

volved. Merging orchestrations involve identifying

overlaps, detecting conflicts, renaming variables, re-

moving redundant calls, shifting order relationships

between instructions, etc. This process conducted

manually is tedious and error prone, especially when

considering large size orchestrations. It generates a

waste of human resources and, in case of repetitions

due to changes in the input orchestrations, it could eas-

ily lead to errors and inconsistent results.

Alternatively, one could consider automated orches-

tration merging. However, full automation is infeasi-

ble unless semantic specifications of each service and

data item are available. Without them we cannot de-

duce, for instance, whether the two Write and the

Eval services should be merged or invoked indepen-

dently in our example. To overcome this problem, we

propose in this paper an orchestration merging process

that interacts with the developer and (i) indicates po-

tential unification points, (ii)automates the unification

of service invocations or variables assignments in or-

der to suppress potential sources of errors and (iii) au-

tomatically unifies input and output variables whose

conceptual identity can be derived from previous uni-

fication steps.

3.1. Merging process overview

The three stages orchestration merging process is

depicted in figure 2. First the input orchestrations

are projected to the OMSM through the Tin transfor-

mation, thus making the process independent from

the orchestration description format. The OMSM is

then transformed iteratively (Tmk
transformations) to

merge pairs of orchestrations as described below until

a single merged result is produced. Finally, the result

is back-projected into the desired description format

through the Tout transformation.

The projection (Tin) and back-projection (Tout)

make the OMSM independent from the description

format used. In addition, the projection step enforces

and checks properties that are required by the merg-

ing process. Indeed, the models of input orchestrations

must satisfy the following properties:



Figure 2. The interactive merge process.

P1 Input orchestration models have at most one in-

vocation to a given basic service. To enforce it,

multiple invocations to a same service are tagged

as part of a structure named complex invocation.

P2 Input orchestrations have at most one reply in-

struction returning output data. If there are sev-

eral outputs, they are encapsulated in a structure.

P3 Input orchestrations must satisfy a set of con-

straints such that they do not access concurrently

in writing and reading their variables and there is

no cycle in instructions invocation order. If this

point is not valid for an orchestration, it is thrown

out of the merge process.

The merging of two orchestrations verifying these

properties will also verify them at each transforma-

tion step. Therefore, the OMSM transformation pro-

cess can be reiterated on the resulting model. More-

over it respects the ordering of services given by the

input orchestrations.

The OMSM transformations (Tmk
) are guiding the

developer to achieve merging. The system is formal-

ized in Prolog and the transformations follow specific

Prolog rules. The potential unification points are de-

tected (because they break directly or indirectly P1 or

P2) and resolved according to their semantics given by

the user. Invocations of a same service can either be

unified in a single call or tagged to keep the multiple

different calls. The transformation process automati-

cally computes the resulting orchestration and updates

the remaining potential unification points. After each

transformation application, the P3 property is checked.

The process is iterated until obtaining a single orches-

tration respecting the properties P1, P2 and P3 (with a

single output and all redundant calls resolved).

3.2. OMSM representation

Orchestrations, such as the ones pictured in figure 1,

are composed of variables (that can be read and as-

signed), services (that are invoked) and dependencies

constraining the order of execution. Variables repre-

sent the input and output data of the orchestration ser-

vices. They are characterized by a name and a type.

To deal with different kinds of service invocation,

we introduce the concept of instruction. Each instruc-

tion is characterized by four parameters: an identifier,

an ordered list of input variables, an output variable

and an activity depending on the invocation. The ser-

vice boxes depicted on figure 1 are decomposed in sev-

eral instructions: to read inputs, invoke services, and

write outputs. We consider the following activities:

• A basic invocation to a service represents a single

service call. It may either be a unique service in-

vocation or be part of a complex invocation (de-

fined below). It is characterized by two param-

eters: a unique name (composed by the service

name and the operation invoked) and the identi-

fier of a complex invocation this basic invocation

belongs to (null in case of unique invocation).

• A complex invocation i groups several basic in-

vocations i1 . . . in to a same service. It is char-

acterized by the name of the service and the set

of basic invocations to this service. Complex in-

vocations also define an invocation policy which

details how the unification of basic invocations

was resolved. Many different policies can be en-

visaged. In this paper we only use two of them

that are depicted on figure 3. The Separate Pol-

icy (SP) corresponds to concurrent invocations of

the services without input nor output unification.

It corresponds to the case where a services in-

voked in two input orchestrations should be in-

voked twice independently in the merged orches-

tration. Similarly, the Synchronous Concurrent

Execution Policy (SCEP) concurrently invokes

the services without unifying inputs and outputs

but it adds the following constraints: for every in-

vocation ik of the complex invocation i and for

every j in the set of instructions of the orchestra-

tion such that j is executed before ik we constrain

every il (l , k) to be executed after j. This corre-

sponds to the case where all predecessors (B and



C in figure 3) to the unified service (A) should

be terminated before the multiple calls to the ser-

vice can be triggered. Note that in other contexts,

many more policies can be envisaged such as se-

quencing the unified service calls, etc.

• An adapter aims at writing or reading variables.

We define it as a function which takes n input

variables and returns a single output variable.

Adapters are not subject to the same transforma-

tion rules as invocations.

• Finally, a reply activity finally corresponds to the

orchestration outputs collection: results produced

by an orchestration are returned through a special

reply instruction.

In OMSM, we model an orchestration as a tuple and

a list o = ((i,V, I), ℓ) where i is the identifier of the

orchestration, V is the set of orchestration variables, I

is the set of the orchestration instructions, and ℓ is the

list of constraints on the instructions to determine the

global partial order of execution.

Figure 3. Policies for complex invocations

3.3. Transformation rules

Once input orchestrations are modeled in OMSM,

they are transformed through the set of transformation

rules described below. In practice, this process is im-

plemented using the logic-based model in Prolog. The

implementation is described with more details in Sec-

tion 4. The transformation rules have different goals:

• Unifying input variables: all input variables are

formalized in the orchestrations in conformity

with OMSM. The programmer is asked to for-

mulate relationships between input variables. De-

pending on the variable types, different relation-

ships can be expressed. If the value of a vari-

able is contained in another one, the variables

are packed in a single structure and an adapter

is added to access the sub-variable. Some in-

put variables can disappear because their value is

obtained from variables in another orchestration

(see the init transfo variable in figure 1 for in-

stance). At each step of the merging process the

user can decide to assign or unify input variables.

This operation involves to check that the variable

is assigned before being used.

• A single reply: when an output variable is ex-

pected, there must not exist more than a sin-

gle reply instruction. As in the previous rule,

if we detect that there exists several reply in-

structions, the developer must specify relation-

ships between them. Reply instructions are con-

sequently merged.

• Unifying invocations: this rule detects a poten-

tial merging point when there are several basic

invocations to the same service and when these

invocations (i1 . . . in) are not part of a same com-

plex invocation. The user can either unify them,

or create a complex invocation. In the case

of unified invocation, if the input variables dif-

fer an adapter is used to compose them. Out-

put variables are unified automatically. A new

basic invocation i is created that is subject to

all the constraints on the unified instructions

(i1 . . . in). In the complex invocation case, invo-

cations (i1 . . . in) the user has to specify an invo-

cation policy. Each basic invocation (i1 . . . in) ref-

erences the new complex invocation i.

According to this unification several adapter in-

structions can have the same input variables.

When their output variables are only accessed in

reading the adapter are automatically merged.

Those transformation rules can only reduce the num-

ber of variables and services invocations. Therefore,

the merging algorithm terminates after a finite number

of iterations. A formal proof of it is out of the scope of

this paper.

4. Merging overlapping Scufl orchestrations

4.1. The Scufl description language

The Bronze-Standard orchestration is written with

the Scufl language, from the myGrid UK eScience

project [3]. This XML-based description language



is commonly used in the scientific community to de-

scribe orchestrations of services. It offers facilities to

describe data-intensive applications such as ours. In

particular, Scufl operators enable the description of

several iterations of a service on a complete data set.

In Scufl, the basic elements of an orchestration are

processors. Web-Services are a particular kind of pro-

cessor, as well as string constants, local java classes

and other ones. Web-Services are identified by a spe-

cific XML tag inside the processor one. This tag de-

fines the WSDL document defining the Web-Service

and specifies the operation to be invoked among the

ones available in the Web-Service. Sources (inputs)

and sinks (outputs) of the orchestration may also be

defined. Sources allow the user to split the descrip-

tion of the orchestration from the one of the processed

data. Data sets are instantiated by the user at run time

and may contain several pieces of data, each of them

resulting in an iteration of the orchestration.

Once the processors, sources and sinks of the or-

chestration are defined, links between them are ex-

pressed. There exists two different kinds of links: data

links associate outputs of some processors with input

of other ones depending on the produced data for their

execution; coordination links specify a temporal de-

pendency between the concerned services. They can

be used to express data synchronization.

There is no convention about the graphical repre-

sentation of Scufl orchestrations. In figure 1, we de-

picted sources and constants with blue triangles, sinks

with blue diamonds and Web-Services with white rect-

angles. Input messages of Web-Services are repre-

sented by rectangles on top of the white boxes and

output ones at the bottom. Parts of the messages

are identified by sub-divisions of the message rectan-

gles that are labeled to ease legibility. Data links are

represented with arrows and coordination constraints

with dot-terminated arrows (all links are data links ex-

pect the coordination link between services Write and

Eval). To exploit our automated merging procedure,

we have to define a transformation rule able to project

Scufl orchestrations into OMSM.

4.2. Projecting on orchestration model

Transforming Scufl orchestrations to OMSM or-

chestrations consists in checking the P3 property and

in adapting resulting model to conform to properties

P1 and P2. In the PFM orchestration example, we en-

capsulated the output variables rotPFM and transPFM

in a new variable resultPFM.

Scufl enables data parallelism: multiple data sets

can be pushed through the orchestrations inputs, re-

sulting in the multiple execution of each service to pro-

cess all input data segments (so called iteration strate-

gies in Scufl). Currently, the OMSM only consider

simple inputs. Supporting data parallelism will be the

subject of future work as discussed in the conclusion.

4.3. Prolog representation

We transform Scufl orchestrations in orchestrations

formulated in the Prolog logic language, conforming

to the OMSM. Below, we give details of the orches-

tration instructions (instr) for the PFM orchestration

displayed on figure 1.
The link between Scufl sources and sinks is de-

scribed as follows: the input set of variables V is
[im0,im1,fN,method,transfo,cl,pm,pr]. It repre-
sents the input set of variables referenceImage,
floatingImage, fileName, methodeToEval,
initTransfo, CLParam, PMParam and PRParam in
figure 1. The set of instructions I is composed of
17 instructions [i1...i17] belonging to three types:
invoke (service calls), assign (variable assignment)
and reply (output collection). They correspond
to basic invocations and adapters in the OMSM
representation.

orch(pfm,[im0,im1,fN,method,transfo,cl,pm,pr],

[i16, i17, i1, i2, i3, i4, i6, i5,

i7, i8, i9, i10, i11, i12, i13, i14, i15]).

instr(i1,[im0,im1,cl],clOut,invoke(cl)).

instr(i2,[clOut],c1,assign(floatingCrest)).

instr(i3,[clOut],c2,assign(referenceCrest)).

instr(i4,[pm,c1,c2,transfo],pfmOut,invoke(pfm)).

instr(i5,[pfmOut],k1,assign(floatingKeys)).

instr(i6,[pfmOut],k2,assign(referenceKeys)).

instr(i7,[pr,k1,k2],pfrOut,invoke(pfr)).

instr(i8,[pfrOut],res,assign(transfo)).

instr(i9,[pfrOut],com,assign(comment)).

instr(i10,[res],convOut,invoke(convert)).

instr(i11,[convOut],vector,assign(resultVec)).

instr(i12,[im0,im1,com,vector],writeOut,

invoke(write)).

instr(i13,[fN,method],evalOut,invoke(eval)).

instr(i14,[evalOut],rotPFM,assign(rotation-rad)).

instr(i15,[evalOut],transPFM,assign(trans-mm)).

instr(i16,[rotPFM,transPFM],result,assign

(concat(rotPFM,transPFM))).

instr(i17,[result],void,reply).



The Scufl links enforce an invocation order be-
tween instructions. Below is the list ℓ of constraints
in our model. Each is formalized in Prolog as
pred(instr1, instr2), enforcing the execution of
the instruction instr1 before the instruction instr2.
The absence of constraints between two instructions
formulates the concurrent execution. In the PFM or-
chestration case, the list of constraints is:

pred(i1, i2).pred(i1, i3).pred(i2, i4).pred(i3, i4).

pred(i4, i5).pred(i4, i6).pred(i5, i7).pred(i6, i7).

pred(i7, i9).pred(i7, i8).pred(i10, i11).

pred(i8, i10).pred(i11, i12).pred(i9, i12).

pred(i12, i13).pred(i13, i14).pred(i13, i15).

pred(i14,i16).pred(i15,i16).pred(i16, i17).

We apply transformation rules on this representa-

tion to guide the developer in the merging process.

5. Merging orchestrations

From the OMSM representation of the CM and

PFM Scufl orchestrations, we can apply transforma-

tion rules2 to compose the Bronze Standard. When

potential unification points are detected the develop-

ers input is requested. Along the merge process, the

assign instructions are automatically adapted and op-

timized. In our example, multiple reply instructions,

multiple invocations to a same service (CL, Convert,

Write, and Eval), and choice of input variables are

the potential unification points detected.

Unifying input variables: Prolog rules applied

to the list of input variables ([im0,im1,pm,pr,fN,

method,transfo,cl,pm,pr] for PFR and [im0,im1,

s,fN,method,cl] for CM) lead to conflicts. As the in-

tention is to compare several algorithms on the same

input images, the developer chooses to unify the pairs

of images (im0, im1). The results have to be written

in a single file. The the file name (fN) and CL con-

stant (cl) are also unified by the user. Conversely, the

method variable describing which method is evaluated

needs to be different in both invocations. Two distinct

variables are thus needed. The original variables are

renamed into method1 and method2 to make the dis-

tinction. For the constants (pm) and (pr) existing only

in the PFR, the developer simply preserves them in

the input variables. Finally the developer unifies the

2For the sake of brevity, these rules could not be re-

produced here but examples can be found in [10] or on

http://rainbow.polytech.unice.fr/adore web site.

transfo variable with the result output variable of

the CM service. The transfo variable is not an input

variable any more in the resulting orchestration.

Unifying invocations: based on the service names,

the process detects the overlapping invocations and

submits the remaining conflicts to the developer. First,

the developer chooses to unify the two invocations

of CL, because they correspond strictly to the same

computation. Before operating the invocation unifica-

tion, the variables in both orchestrations are renamed

in order to avoid naming conflict: a variable named

x in orchestration PFM (resp. CM) is renamed xPFM

(resp. xCM), if it does not correspond to an input vari-

able. The input variables of CL have already been uni-

fied. The process unifies the renamed output variables

(clOutCM, clOutPFM) of CL. The developer chooses

not to unify the overlapping invocations to Convert

and Write. She selects complex invocation policies.

In this case, she wants two concurrent executions and

selects the Separate Policy. Consequently the process

references the corresponding basic invocations and set

their identifiers to the one of the complex invocations.

For the two invocations of Eval the process suggests

not to unify them because the (method) input variables

have been distinguished. The developer chooses the

Synchronous Concurrent Execution Policy to make the

evaluation start only when both the Write invocations

have been performed. Thus, the process increments

the constraints list adding two dependencies between

the Eval and Write invocations. This semantic con-

forms to the coordination constraint expressed in Scufl

between these services.

Unifying reply instructions: The process detects

multiple reply instructions and creates a list of output

variables. The developer simply concatenates the pairs

returnPFM and returnCM to have a single reply.

After applying each rule, the process checks the va-

lidity of P3. In particular it checks that no deadlock

and no concurrent access to variables have been intro-

duced by the user during the merge process. If a viola-

tion of P3 is detected, backtracking is possible and the

user is requested to solve the problem.

6. Conclusion

We have addressed the problem of automatically

merging several orchestrations into a single one. Be-



cause of the absence of semantic description of all the

processes involved in the input orchestrations, the pro-

cess cannot be automatic. Relying on the user knowl-

edge allows us to cope with this problem. Our OMSM

model uses a formal representation of orchestrations

and a set of transformation rules to proceed with the

automation. It is implemented in Prolog.

We have shown on a concrete example how the pro-

cess is conducted and what are the benefit. The process

not only eases the merging from a developer point of

view but it also drastically reduces the risk of errors by

automatically revealing all potential conflict points. To

build our Bronze Standard medical imaging applica-

tion, we merged two basic overlapping orchestrations

that shared variables and invocations. Conflict points

were resolved by suggesting to the user to apply trans-

formation rules. This merging process has also been

successfully applied to the problem of merging BPEL

orchestrations in the context of a travel agency [10],

which suggests that it generalizes.

OMSM was initially designed for control-flow

workflow approaches. Data-flow languages such as

Scufl exhibit different requirements that cannot be ad-

dressed by our approach. For instance, handling data-

parallelism is not possible yet. A basic technique to

cope with it would be to formulate data parallelism as

a concurrent execution of the orchestration on differ-

ent input variables. However, this is limited to the

merging of orchestrations for input data sets whose

size is known before the execution and does not take

into account the dynamic behavior of service-based

orchestration descriptions. For instance, merging ba-

sic orchestrations of the Bronze Standard application

on clinical use cases for which the size of the image

database is only known at runtime is not possible for

now. Moreover, handling data-parallelism would im-

ply to be able to represent iteration strategies, in order

to define how a given service with multiple input ports

is iterated on several data items. This could be man-

aged by defining new policies for complex invocations.

Finally, another limitation is the intensive usage of

interactivity made by the merging process. Each con-

flict point has to be solved by the user. We plan to over-

come this limitation by the use of a knowledge base in

order to capitalize on the user choices: the more the

system would evolve, the more automatic it would be-

come.

References

[1] W. M. Van Der Aalst, A. H. Ter Hofstede, B. Kie-

puszewski, and A. P. Barros, “Workflow patterns,”

Distributed and Parallel Databases, vol. 14, no. 1, pp.

5–51, July 2003.

[2] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Vi-

sual Grid Workflow in Triana,” Journal of Grid Com-

puting, vol. 3, no. 3-4, pp. 153 – 169, 2005.

[3] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. R. Pocock,

A. Wipat, and P. Li, “Taverna: A tool for the com-

position and enactment of bioinformatics workflows,”

Bioinformatics journal, vol. 17, no. 20, pp. 3045–

3054, 2004.

[4] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,

E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao,

“Scientific Workflow Management and the Kepler

System,” Concurrency and Computation: Practice &

Experience, vol. 18, no. 10, pp. 1039 – 1065, 2006.

[5] OASIS SOA Reference Model Technical Committee,

M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and

R. Metz, “Reference Model for Service Oriented Ar-

chitecture 1.0,” OASIS, Tech. Rep., Oct. 2006.

[6] A. Bartoli, R. Jiminez-Peris, B. Kemme, C. Pau-

tasso, S. Patarin, S. Wheater, and S. Woodman,

“The ADAPT framework for adaptable and compos-

able web services,” IEEE Distributed Systems Online,

vol. 6, no. 9, Sept. 2005.

[7] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-

Oriented Composition in BPEL4WS,” in 12th Inter-

national World Wide Web Conference (WWW’2003).

Budapest, Hungary: W3C, May 2003.

[8] S. Ben Mokhtar, N. Geogantas, and V. Issarny, “CO-

COA : Conversation-Based Service Composition for

Pervasive Computing Environments,” in IEEE Inter-

national Conference on Pervasive Services (ICPS),

Lyon (France), 2006.

[9] T. Glatard, X. Pennec, and J. Montagnat, “Per-

formance evaluation of grid-enabled registration al-

gorithms using bronze-standards,” in Medical Im-

age Computing and Computer-Assisted Intervention

(MICCAI’06), ser. LNCS, Copenhagen, Denmark,

Oct. 2006.

[10] C. Nemo, M. Blay-Fornarino, G. Kniesel, and

M. Riveill, “Semantic orchestrations merging - To-

wards Composition of Overlapping Orchestrations,”

in 9th International Conference on Enterprise Infor-

mation Systems (ICEIS’2007), J. Filipe, Ed., Funchal,

Madeira, June 2007.


