
HAL Id: hal-00683148
https://hal.science/hal-00683148v1

Preprint submitted on 27 Mar 2012 (v1), last revised 19 Feb 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine asymptotics of profiles and relaxation to
equilibrium for growth-fragmentation equations with

variable drift rates
Daniel Balagué, José Cañizo, Pierre Gabriel

To cite this version:
Daniel Balagué, José Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium
for growth-fragmentation equations with variable drift rates. 2012. �hal-00683148v1�

https://hal.science/hal-00683148v1
https://hal.archives-ouvertes.fr


Fine asymptotics of profiles and relaxation to

equilibrium for growth-fragmentation equations

with variable drift rates
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Abstract

We are concerned with the long-time behavior of the growth-fragmen-
tation equation. We prove fine estimates on the principal eigenfunctions
of the growth-fragmentation operator, giving their first-order behavior
close to 0 and +∞. Using these estimates we prove a spectral gap result
by following the technique in [1], which implies that solutions decay to
the equilibrium exponentially fast. The growth and fragmentation coef-
ficients we consider are quite general, essentially only assumed to behave
asymptotically like power laws.
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1 Introduction

In this paper we are interested in the long-time behavior of the growth-frag-
mentation equation, commonly used as a model for cell growth and division
and other phenomena involving fragmentation [10, 6, 4]. There are a number of
works which study the existence and other properties of the first eigenfunctions
(also called profiles) of the growth-fragmentation operator and its dual [7, 2, 3]
and the convergence of solutions to equilibrium [5, 11, 9, 8, 1, 12]. These eigen-
functions are fundamental since they give the asymptotic shape of solutions
(i.e., the stationary solution of the rescaled equation) and a conserved quantity
of the time evolution. However, precise estimates on their behavior close to 0
and +∞ are usually not given, are very rough, or are restricted to a particular
kind of growth or fragmentation coefficients. Our first objective is to give accu-
rate estimates on the first eigenfunctions, valid for a wide range of growth and
fragmentation coefficients which include most cases in which they behave like
power laws. We give, in most cases, the first-order behavior of both first eigen-
functions (of the growth-fragmentation operator and its dual); detailed results
are given later in this introduction.

Our second objective is to use these estimates to show that the growth-
fragmentation operator has a spectral gap (in a certain natural Hilbert space)
for a wide choice of the coefficients, which is interesting because it readily im-
plies exponential convergence to equilibrium of solutions. For this we follow
the techniques in [1], which require careful estimates on the profiles which were
previously available only for particular growth rates (constant and linear). Our
results on exponential convergence to equilibrium are valid for general coef-
ficients behaving like power laws, improving or complementing known results
applicable to constant or linear total fragmentation rates [5, 11, 1]. However,
our results still impose some restrictions on the fragment distribution (which
must be bounded below) and the decay of the total fragmentation rate for small
sizes.

Let us introduce the equation under study more precisely and state our main
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results. The growth-fragmentation equation is given by

∂tgt(x) + ∂x(τ(x)gt(x)) + λgt(x) = L[gt](x), (1a)

(τgt)(0) = 0 (t ≥ 0), (1b)

g0(x) = gin(x) (x > 0). (1c)

The unknown is a function gt(x) which depends on the time t ≥ 0 and on
x > 0, and for which an initial condition gin is given at time t = 0. The
positive function τ represents the growth rate. The symbol L stands for the
fragmentation operator (see below), and λ is the largest eigenvalue of the op-
erator g 7→ −∂x(τg) + Lg, acting on a function g = g(x) depending only on x.
The main motivation for the study of equation (1) is the closely related

∂tnt(x) + ∂x(τ(x)nt(x)) = L[nt](x), (2)

with the same initial and boundary conditions. Solutions of the two are related
by nt(x) = eλtgt(x), and nt represents the size distribution at a given time t of
a population of cells (or other objects) undergoing growth and division phenom-
ena. The population grows at an exponential rate determined by λ > 0, called
the Malthus parameter, and approaches an asymptotic shape for large times.
Equation (1) has a stationary solution and is more convenient for studying its
asymptotic behavior, which is why it is commonly considered. Of course, results
about (1) are easily translated to results about (2) through the simple change
nt(x) = eλtgt(x).

The fragmentation operator L acts on a function g = g(x) as

Lg(x) := L+g(x)−B(x)g(x),

where the positive part L+ is given by

L+g(x) :=

∫ ∞

x

b(y, x)g(y) dy.

The coefficient b(y, x), defined for y ≥ x ≥ 0, is the fragmentation coefficient,
and B(x) is the total fragmentation rate of cells of size x > 0. It is obtained
from b through

B(x) :=

∫ x

0

y

x
b(x, y) dy (x > 0).

The eigenproblem associated to (1) is the problem of finding both a station-
ary solution and a stationary solution of the dual equation, this is, the first
eigenfunction of the growth-fragmentation operator g 7→ −(τg)′ + L(g) and
of its dual ϕ 7→ τϕ′ + L∗(ϕ). If λ is the largest eigenvalue of the operator
g 7→ −(τ g)′ + Lg, the associated eigenvector G satisfies

(τ(x)G(x))′ + λG(x) = L(G)(x), (3a)

τ(x)G(x)
∣

∣

x=0
= 0, (3b)

G ≥ 0,

∫ ∞

0

G(x) dx = 1. (3c)
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Of course, the eigenvector G is an equilibrium (i.e., a stationary solution) of
equation (1). The associated dual eigenproblem reads

−τ(x)φ′ + (B(x) + λ)φ(x) = L∗
+φ(x), (4a)

φ ≥ 0,

∫ ∞

0

G(x)φ(x) dx = 1, (4b)

where

L∗
+φ(x) :=

∫ x

0

b(x, y)φ(y) dy.

This dual eigenproblem is interesting because φ gives a conservation law for (1):
∫ ∞

0

φ(x) gt(x) dx =

∫ ∞

0

φ(x) gin(x) dx = Cst (t ≥ 0).

In this paper we always denote by G, φ and λ the solution to (3) and (4).
In the rest of this introduction we describe the assumptions used through-

out the paper and state our main results. In Section 2 we give the proof of
our estimates on the stationary solution G, and Section 3 is devoted to es-
timates of the dual eigenfunction φ. Our results on the spectral gap of the
growth-fragmentation operator are proved in Section 4, and we also include two
appendices: one, Appendix A, on different approximation procedures that may
be used for G and φ, and which are more convenient in some of our arguments;
and Appendix B, which gives asymptotic estimates of some of the expressions
involving the positive part L+ of the fragmentation operator, and are used for
our large-x estimates of G.

1.1 Assumptions on the coefficients

For proving our results we need some or all of the following assumptions. First of
all, we assume that the fragmentation coefficient b is of self-similar form, which
is general enough to encompass most interesting examples and still allows us to
obtain accurate results on the asymptotics of G and φ:

Hypothesis 1.1 (Self-similar fragmentation rate). The coefficient b(x, y) is of
the form

b(x, y) = B(x)
1

x
p
(y

x

)

(5)

for some locally integrable B : (0,+∞) → (0,+∞), and some nonnegative finite
measure p on [0, 1] satisfying the mass preserving condition

∫ 1

0

z p(z) dz = 1,

and also the condition
∫ 1

0

p(z) dz > 1.

(When writing the integral of a measure it is always understood that the inte-
gration limits are included in the integral.)
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The measure p gives the distribution of fragments obtained when a particle
of a certain size breaks.

Remark 1.1. Define, for k ≥ 0, the moment

πk :=

∫ 1

0

zkp(z)dz.

We have from Hypothesis 1.1 that π1 = 1 and π0 > 1. Physically, π0 represents
the mean quantity of fragments produced by the fragmentation of one particle.
Because of the strict inequality π0 > π1, one can deduce that p is not concen-
trated at z = 1 (i.e. p 6= π0δ1). As a consequence we have that πk < 1 if k > 1
and πk > 1 if k < 1.

Hypothesis 1.2. The growth rate is a continuous and strictly positive function
τ : (0,+∞) → (0,+∞).

Our next assumption says that the growth rate and total fragmentation rate
have a power-law behavior for large and small sizes:

Hypothesis 1.3 (Asymptotics of fragmentation and drift rates). Assume that
for some constants B0, B∞, τ0, τ∞ > 0 and γ0, γ, α0, α ∈ R

B(x) ∼ B0 x
γ0 as x→ 0, (6)

B(x) ∼ B∞ xγ as x→ +∞, (7)

τ(x) ∼ τ0 x
α0 as x→ 0, (8)

τ(x) ∼ τ∞ xα as x→ +∞. (9)

We also impose the conditions

γ0 − α0 + 1 > 0, (10)

γ − α+ 1 > 0, (11)

to ensure the existence of a solution to the eigenproblem (see [2, 7]).

Likewise, we impose that the distribution of small fragments behave like a
power law:

Hypothesis 1.4 (Behavior of p close to 0). There exist p0 ≥ 0 and µ > 0 such
that

p(z) = p0 z
µ−1 + o(zµ−1) as z → 0, (12)

with the condition
µ− α0 + 1 > 0. (13)

Remark 1.2. When p0 > 0 condition (12) is the same as

p(z) ∼ p0 z
µ−1 (14)

as z → 0. We prefer to write it as given in order to allow for p0 = 0, which is
usually not allowed in the notation (14). For instance, if p(z) is equal to 0 in
a neighborhood of 0 (such as for the mitosis case, see below), then (12) holds
with p0 = 0, but (14) does not make sense.
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To find the asymptotic behavior of the function G when x→ ∞ the following
hypothesis will also be needed.

Hypothesis 1.5 (Asymptotics to second order). Assume that τ is a C1 function
and that, for some δ > 0 and ν > −1,

B(x) = B∞ xγ +O(xγ−δ) as x→ +∞, (15)

τ(x) = τ∞ xα +O(xα−δ) as x→ +∞, (16)

p(z) = p1(1− z)ν +O((z − 1)ν+δ) as z → 1. (17)

Finally, to prove the entropy-entropy dissipation inequality, we will need an
additional restriction on the fragmentation coefficient. It essentially says that p
is uniformly bounded below by some constant p > 0, and that it behaves like a
constant at the endpoints 0 and 1:

Hypothesis 1.6. There exist positive constants p, p0, p1 > 0 such that

∀ z ∈ (0, 1), p(z) ≥ p (in the sense of measures),

p(z) −−−→
z→0

p0, p(z) −−−→
z→1

p1,

and α0 < 2 (which is nothing but condition (13) in the case µ = 1).

The reader may check that [2, Theorem 1], which gives existence and unique-
ness of G, φ, λ satisfying (3) and (4) is applicable under Hypotheses 1.1–1.4.
We assume at least these hypotheses throughout the paper in order to ensure
the existence of profiles.

Let us give some common examples of coefficients satisfying the above as-
sumptions:

Power coefficients. If we set

b(x, y) = 2xγ−1 for x > y > 0, τ(x) = xα for x > 0,

then all our hypotheses are satisfied when γ−α+1 > 0 and α < 2. Observe
that in this case B(x) = xγ and p(z) ≡ 1, which satisfies Hypotheses 1.1,
1.4 with µ = 1 and ν = 0, and also 1.6. Since τ(x) is a power, it satisfies
Hypothesis 1.2. Hypotheses 1.3 and 1.5 are also satisfied.

Self-similar fragmentation. The previous case with τ(x) = x is referred to
as the self-similar fragmentation equation. It is closely related to the
fragmentation equation ∂tgt = L(gt) (see [3, 1]).

Mitosis. Cellular division by equal mitosis is modeled by a distribution of
fragments p concentrated at a size equal to one half:

p(z) = 2δz= 1
2
.

This measure p satisfies Hypothesis 1.4 with p0 = p1 = 0 (the value of µ,
ν being irrelevant). In order to make the theory work, one has to choose
B and τ such that the rest of Hypotheses are satisfied. For instance,
B(x) = xγ and τ(x) = xα with γ − α + 1 > 0 (and then defining b(x, y)
through (5)) are valid choices for the same reasons as before.
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1.2 Summary of main results

Estimates on the profiles. We describe the asymptotics of the profile G
and give accurate bounds on the eigenvector φ. Define

Λ(x) :=

∫ x

1

λ+B(y)

τ(y)
dy

and

ξ :=











p1 if γ > 0 and ν = 0,

p1
B∞

λ+B∞
if γ = ν = 0,

0 if γ ≥ 0 and ν > 0, or γ < 0 and ν > −1 + γ+1−α
1−α ,

where the parameters are the ones appearing in the previous hypotheses. In
Section 2.2 we prove the following result, which improves previous estimates of
the profile G given in [3, 1, 2]

Theorem 1.7. Assume Hypotheses 1.1–1.5. There exists C > 0 such that

G(x) ∼
x→+∞

Ce−Λ(x)xξ−α. (18)

This result works for all the examples given before. For all of them, it
shows that the profile G decays exponentially for large sizes, with a precise
exponential rate given by Λ(x). We observe that Λ(x) behaves like xγ+−α+1

(with γ+ := max{γ, 0}), which is always a positive power of x. There are some
observations about this that match intuition: the equilibrium profile decays
faster when the total fragmentation rate is stronger for large sizes, and it decays
slower when the growth rate is larger for large sizes. Also, it is interesting to
notice that Λ does not depend on the fragment distribution (this is, p), but only
on the total fragmentation rate B.

The additional power xξ−α which gives a correction to the exponential be-
havior, in turn, depends only on the behavior of the distribution of fragments
p(z) close to z = 1, this is, on fragments of size close to the size of the par-
ticle that breaks. In the mitosis case, for example, ξ = 0 since we obtain no
fragments of similar size when a particle breaks.

The behavior of G(x) for x close to 0 depends on the power α0 from Hy-
pothesis 1.3 and the distribution of small fragments that result when a particle
breaks. The following result is proven in Section 2.3:

Theorem 1.8. Assume Hypotheses 1.1–1.4 with p0 > 0. If α0 < 1, there exists
C > 0 such that

G(x) ∼
x→0

C xµ−α0 .

If α0 ≥ 1, there exists C > 0 such that

G(x) ∼
x→0

C xµ−1.
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This shows that G is (roughly) more concentrated close to 0 the weaker
the growth is for smaller sizes; and is less concentrated when there are fewer
smaller fragments resulting from breakage. This result includes cases in which
G(x) blows up as x → 0, cases in which it behaves like a constant, and cases
in which it tends to 0 like a power. We recall that the boundary condition is
τ(x)G(x) → 0 as x→ 0, which is always ensured by µ > 0 from Hypothesis 1.4.

For the profile φ we derive the following estimates, proved in section 3, by
the use of a maximum principle (Lemma 3.2):

Theorem 1.9. Assume Hypotheses 1.1–1.4. If γ > 0, there are two positive
constants C1 and C2 such that

C1x ≤ φ(x) ≤ C2x, ∀x > 1. (19)

If γ < 0 and under the additional assumption that µ = 1 and p0 > 0 in Hypoth-
esis 1.4, there exist two positive constants C1 and C2 such that

C1x
γ−1 ≤ φ(x) ≤ C2x

γ−1, ∀x > 1. (20)

Estimates of φ are significantly harder than those of G, and they have to
be obtained through comparison arguments. To our knowledge, this is the first
result in which φ can be bounded above and below by the same power (except
for the cases in which φ can be found explicitly). This improves the results in
[1] also in that it is valid for a general power-law behavior of τ .

We do not include the case γ = 0 in the above theorem (this is, B(x)
asymptotic to a constant as x→ +∞), but we remark that in the case of B(x)
equal to a constant (and with the very mild condition that

∫

b(x, y) dy is equal to
a constant independent of x), then φ ≡ 1. The case τ(x) = τ0x is also explicit:
in that case, λ = τ0 and φ(x) = Cx for some number C > 0.

As for the behavior at zero, we prove the following result:

Theorem 1.10. Assume Hypotheses 1.1–1.4. Then there exists a constant
C > 0 such that

φ(x) ∼
x→0

CeΛ(x).

We remark that the behavior of Λ(x) for small x is determined by whether
(B(x)+λ)/τ(x) is integrable close to x = 0. Since B(x)/τ(x) is always integrable
close to x = 0 by hypothesis (as γ0 − α0 > −1), we deduce that:

1. If γ0 ≤ 0, then φ(x) tends to a positive constant as x→ 0.

2. If γ0 > 0, then there are three possible cases:

(a) If α0 < 1, then again φ(x) tends to a positive constant as x→ 0.

(b) If α0 = 1, then φ(x) behaves like a positive power of x as x→ 0.

(c) If α0 > 1, then φ(x) decays exponentially fast as x→ 0.
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Spectral gap. The estimates of the previous theorems allow us to prove a
spectral gap inequality. The general relative entropy principle [8, 9] applies
here and we have

d

dt

∫ ∞

0

φ(x)G(x)H(u(x)) dx =

∫ ∞

0

∫ ∞

y

φ(y)b(x, y)G(x)

× (H(u(x))−H(u(y)) +H ′(u(x))(u(y) − u(x))) dx dy,

where H is any function and we denote

u(x) :=
g(x)

G(x)
(x > 0).

In the particular case of H(x) := (x− 1)2 we define

H [g|G] :=

∫ ∞

0

φG(u − 1)2 dx (21)

D[g|G] :=

∫ ∞

0

∫ ∞

x

φ(x)G(y)b(y, x)(u(x) − u(y))2 dydx, (22)

and obtain that
d

dt
H [g|G] = −D[g|G] ≤ 0.

The next result shows that H is in fact bounded by a constant times D:

Theorem 1.11. Assume that the coefficients satisfy Hypotheses 1.1–1.6 with
one of the following additional conditions on the exponents γ0 and α0:

• either α0 = 1 and γ0 ≤ 1 + λ/τ0,

• or α0 < 1 and γ0 ≤ 2− α0.

Consider also that we are in the case γ 6= 0. Then the following inequality holds

H [g|G] ≤ CD[g|G], (23)

for some constant C > 0 and for any nonnegative measurable function g :
(0,∞) → R such that

∫

φg = 1. Consequently, if gt is a solution of problem (1)
the speed of convergence to equilibrium is exponential in the L2-weighted norm
‖ · ‖ = ‖ · ‖L2(G−1φdx), i.e.,

H [gt|G] ≤ H [g0|G] e
−Ct for t ≥ 0.

Remark that in general we do not know the value of the eigenvalue λ which
appears in the assumption on γ0 for the case α0 = 1. Nevertheless in the case
of the self-similar fragmentation equation (i.e. τ(x) ≡ τ0x) we know by inte-
gration of equation (3a) multiplied by x that λ = τ0 and the condition on γ0
becomes γ0 ≤ 2. Thus Theorem 1.11 includes the result of the first part of [1,
Theorem 1.9].
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The main restrictions on the coefficients needed for Theorem 1.11 to hold are
the following. First, we require Hypothesis 1.6, which says that the fragment
distribution p should be bounded below. Consequently, this does not include
the mitosis case and other cases in which the fragment distribution has “gaps”;
we refer to [5] for a proof that exponential decay does hold in that case, at
least for a constant total fragmentation rate. Second, the exponents α0 and
γ0 cannot be too large, since we need the profile G to be bounded (for which
α0 ≤ 1 is required) and B(x) not to be too small close to x = 0 (in order to
ensure that the term b(x, y) which appears in the entropy dissipation is not too
small and can be bounded below by our methods). The latter restriction (on
γ0) is probably a shortcoming of the arguments we are using, and we do not
know whether the first one α0 ≤ 1 is a more fundamental one.

On the other hand, it is remarkable that Theorem 1.11 does not place any
restrictions on the behavior of the fragmentation or growth coefficients for large
sizes. This is a significant improvement over [1], where the behavior at 0 and
+∞ of the coefficients was taken to be the same power of x, and results were
restricted to the cases in which τ is constant or linear.

2 Estimates of the profile G

2.1 Estimates of the moments of G

When Hypothesis 1.3 is satisfied, we define

ζ := lim
x→+∞

xα−γ+
B(x) + λ

τ(x)
=
λ1γ≤0 +B∞1γ≥0

τ∞
=











B∞

τ∞
if γ > 0,

λ+B∞

τ∞
if γ = 0,

λ
τ∞

if γ < 0,

(24)

where γ+ = max{0, γ}. Remark that, for γ ≥ 0, we have the relation

ξ = p1
B∞
τ∞

ζ−1. (25)

Lemma 2.1. Assume Hypotheses 1.1–1.4. For any m > 1 + ξ it holds that
∫ ∞

1

G(x) eΛ(x) xα−m dx < +∞.

Proof. As usual, we carry out a priori estimates which can be rigorously justified
by an approximation procedure (such as the truncated equation (49)). As G
is integrable, it is enough to prove the convergence of the above integral on
(x0,+∞) for a sufficiently large x0 > 0. Hence, take any x0 > 0, multiply (3a)
by x1−meΛ(x) with m > 1 + ξ and integrate on (x0,+∞) to obtain

−G(x0)e
Λ(x0)τ(x0)x

1−m
0 + (m− 1)

∫ ∞

x0

G(x)eΛ(x)τ(x)x−m dx

=

∫ ∞

x0

G(y)

∫ y

x0

eΛ(x)x1−mb(y, x) dx dy (26)
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where we have done an integration by parts on the last term.
We first consider the case ξ > 0 (this is, γ ≥ 0 and ν = 0). From Equation (9)

we have that for any ǫ > 0 there exists x0 > 0 such that

(m− 1)

∫ ∞

x0

G(x)eΛ(x)τ(x)x−m dx

≥ (m− 1)(1 − ǫ)τ∞

∫ ∞

x0

G(x)eΛ(x)xα−m dx, (27)

and, applying Lemma B.3, also such that

∫ ∞

x0

G(y)

∫ y

x0

eΛ(x)x1−mb(y, x) dx dy

≤ (1 + ǫ)B∞p1ζ
−1

∫ ∞

x0

G(y)eΛ(y)yα−m dy (28)

(observe that we have used γ ≥ 0 and ν = 0 here). Using (27) and (28) we
obtain from (26) that

(

(m− 1)(1− ǫ)τ∞ − (1 + ǫ)B∞p1ζ
−1

)

∫ ∞

x0

G(x)eΛ(x)xα−m dx

≤ G(x0)e
Λ(x0)τ(x0)x

1−m
0 .

When (m−1)(1−ǫ)τ∞−(1+ǫ)B∞p1ζ−1 > 0 this gives a bound for the integral
on the left hand side. If m > 1+ ξ we can always choose ǫ small enough for this
to be true, because of relation (25), and it proves the result.

The remaining case is ξ = 0, this is, ν > −1 + γ+1−α
γ++1−α . In this case we have

to substitute (28) by the following, according to Lemma B.3:

∫ ∞

x0

G(y)

∫ y

x0

eΛ(x)x1−mb(y, x) dx dy

≤ (1 + ǫ)B∞p1ζ
−1−νΓ(1 + ν)

∫ ∞

x0

G(y)eΛ(y)y1−m+γ−(γ+−α+1)(1+ν) dy. (29)

Since ν > −1 + γ+1−α
γ++1−α , we have

1−m+ γ − (γ+ − α+ 1)(1 + ν) < −m+ α.

Thus the exponent of y on the right hand side of (29) is strictly smaller than
α−m, so we can always find x0 large enough so that

∫ ∞

x0

G(y)

∫ y

x0

eΛ(x)x1−mb(y, x) dx dy ≤ ǫ

∫ ∞

x0

G(y)eΛ(y)yα−m dy.

Using this and (27) in (26) we may follow a similar reasoning as before to obtain
the result.
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2.2 Asymptotic estimates of G as x → +∞

In this section we prove Theorem 1.7 by using the moment estimates in Section
2.1.

Proof of Theorem 1.7. We divide the proof in two steps:

Step 1: proof that the limit is finite. Again, we carry out a priori esti-
mates on the solution which can be fully justified by using the approximation
(49). Let us first prove that xα−ξG(x)eΛ(x) has a finite limit C ≥ 0 as x→ +∞,
and later we will show that C > 0. We use equation (3a) to obtain

(x−ξτ(x)G(x)eΛ(x))′ = −ξx−ξ−1τ(x)G(x)eΛ(x)

+ x−ξeΛ(x)

∫ ∞

x

b(y, x)G(y) dy.

Let us show that the right hand side of this last expression is integrable on
(x0,+∞) for some x0 > 0. Once we have this the result is proved, since then
xα−ξG(x)eΛ(x) must have a limit as x → +∞. Integrating the right hand side
we obtain:

− ξ

∫ ∞

x0

x−ξ−1τ(x)G(x)eΛ(x) dx+

∫ ∞

x0

x−ξeΛ(x)

∫ ∞

x

b(y, x)G(y) dy dx

=

∫ ∞

x0

G(x)

(
∫ x

x0

y−ξb(x, y)eΛ(y) dy − ξx−ξ−1τ(x)eΛ(x)

)

dx. (30)

We just need to show that the parenthesis is of the order of eΛ(x)xα−ξ−1−ǫ for
some ǫ > 0, and then Lemma 2.1 shows that the above integral is finite.

The case ξ > 0. Let us start considering the case ξ > 0 (this is, γ ≥ 0 and
ν = 0). Using Lemma B.3

∫ x

x0

y−ξb(x, y)eΛ(y) dy = p1B∞ζ
−1 xα−ξ−1eΛ(x) +O(x−η+α−1−ǫ)eΛ(x), (31)

for some ǫ > 0. From (16) we also have

ξx−ξ−1τ(x)eΛ(x) = τ∞ ξ xα−ξ−1eΛ(x) +O(xα−ξ−1−δ)eΛ(x). (32)

Using (31)-(32) and the relation (25), the parenthesis in (30) is, in absolute
value, less than Cxα−ξ−1−δeΛ(x) for some constant C > 0. Hence by Lemma
2.1 the integral in (30) is finite, and we conclude that xα−ξG(x)eΛ(x) has a finite
limit as x→ +∞ when ξ > 0.

12



The case ξ = 0. In this case we have from Lemma B.3
∫ x

x0

b(x, y)eΛ(y) dy ∼ p1B∞ζ
−1−νΓ(1 + ν)xγ−(γ+−α+1)(1+ν)eΛ(x).

Using the same reasoning as at the end of the proof of Lemma 2.1 we have that,
when ξ = 0,

γ − (γ+ − α+ 1)(1 + ν) < α− 1,

which then shows that the right hand side of (30) is finite due to Lemma 2.1.

Step 2: proof that C > 0. In order to show that C > 0 in (18) set F (x) :=
τ(x)G(x)eΛ(x) and obtain the following from (3a):

F ′(x) = eΛ(x)

∫ ∞

x

b(y, x)G(y) dy. (33)

In particular, F is nondecreasing, and this is enough to conclude in the case
ξ = 0 (since then τ(x)G(x)eΛ(x) must converge to a positive quantity, so the
same must be true of xαG(x)eΛ(x)). In the case ξ > 0 we may bound

F ′(x) = eΛ(x)

∫ ∞

x

b(y, x)
1

τ(y)
e−Λ(y)F (y) dy

≥ F (x)eΛ(x)

∫ ∞

x

b(y, x)
1

τ(y)
e−Λ(y) dy,

which implies that

F (x) ≥ F (x0) exp

(
∫ x

x0

S(w) dw,

)

with

S(w) := eΛ(w)

∫ ∞

w

b(y, w)
1

τ(y)
e−Λ(y) dy.

Due to equation (16) we have

1

τ(x)
=

1

τ∞xα
+R1(x),

with R1(x) = O(x−α−δ). Using this, and due to Lemma B.3,

∫ x

x0

S(w) dw ≥

∫ x

x0

eΛ(w)

∫ x

w

b(y, w)
1

τ(y)
e−Λ(y) dy dw

=

∫ x

x0

1

τ(y)
e−Λ(y)

∫ y

x0

eΛ(w)b(y, w) dw dy

= p1B∞ζ
−1

∫ x

x0

1

τ(y)
(yα−1 +R2(y)) dy

= ξ

∫ x

x0

1

y
dy +

∫ x

x0

R3(y) dy ≥ ξ log(y) + C1,

13



with R2(y) = O(α− 1− ǫ), R3(y) = O(−1− ǫ), and C1 ∈ R some real number.
As a consequence,

F (x) ≥ F (x0)x
ξeC1 ,

which shows that limx→+∞ F (x)x−ξ (which we know exists) must be strictly
positive. This finishes the proof.

2.3 Asymptotic estimates of G as x → 0

Proof of Theorem 1.8. Define

F (x) := τ(x)G(x)eΛ(x) .

We know from [2] that F (x) → 0 when x → 0 and more precisely that F (x) ≤
C xµ. The derivative of F , as noted in (33), is

F ′(x) = eΛ(x)

∫ ∞

x

b(y, x)G(y) dy > 0

so F is increasing.

Case α0 < 1. In this case, Λ(x) → Λ(0) < 0. Choose ǫ > 0 such that p is a
function on [0, ǫ) (the fact that this can be done for small enough ǫ is implicit
in Hypothesis 1.4), and call p∗ = p1[0,ǫ]. Then, from Hypothesis 1.4,

x1−µp∗
(x

y

)

→ p0 y
1−µ as x→ 0, (34)

with the above convergence being pointwise in y. We may additionally choose
ǫ ∈ (0, 1) and C > 0 such that

p(z) ≤ Czµ−1 for all z ∈ (0, ǫ). (35)

Now we write

x1−µ

∫ ∞

x

b(y, x)G(y) dy

= x1−µ

∫ x
ǫ

x

B(y)

y
G(y)p

(x

y

)

dy + x1−µ

∫ ∞

x
ǫ

B(y)

y
G(y)p

(x

y

)

dy

= x1−µ

∫ 1

ǫ

B
(x

z

)

G
(x

z

)

p(z)
dz

z
+ x1−µ

∫ ∞

x
ǫ

B(y)

y
G(y)p∗

(x

y

)

dy.

For the first term in the r.h.s., we use that B(y) ∼
y→0

B0y
γ0 and G(y) ≤ Cyµ−α0

(see [2]) to write

x1−µ

∫ 1

ǫ

B
(x

z

)

G
(x

z

)

p(z)
dz

z
≤ Cxγ0+1−α0

∫ 1

ǫ

zα0−µ−γ0−1p(z) dz

14



and conclude that it tends to zero when x → 0 since γ0 + 1 − α0 > 0. For the
second term, we use (34) and (35) to obtain by dominated convergence

x1−µ

∫ ∞

x
ǫ

B(y)

y
G(y)p∗

(x

y

)

dy −−−→
x→0

p0

∫ ∞

0

B(y)y−µG(y) dy.

This limit is strictly positive and finite, since G(y) ≤ Cyµ−α0 and γ0−α0 > −1.
Finally, we have deduced that there is a positive constant C > 0 such that

F ′(x) ∼
x→0

C xµ−1,

which by integration gives
τ(x)G(x) ∼ C xµ

and so

G(x) ∼
x→0

C
xµ

τ(x)
∼

x→0
C xµ−α0 .

Case α0 ≥ 1. In this case we necessarily have γ > 0 and

Λ(x) ∼ −C x1−α0 .

As a consequence, following a similar reasoning as for the previous case, we have

F ′(x) ∼ C1 x
µ−1e−C2 x1−α0

and consequently

F (x) ∼ C1

∫ x

0

yµ−1e−C2 y1−α0

dy ∼ C3 x
α0+µ−1e−C2 x1−α0

due to the l’Hôpital’s rule. This finally gives G(x) ∼
x→0

C xµ−1.

3 Estimates of the dual eigenfunction φ

3.1 Asymptotic estimates of φ as x → 0

We first give the proof of Theorem 1.10, which is rather direct:

Proof of Theorem 1.10. Define

ψ(x) := φ(x)e−Λ(x).

This function is decreasing since it satisfies

ψ′(x) = −
1

τ(x)

∫ x

0

b(x, y)φ(y) dy e−Λ(x) < 0.

Moreover it is a positive function, so to prove Theorem 1.10 we only have to
prove that ψ is bounded at x = 0. Consider, for η > 0, τη as defined in the

15



approximation procedure (see (48) in Appendix A). Then denote by φη, Λη and
ψη the corresponding functions. First we know from [2] that φη converges locally

uniformly to φ when η → 0. We have, for η > 0, that −Λη(x) =
∫ 1

x
λ+B(y)
τη(y)

dy

is bounded at x = 0 and this is why it is useful to consider this regularization.
We have for any x0 > 0,

sup
R+

ψη = ψη(0) = ψη(x0) +

∫ x0

0

1

τη(y)

∫ y

0

b(y, z)φη(z) dz e
−Λη(y) dy

≤ ψη(x0) +

∫ x0

0

1

τ(y)

∫ y

0

b(y, z)φη(z) e
−Λη(z) dz dy

≤ ψη(x0) + supψη

∫ x0

0

1

τη(y)

∫ y

0

b(y, z) dz dy

= ψη(x0) + supψη

∫ x0

0

B(y)

τη(y)

∫ y

0

p

(

z

y

)

dz

y
dy

= ψη(x0) + π0 supψη

∫ x0

0

B(y)

τ(y)
dy.

Now, because B
τ is integrable at x = 0, we can choose x0 > 0 such that

π0
∫ x0

0
B(y)
τ(y) dy = ρ < 1 and we obtain

(1− ρ) supψη(x) ≤ ψη(x0) −−−→
η→0

ψ(x0).

So ψη is uniformly bounded when η → 0 and thus the limit ψ(x) is bounded.

3.2 A maximum principle

For finding the bounds on the dual eigenfunction at x→ +∞ we use comparison
arguments, valid for each truncated problem on [0, L] (see Appendix A for details
on the truncation). Then we pass to the limit, as the bounds we obtain are
independent of L. The function φL(x) satisfies the equation

SφL(x) = 0 (x ∈ (0, L)),

where S is the operator given by

Sw(x) := −τ(x)w′(x) + (B(x) + λL)w(x) −

∫ x

0

b(x, y)w(y)dy,

defined for all functions w ∈ W 1,∞(0, L) and for x ∈ (0, L). This operator
satisfies

∀w ∈W 1,∞(0, L) s.t. w(L) = 0,

∫ L

0

Sw(x)GL(x) dx = 0 (36)

where GL is the eigenfunction of the truncated growth-fragmentation operator.
We recall the concept of supersolution:
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Definition 3.1. We say that w ∈ W 1,∞(0, L) is a supersolution of S on the
interval I ⊆ (0, L) when

Sw(x) > 0 (x ∈ I).

Maximum principles were a powerful tool for proving the existence of sub
and supersolutions for the growth-fragmentation models as in [7, 2]. For our
case, we recall the maximum principle given in [2].

Lemma 3.2 (Maximum principle for S). Assume Hypotheses 1.1-1.3. There
exists A > 0, independent of L, such that if w is a supersolution of S on (A,L),
w ≥ 0 on [0, A] and w(L) ≥ 0 then w ≥ 0 on [A,L].

Proof. We start from the fact w is a supersolution on (A,L)

−τ(x)w′(x) + (B(x) + λL)w(x) −

∫ x

0

b(x, y)w(y) dy =: f(x) > 0.

Testing this equation against 1w≤0 we obtain on (A,L)

−τ(x)w′
−(x) + (B(x) + λL)w−(x) = 1w(x)<0

∫ x

0

b(x, y)w(y) dy + f(x)1w(x)≤0

≥

∫ x

0

b(x, y)w−(y) dy + f(x)1w(x)≤0.

Extend f by zero on [0, A]. Since w−(x) = 0 on [0, A] by assumption, the latter
inequality holds true on (0, L) and it writes

∀x ∈ (0, L), Sw−(x) ≥ f(x)1w(x)≤0.

Testing this last inequality against GL, we obtain using (36)

0 ≥

∫ L

0

f(x)1w(x)≤0GL(x) dx =

∫ L

A

f(x)1w(x)≤0GL(x) dx.

Because f and GL are positive on (A,L), this is possible only if 1w≤0 ≡ 0 on
(A,L) and it ends the proof.

3.3 Asymptotic estimates of φ as x → +∞

Now we prove the results concerning the asymptotic behavior of φ(x) when
x→ +∞, Theorem 1.9. For these results, we still assume that Hypotheses 1.1-
1.4 are satisfied and, in the case γ < 0, we additionally assume that µ = 1 and
p0 > 0 (so that p(z) −−−→

z→0
p0 > 0). We recall that Hypothesis 1.3 says that B(x)

behaves like a γ-power of x and τ(x) like an α-power of x, with γ + 1− α > 0.

Proof of Theorem 1.9. The proof is done in two cases, and each case is
proved in two steps. In the first step we give particular supersolutions and
prove the upper bound, and in the second one we do the corresponding for
lower bounds.
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Case 1: γ > 0.
Step 1: Upper bounds. We claim that for any C > 0, there exists A > 0 and

L∗ > 0 such that
v(x) := Cx+ 1− xk

is a supersolution on [A,L] for any L > L∗, provided that max(0, α−γ) < k < 1.
First we recall that γ + 1− α > 0 by assumption, so α− γ < 1 and we can find
k ∈ (α− γ, 1). Then

Sv(x) = −τ(x)(C − kxk−1) + λ(Cx− xk + 1)+ (πk − 1)B(x)xk − (π0 − 1)B(x)

and the right hand side is positive for x large enough because the dominant
term is Cλx+(πk−1)B(x)xk ∼ Cλx+(πk−1)B∞xγ+k. Indeed πk > 1 because
k < 1 (see Remark 1.1) and the dominant power is γ + k because k > 0 and
γ + k > α.

Now we prove that there exists C > 0 such that

∀x > 0, φ(x) ≤ C(1 + x).

First we can choose C such that v(x) = Cx + 1 − xk is bounded below by
a positive constant. Moreover we take an approximation φL of φ such that
φL(L) = 0. Then, choosing K > 0 large enough, we have that Kv(x) > φ(x)
on [0, A] because φ is bounded uniformly in L on [0, A], and Kv(L) = KCL+
K − KLk > 0 for L large enough. So, using the maximum principle and the
previous lemma, we obtain that

∀x > 0, φ(x) ≤ Kv(x) ≤ C(1 + x).

Step 2: Lower bounds. For the lower bounds we first prove that v(x) :=
x+ xk − 1 is a subsolution for max(0, 1− γ) < k < 1.
The idea is to use xk to transform x which is a supersolution into a subsolution.

Sv(x) = −τ(x)(1 + kxk−1) + λ(x + xk − 1)− (πk − 1)B(x)xk + (π0 − 1)B(x)

where πk > 1 since k < 1. Due to Assumption (7), B(x)xk ∼ B∞xγ+k and v(x)
is a subsolution for x large because k > 0 and γ + k > 1.

For γ > 0, there exists C > 0 such that

∀x > 0, φ(x) ≥ C(x− 1)+.

We know that φ is positive, so for C small enough, C(x + xk − 1) − φ(x) < 0
on [0, A]. Moreover, taking an approximation φL of φ such that φL(L) = L,
we have Cv(L) − φ(L) < 0 for C < 1 and L large enough. Finally we use the
lemmas on the maximum principle and the subsolution to conclude that there
exists C > 0 such that

∀x > 0, φ(x) > C(x + xk − 1)
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and the result follows.

Case 2: γ < 0.

Step 1: Upper bounds. We start by proving that for any η >
( −γλ
B∞p0

)
1
γ ,

v(x) = (η + x)γ−1 is a supersolution. We compute

Sv(x) = (1 − γ)τ(x)(η + x)γ−2 + (λ+B(x))(η + x)γ−1

−

∫ x

0

b(x, y)(η + y)γ−1 dy

and to estimate the last term in the r.h.s. we proceed similarly as in the proof
of Theorem 1.8. We write, for ǫ ∈ (0, 1),

∫ x

0

b(x, y)(η + y)γ−1 dy =
B(x)

x

∫ ǫx

0

(η + y)γ−1p
(y

x

)

dy

+B(x)

∫ 1

ǫ

(η + zx)γ−1p(z) dz.

Then, choosing ǫ such that (35) is satisfied (for this we use Hypothesis 1.4), we
obtain by dominated convergence from (34) that

B(x)

x

∫ ǫx

0

(η + y)γ−1p
( y

x

)

dy ∼
x→+∞

B(x)

x

p0η
γ

−γ
.

On the other hand we have

B(x)

∫ 1

ǫ

(η + zx)γ−1p(z) dz ∼
x→+∞

xγ−1B(x)

∫ 1

ǫ

zγ−1p(z) dz.

Since γ < 0, we obtain

∫ x

0

b(x, y)(η + y)γ−1 dy ∼
x→+∞

B∞p0ηγ

−γ
xγ−1

and finally

Sv(x) ∼
x→+∞

(

λ−
B∞p0ηγ

−γ

)

xγ−1

because τ(x) ∼ τ∞xα and α− 1 < γ < 0. So v(x) is a supersolution for x large

when η >
( −γλ
B∞p0

)
1
γ .

Now, we claim that there exist C > 0 and ǫ > 0 such that

∀x > 0, φ(x) ≤ C(η + x)γ−1.

The proof of this fact follows from the maximum principle and taking the an
approximation φL of φ such that φL(L) = 0 and that v(x) is a supersolution.
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Step 2: Lower bounds. For the lower bounds we define

v(x) :=

{

0 for 0 < x < ǫ,
(x− ǫ)xγ−2 for x > ǫ.

Then for ǫ <
(

λγ(γ−1)
B∞p0

)
1
γ

, v is a subsolution. Indeed we have for x > ǫ

Sv(x) = τ(x)(xγ−2 + (γ − 2)(x− ǫ)xγ−3) + (λ+B(x))(x − ǫ)xγ−2

−

∫ x

ǫ

b(x, y)(y − ǫ)yγ−2 dy

and, reasoning as in Step 1, we obtain that

Sv(x) ∼
x→+∞

(λ−B∞p0Cǫ)x
γ−1.

Finally, there exist C > 0 and ǫ > 0 such that

∀x > 0, φ(x) ≥ Cxγ−2(x− ǫ)+.

Again, choosing an approximation φL of φ such that φL(L) = L, the proof
uses the maximum principle and the fact that v(x) is a subsolution.

4 Entropy dissipation inequality

As it was seen in [8, 9, 5, 1] the general relative entropy principle applies to
solutions of (1). We remind that we use the entropy H [g|G] defined in (21),
with dissipation D[g|G] given by (22). We recall that

d

dt
H [g|G] = −D[g|G] ≤ 0.

For the proof of the entropy inequality we will use [1, Lemma 2.2] with ζ(x) ≡ 1.
We need to check its hypotheses.

Lemma 4.1. Assume that Hypotheses 1.1-1.3 and 1.6 are satisfied with γ 6= 0
and α0 ≤ 1. Given M > 1 there exists K > 0 and R > 1 such that the profiles
φ and G satisfy the relations

0 ≤ G(x) ≤ K (x > 0), (37)
∫ ∞

Rx

G(y)φ(y) dy ≤ KG(x) (x > M), (38)

φ(y) ≤ Kφ(z) (max{2RM,Rz} < y < 2Rz). (39)

Proof. Relation (37) is true because of Theorem 1.7 and Theorem 1.8 with µ = 1
and α0 ≤ 1.
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For the second one, we have due to the l’Hôpital’s rule and using Theorem 1.7

∫ ∞

Rx

G(y)φ(y) dy ≤K

∫ ∞

Rx

y1+ξ−αe−Λ(y) dy ∼ Kx1+ξ−γe−Λ(Rx)

≤Kxξ−αe−Λ(x) ∼ KG(x).

Finally, (39) is a consequence of Theorem 1.9.

Moreover, for proving the entropy-entropy dissipation inequality, we will
need the following bounds coming from [1, Theorem 2.4].

Lemma 4.2. Suppose that the coefficients satisfy Hypotheses 1.1-1.3 and 1.6
with one of the following additional conditions on the exponents γ0 and α0:

• either α0 = 1 and γ0 ≤ 1 + λ/τ0,

• or α0 < 1 and γ0 ≤ 2− α0.

Let G and φ be the stationary profiles for the problems (3) and (4). Then we
can choose constants K,M > 0 and R > 1 such that the profiles φ and G satisfy

• If γ > 0 then

G(x)φ(y) ≤ Kb(y, x) (0 < x < y < max{2Rx, 2RM}), (40)

y−1 ≤ Kb(y, x) (y > M, y > x > 0). (41)

• If γ < 0 then
G(x)φ(y) ≤ Kb(y, x) (0 < x < y). (42)

Observe that under Hypothesis 1.6, there is no chance for α0 > 1 to bound
G(x)φ(y) by b(y, x) when y > 0 is fixed and x → 0. Indeed Hypothesis 1.6

imposes b(y, x) ≥ C1
B(y)
y and µ = 1, and Theorem 1.8 ensures that G(x) ∼

Cx1−α0 .

Proof. Step 1: y ≤ 2RM and x < y. We need to estimate G(x)φ(y) at the
limit x < y → 0. Using Theorem 1.8 (G(x) ∼ Cx1−α0 , notice that due to
Hypothesis 1.6 one has µ = 1) and Theorem 1.10 to bound G(x) and φ(y)
respectively, we have

G(x)φ(y) ≤ Cx1−α0eΛ(y) ≤ C′ y1−α0

since α0 ≤ 1. Then under the condition γ0 ≤ 2 − α0 and from Hypothesis 1.6,
we get

G(x)φ(y) ≤ Cyγ0−1 ≤ Kb(y, x).

When α0 = 1, we can do better since in this case we have necessarily γ0 > 0
and

Λ(y) ∼
y→0

λ

τ0
ln(y).
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Thus we can write
G(x)φ(y) ≤ Cyλ/τ0

and we obtain the bound G(x)φ(y) ≤ Kb(y, x) from Hypothesis 1.6 as soon as
γ0 ≤ 1− λ

τ0
.

Step 2: 2RM < y ≤ 2Rx. We need to estimate G(x)φ(y) at the limit 2Rx ≥
y → +∞. Using (19) and (18) we have

G(x)φ(y) ≤ C(1 + y)xξ−αe−Λ(x)

≤ C(1 + y)yξ−αe−Λ(y/2R)

≤ C′′yγ−1

where C′′ depends on α, γ and R. We conclude by using Hypothesis 1.6.

Step 3: y > M and y > x > 0. Since α0 ≤ 1 by assumption, we know
from Theorems 1.8 and 1.7 that G(x) is bounded. When γ > 0, we observe
first that y−1 ≤ Cyγ−1 and we conclude that (41) holds true by using Hypoth-
esis 1.6. When γ < 0, we have from Theorem 1.9 and Hypothesis 1.6 that
φ(y) ≤ Cyγ−1 ≤ Kb(y, x).

At this point, we have all the tools to prove the entropy - entropy dissipation
inequality.

Proof of Theorem 1.11. From [1, Lemma 2.1] one can rewrite the entropy
as follows

D2[g|G] :=

∫ ∞

0

∫ ∞

x

φ(x)G(x)φ(y)G(y)(u(x) − u(y))2 dy dx = H [g|G]. (43)

If one looks at the integrand, one realizes that D and D2 have both φ(x) and
G(y) as a common terms. So we would like to compare and check that

G(x)φ(y) ≤ Kb(y, x). (44)

We will denote by C any constant depending on G, φ, K, M , or R, but not on
g. We now distinguish two cases.

Case γ < 0. The relation (44) is satisfied due to (42). So we can compare
pointwise the integrands of D2[g|G] with D[g|G] and the inequality (23) holds.

Case γ > 0. For proving the case γ > 0 we follow the same argument as in
[1, Theorem 2.4]. We start by rewriting D2[g|G] as follows:

D2[g|G] = D2,1[g|G] +D2,2[g|G],

where

D2,i :=

∫∫

Ai

φ(x)G(x)φ(y)G(y)(u(x) − u(y))2 dy dx
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with A1 := {(x, y) ∈ R
2
+ : y > x , y ≤ RM or y < Rx} and A2 = Ac

1. For the
first term and thanks to (40) one has

D2,1[g|G] ≤

∫ ∞

0

∫ max{2Rx,2RM}

x

Kb(y, x)φ(x)G(y)(u(x) − u(y))2 dy dx

≤ KD[g|G]. (45)

For the other term, what we have is

D2,2[g|G] ≤C

∫ ∞

0

∫ ∞

max{x,M}
y−1φ(x)G(y)(u(x) − u(y))2 dy dx

≤C K

∫ ∞

0

∫ ∞

max{x,M}
b(y, x)φ(x)G(y)(u(x) − u(y))2 dy dx

≤C KD[g|G], (46)

where in the first inequality we applied [1, Lemma 2.2] with the bounds given
in Lemma 4.2 and for the second one we used (41). The proof concludes by
gathering (45) and (46).

Appendix

A Approximation procedures

To prove the estimates on the dual eigenfunction φ, we use a truncated problem.
More precisely, we use alternatively one of the following ones, which differ only
in their boundary condition



















−τ(x)∂xφL(x) + (B(x) + λL)φL(x) = L∗
+(φL)(x) for x ∈ (0, L),

φL(L) = 0 or φL(L) = δ > 0 or φL(L) = δL,

φL ≥ 0,

∫ L

0

G(x)φL(x) dx = 1.

(47)

The following lemma ensures that these truncations converge to the accurate
limit when L→ +∞.

Lemma A.1. There exists L0 > 0 such that for each L ≥ L0 the problem (47)
has a unique solution (λL, φL) with λL > 0 and φL ∈ W 1,∞

loc (R+). Moreover we
have

λL −−−−−→
L→+∞

λ,

∀A > 0, φL −−−−−→
L→+∞

φ uniformly on [0, A).

Proof. We start with the case φL(L) = 0 by following the method in [2]. Define
for η > 0

τη(x) :=

{

η for 0 < x < η,
τ(x) for x > η.

(48)
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Then consider for ǫ > 0 and L > 0 the truncated (and regularized) eigenvalue
problem on [0, L]


















































∂

∂x
(τη(x)GL(x)) + (B(x) + λL)GL(x) =

∫ L

0

b(y, x)GL(y) dy,

τηGL(0) = ǫ
∫ L

0 GL(y) dy, GL(x) > 0,
∫ L

0 GL(x)dx = 1,

−τη(x)
∂

∂x
φL(x) + (B(x) + λL)φL(x)−

∫ L

0

b(x, y)φL(y) dy = τη(0)ǫφL(0),

φL(L) = 0, φL(x) > 0,
∫ L

0 φL(x)GL(x)dx = 1.
(49)

Notice that in this problem, the eigenelements (λL, GL, φL) depend on η,
and ǫ and should be denoted (λη,ǫL , Gη,ǫ

L , φη,ǫL ). We forget here the superscripts
for the sake of clarity.

The existence of a solution to Problem (49) is proved in the Appendix of [2]
by using the Krein-Rutman theorem. Then we need to pass to the limit η, ǫ→ 0.
The uniform estimates in [2] allow to do so, provided that λη,ǫL is positive for
all η, ǫ. In [2] this condition is ensured for L large enough under the constraint
that ǫL is a fixed constant, which means that L = L(ǫ) tends to +∞ as ǫ→ 0.
Here we want to pass to the limit ǫ→ 0 for a fixed positive value of L. For this
we prove the existence of a constant L0 > 0 such that λη,ǫL > 0 for all η, ǫ ≥ 0
and all L ≥ L0.

Assume by contradiction that λL ≤ 0. Then we have by integration of the
direct eigenequation between 0 and x < L

0 ≥ λ

∫ x

0

G(y) dy

= −τ(x)G(x) −

∫ x

0

B(y)G(y) dy +

∫ x

0

∫ L

z

b(y, z)G(y) dy dz

= −τ(x)G(x) + (π0 − 1)

∫ x

0

B(y)G(y) dy +

∫ L

x

(
∫ x

0

b(y, z) dz

)

G(y) dz.

We assume that b(y, x) = B(y)
y p

(

x
y

)

with
∫ 1

0
p(h) dh = π0 > 1. Thus, for p

bounded, there exists s ∈ (0, 1) such that
∫ s

0 p(h) dh ≥ π0 − 1. For L ≥ y ≥ x ≥
sL, we have

∫ x

0

b(y, z) dz = B(y)

∫ x
y

0

p(h) dh

≥ B(y)

∫ sL
y

0

p(h) dh ≥ B(y)

∫ s

0

p(h) dh ≥ (π0 − 1)B(y),

so for all x ≥ sL

0 ≥ −τ(x)G(x) + (π0 − 1)

∫ L

0

B(y)G(y) dy
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which leads to

B(x)G(x) ≥ (π0 − 1)
B(x)

τ(x)

∫ L

0

B(y)G(y) dy ≥ (π0 − 1)
B(x)

τ(x)

∫ L

sL

B(y)G(y) dy

and finally, by integration on [sL, L],

(π0 − 1)

∫ L

sL

B(y)

τ(y)
dy ≤ 1. (50)

We have from Hypothesis 1.3 that

∃A > 0, ∀x ≥ A,
xB(x)

τ(x)
>

1

(π0 − 1)| ln(s)|

so, for L ≥ A
s , we obtain

(π0 − 1)

∫ L

sL

B(y)

τ(y)
dy >

1

| ln(s)|

∫ L

sL

1

y
dy = 1

which contradicts (50). Finally, λL > 0 for all L ≥ L0 := A
s .

We have proved the existence of solution for Problem (47) in the case
φL(L) = 0 and we know that

λL −−−−−→
L→+∞

λ,

GL −−−−−→
L→+∞

G in L1(R+),

∀A > 0, φL −−−−−→
L→+∞

φ uniformly on [0, A).

Now we use this result to treat the cases φL(L) = δ > 0 and φL(L) = δL. Since
δ > 0, we can prove by using the Krein-Rutman theorem the existence of a
solution to Problem (47). To prove the convergence of λL to λ, we integrate the
equation on φL multiplied by G and we obtain

λ− λL = τ(L)G(L)φL(L).

We know from estimates on G that τ(L)G(L)L → 0 when L → +∞, which
ensures the convergence of λ. Because λ > 0, it also ensures the existence of L0

such that λL > 0 for L ≥ L0, which allows to prove the convergence of φL to φ
locally uniformly (see [2] for details).
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B Laplace’s method

Laplace’s method (see [13, II.1, Theorem 1] for example) gives a way to calculate
the asymptotic behavior of integrals which contain an exponential term with a
large factor in the exponent. We give here a result of this kind, with conditions
which are adapted to the situation encountered in Section 2.

Lemma B.1. Take x0, D0 ∈ R. Assume that g : [x0,+∞) → R is a measure
and h : [x0,+∞)× [D0,+∞) → R a measurable function satisfying

g(x) ∼ g0(x − x0)
σ as x→ x0, for some g0 6= 0 and σ > −1, (51)

h(x,D)− h(x0, D) ∼ h0(x− x0)
ω

as x→ x0 and D → +∞, for some h0, ω > 0,
(52)

∫ ∞

x0

|g(x)|e−D0h(x,D) dx < C0 for some C0 ≥ 0 and all D ≥ D0. (53)

Assume also that for all D ≥ D0, the function x 7→ h(x,D) (with D fixed)
attains its unique global minimum at x = x0, in the following strong sense:
there exists a nondecreasing strictly positive function θ : (0,+∞) → (0,+∞)
such that

h(x,D)− h(x0, D) ≥ θ(x − x0) for all x > x0 and all D ≥ D0. (54)

Then, as D → +∞,

∫ ∞

x0

e−Dh(x,D)g(x) dx ∼ g0D
−1−σ

ω e−Dh(x0,D)

∫ ∞

0

xσe−h0x
ω

dx. (55)

The constants implicit in (55) depend only on the constants implicit or explicit
in (51)–(54).

Some remarks on the conventions used above are in order. Although g is a
measure we denote it as a function in the expressions in which it appears. For
example, integrals in which g appears should be considered as integrals with
respect to the measure g. Also, in equation (51), it is understood that close to
x0 the measure g is equal to a function, and the asymptotic approximation (51)
holds.

Proof. First of all, by translating g and h we may consider always that x0 = 0.
We may also assume that h(x0, D) = 0 for all D ≥ D0, as otherwise one
obviously obtains the additional factor e−Dh(x0,D).

An important part of the argument is based on the observation that if one
excludes a small region close to 0, then the rest of the integral decreases fast as
D → +∞: from (52) and (54) we deduce that for some ρ > 0

h(x,D) ≥ ρmin{1, xω} for all x ≥ 0, D ≥ D0. (56)
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Then, for D ≥ D0 and 0 < ǫ < 1 we have from (56):

∣

∣

∣

∣

∫ ∞

ǫ

g(x)e−Dh(x,D) dx

∣

∣

∣

∣

≤ e−(D−D0)ρǫ
ω

∫ ∞

ǫ

|g(x)|e−D0h(x,D) dx ≤ C0e
−(D−D0)ρǫ

ω

,

due to (53). If we take ǫ := D− 1
2ω then for all D > D0 we have

∣

∣

∣

∣

∫ ∞

D− 1
2ω

g(x)e−Dh(x,D) dx

∣

∣

∣

∣

≤ C0e
−
(√

D− D0√
D

)

ρ
.

This quantity decreases faster than any power of D as D → +∞.
For the remaining part of the integral, since we are integrating in a region

which is closer and closer to 0 it is easy to see due to (51) and (52) that for all
ǫ > 0 there exists Dǫ > 0 such that

∫ D− 1
2ω

0

(1 − ǫ)g0x
σe−D(1+ǫ)h0x

ω

dx ≤

∫ D− 1
2ω

0

g(x)e−Dh(x,D) dx

≤

∫ D− 1
2ω

0

(1 + ǫ)g0x
σe−D(1−ǫ)h0x

ω

dx (57)

for all D > Dǫ. Through the change of variables z = xD1/ω we see that

∫ D− 1
2ω

0

(1 − ǫ)g0x
αe−D(1+ǫ)h0x

ω

dx

= (1− ǫ)g0D
−1−σ

ω

∫ D
1
2ω

0

zσe−(1+ǫ)h0z
ω

dz

∼ (1− ǫ)g0D
−1−σ

ω

∫ ∞

0

zσe−(1+ǫ)h0z
ω

dz,

where the ‘∼’ sign denotes asymptotics as D → +∞. Carrying out a similar
calculation for the last integral in (57) and letting ǫ → 0 we deduce our result.

For the next result we recall that γ+ = max{0, γ} and ζ is defined by (24).

Lemma B.2. Assume Hypotheses 1.1–1.5. There is ǫ > 0 such that

∫ x

x0

eΛ(y)yk dy = ζ−1xk−γ++αeΛ(x) + O
x→+∞

(xk−γ++α−ǫ)eΛ(x).

Proof. We use l’Hôpital’s rule to calculate the limit as x→ +∞ of

∫ x

x0
eΛ(y)yk dy − ζ−1xk−γ++αeΛ(x)

xmeΛ(x)
.
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Differentiating both the numerator and denominator we find that this limit is
the same as the limit as x→ +∞ of

xk − ζ−1(k − γ+ + α)xk−γ++α−1 − ζ−1xk−γ++α B(x)+λ
τ(x)

mxm−1 + xm B(x)+λ
τ(x)

=:
TN (x)

TD(x)
. (58)

Using (15) and (16), we obtain that

xk − ζ−1xk−γ++αB(x) + λ

τ(x)
= O(xk−δ)

for some δ > 0. Observing that γ+ −α+1 > 0 and calling ǫ := min{δ, γ+−α+
1} > 0 we have

TN (x) = O(xk−ǫ).

In a similar way,

TD(x) = xm+γ+−α +O(xm+γ+−α−δ),

so from (58) we obtain that the limit is 0 whenever

m+ γ+ − α > k − ǫ, i.e., m > k − γ+ + α− ǫ.

This shows the result.

We now use this to prove an estimate which is needed in Section 2:

Lemma B.3. Assume Hypotheses 1.1–1.4 with p1 > 0, and take k ∈ R. Then,

∫ x

x0

eΛ(y)ykb(x, y) dy ∼
x→+∞

p1B∞ζ
−1−νΓ(ν+1)xk+γ−(γ+−α+1)(1+ν)eΛ(x). (59)

If we also assume Hypothesis 1.5 and ν = 0 (and now we allow any p1 ≥ 0)
then there is ǫ > 0 such that

∫ x

x0

eΛ(y)ykb(x, y) dy

= p1B∞ζ
−1 xk+γ−γ++α−1eΛ(x) + O

x→+∞
(xk+γ−γ++α−1−ǫ)eΛ(x). (60)

Proof. We call p∗ and p∗, respectively, the parts of the measure p on the intervals
[0, 1/2) and [1/2, 1], i.e., p∗ := p 1[0,1/2) and p

∗ := p 1[1/2,1]. With this we break
the integral we want to estimate in two parts:

I(x) :=

∫ x

x0

eΛ(y)ykp
(y

x

)

dy

=

∫ x

x0

eΛ(y)ykp∗
( y

x

)

dy +

∫ x

x0

eΛ(y)ykp∗
(y

x

)

dy =: I∗(x) + I∗(x).
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The first part, I∗, can be estimated by

|I∗(x)| =

∫ x

x0

eΛ(y)ykp∗
( y

x

)

dy ≤ eΛ(x/2)

∫ x

x0

ykp∗
(y

x

)

dy

≤ eΛ(x/2)max{xk, xk0}

∫ x

x0

p∗
(y

x

)

dy ≤ π0 x e
Λ(x/2) max{xk, xk0}.

Since we will show that I∗(x) behaves as given in the statement, this term is of
lower order (since Λ(x) is asymptotic to a positive power of x as x→ +∞) and
can be disregarded.

For I∗ we make the change of variables z = y/x and denote D := xγ+−α+1

to obtain

I∗(x) :=

∫ x

x0

eΛ(y)ykp∗
(y

x

)

dy = xk+1

∫ 1

max{ x0
x

, 1
2}
eΛ(xz)zkp (z) dz

= xk+1

∫ 1

max{ x0
x

, 1
2}

exp (−Dh(z,D)) g(z) dz (61)

with

h(z,D) := −
1

D
Λ (xz) = −

1

D
Λ
(

D
1

γ+−α+1 z
)

, g(z) := zkp (z) .

Now, the asymptotics in D of the integral in (61) can be obtained from Lemma
B.1 with x0 = 1. Let us see that h and g indeed satisfy the needed hypotheses.
The property (51) is satisfied with g0 = p1 and σ = ν due to Hypothesis 1.4, and
to show (52) we write (with asymptotics notation understood to be for z → 1
and D → +∞)

h(z,D)− h(1, D) =
1

D
(Λ(x) − Λ (xz)) =

1

D

∫ x

xz

λ+B(u)

τ(u)
du

∼
ζ

γ+ − α+ 1

1

D
xγ+−α+1(1−zγ+−α+1) =

ζ

γ+ − α+ 1
(1−zγ+−α+1) ∼ ζ(1−z),

(62)

which corresponds to h0 = ζ, ω = 1 in Lemma B.1. For (53) we write

∫ 1

max{ x0
x

, 1
2}

exp (−D0h(z,D)) g(z) dz

≤

∫ 1

1
2

exp

(

D0

D
Λ(xz)

)

zkp(z) dz

≤ exp

(

D0

D
Λ(x)

)
∫ 1

1
2

zkp(z) dz ≤ C0

for some C0 > 0 (which in particular depends on k), since x 7→ Λ(x)/D =
Λ(x)/xγ+−α+1 is bounded for x > 1. This gives (53). Obviously z 7→ h(z,D)
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attains its minimum at z = 1, and (54) is a consequence of (62) and the fact
that h(z,D)− h(1, D) is decreasing in z for all D.

We may then apply Lemma B.1 to obtain

I∗(x) ∼ p1x
k+1D−1−νeΛ(x)

∫ ∞

0

zνe−ζz dz

= p1ζ
−1−νΓ(1 + ν)xk+1−(γ+−α+1)(1+ν)eΛ(x).

Since I∗(x) was shown to be of lower order, this is enough to show (59).

Finally, in order to show (60), we have

∫ x

x0

eΛ(y)ykp
( y

x

)

dy =

∫ x

x0

eΛ(y)yk
(

p
(y

x

)

− p1

)

dy + p1

∫ x

x0

eΛ(y)yk dy.

For the first term, using (17) and (59) we have

∫ x

x0

eΛ(y)yk
(

p
(y

x

)

− p1

)

dy = O(xk+1−(γ+−α+1)(1+δ))eΛ(x),

and for the second term, Lemma B.2 gives

∫ x

x0

eΛ(y)yk dy = ζ−1xk−γ++αeΛ(x) +O(xk−γ++α−δ)eΛ(x).

Since γ+ − α+ 1 > 0, this shows the result.
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projects MTM2011-27739-C04-02DGI-MICINN (Spain) and 2009-SGR-345 from
AGAUR-Generalitat de Catalunya. The research of P. Gabriel was supported
by the French National Agency for Research through the grants TOPPAZ ANR-
09-BLAN-0218 and PAGDEG ANR-09-PIRI-0030.

References
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Birkhäuser Verlag, Basel, 2007.

[11] B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or
cell-division equation. J. Differential Equations, 210(1):155–177, 2005.

[12] B. Perthame and D. Salort. Distributed elapsed time model for neuron
networks. In preparation.

[13] R. Wong. Asymptotic Approximation of Integrals. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, August
2001.

31


	Introduction
	Assumptions on the coefficients
	Summary of main results

	Estimates of the profile G
	Estimates of the moments of G
	Asymptotic estimates of G as x +
	Asymptotic estimates of G as x 0

	Estimates of the dual eigenfunction 
	Asymptotic estimates of  as x0
	A maximum principle
	Asymptotic estimates of  as x+

	Entropy dissipation inequality
	Approximation procedures
	Laplace's method

