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Noise prevents collapse of Vlasov–Poisson
point charges

F. Delarue, F. Flandoli, D. Vincenzi

Abstract

We elucidate the effect of noise on the dynamics of N point charges
in a Vlasov-Poisson model driven by a singular bounded interaction
force. A too simple noise does not impact the structure inherited from
the deterministic case and, in particular, cannot prevent coalescence.
Inspired by the theory of random transport in passive scalars, we iden-
tify a class of random fields which generate random pulses that are
chaotic enough to disorganize the deterministic structure and prevent
any collapse of the particles. We obtain strong unique solvability of
the stochastic model for any initial configuration of different point
charges. In the case where there are exactly two particles, we imple-
ment the ”vanishing noise method” for determining the continuation
of the deterministic model after collapse.

1 Introduction

It is a well-known fact that white noise perturbations improve the well-
posedness properties of Ordinary Differential Equations (ODEs), in particu-
lar their uniqueness; see for instance Krylov and Röckner [19]. The influence
of noise on pathologies of Partial Differential Equations (PDEs) is not as well
understood. A review of recent results in the direction of uniqueness can be
found in [12]. On the contrary, whether noise can prevent the emergence of
singularities in PDEs is still quite obscure. A further challenging question is
whether noise can select a natural candidate for the continuation of solutions
after the singularities.

A well-known system in which singularities may develop explicitly is the
Vlasov–Poisson equation on the line. We refer the reader to [26] for several
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examples and for an extensive discussion of the underlying stakes, including
the connection with the 2D Euler equations. (See also [5], [27] and [34].) The
motivation for the present study is to understand the influence of noise on
such singularities.

1.1 Vlasov–Poisson equation on the line

Consider the following system in the unknown f : [0,∞)×R×R 3 (t, x, v) 7→
f (t, x, v) ∈ R:

∂f

∂t
(t, x, v) + v

∂f

∂x
(t, x, v) + E(t, x)

∂f

∂v
(t, x, v) = 0, f(0, x, v) = f0(x, v),

ρ (t, x) =

∫
R
f (t, x, v) dv, E (t, x) =

∫
R
F (x− y) ρ (t, y) dy,

(1)

where F (x) is a bounded function that is continuous everywhere except at
x = 0 and has side limits in 0+ and 0−. If F (x) = sign(x) (with sign(0) = 0),
Eq. (1) is the 1D Vlasov–Poisson model describing the evolution of the phase-
space density f of a system of electrons (in natural units, where the elemen-
tary charge and the mass of the electron are set equal to one). Such an equa-
tion is known to develop singularities in the case of measure-valued solutions,
see [26] and the works discussed therein. For instance, it is possible to design
examples of so-called electron-sheet structures that persist in positive time,
but collapse to one point at a certain time (f0 is an electron sheet if it is con-
centrated on lines, i.e. it reads f0(x, v) = f0(x)·δ(v−v0(x))). A simplified ver-
sion of this phenomenon is the coalescence of N point charges in finite time:
as shown below, there are examples of initial conditions of the form f0(x, v) =∑N

i=1 aiδ(x− xi)δ(v− vi), with different pairs (x1, v1), . . . , (xN , vN) ∈ R2, for
which f remains of the same form on some interval [0, t0) but degenerates
into f (t0, x, v) = δ(x− x0)δ(v − v0) at some time t0, with (x0, v0) ∈ R2.

The main question motivating our work is the following: does the presence
of noise modify these facts? In this framework, a natural way to conceive
a noisy version of (1) may be the following: when the electric charge is not
totally isolated, but lives in a medium (a sort of electric bath), a random
external force adds to the force generated by the electric field. Assuming
that the electric charge does not affect the external random field, the simplest
structure modelling this situation is a Stochastic PDE (SPDE) of the form

∂f

∂t
(t, x, v) + v

∂f

∂x
(t, x, v) +

(
E(t, x) + ε ◦ dWt

dt

)
∂f

∂v
(t, x, v) = 0, (2)
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where W is a Brownian motion and the Stratonovich integral is used (this
is the natural choice when passing to the limit along regular noises). Un-
fortunately, the noise in Eq. (2) is too simple to avoid the emergence
of singularities such as those described above. Indeed, the random field
f̃(t, x, v) = f(t, x+ ε

∫ t
0
Wsds, v + εWt) formally satisfies[

∂f̃

∂t
+ v

∂f̃

∂x
+ Ẽ

∂f̃

∂v

]
(t, x, v) = 0 with Ẽ(t, x) =

∫
R2

F (x− y)f̃(t, y, v)dydv,

so that any concentration point z0 = (x0, v0) of f̃ at some time t0 translates
into the random concentration point (x0 − ε

∫ t0
0
Wsds, v0 − εWt0) of f at the

same time.
To expect a positive effect of the noise, we must consider noises of a

refined space structure. We consider a noisy equation of the form[
dtf + v

∂f

∂x
dt+

(
E(t, x)dt+ ε

∞∑
k=1

σk (x) ◦ dW k
t

)
∂f

∂v

]
(t, x, v) = 0, (3)

where ((W k
t )t≥0)k≥1 is a family of independent Brownian motions, and we

prove that, under very general conditions on the covariance functionQ (x, y) =∑∞
k=1 σk (x)σk (y), the following result holds:

Theorem 1 Given f0 (x, v) =
∑N

i=1 aiδ (z − zi) as initial condition, with
the generic notation z = (x, v) and with different initial points zi ∈ R2,
i = 1, . . . , N , there is a unique global solution to system (3) of the form
f (t, x, v) =

∑N
i=1 aiδ (z − zi (t)), where ((zi (t))t≥0)1≤i≤N is a continuous

adapted stochastic process with values in R2N without coalescence in R2, i.e.,
with probability one, zi (t) 6= zj (t) for all t ≥ 0 and 1 ≤ i, j ≤ N , i 6= j.

The precise assumptions of Theorem 1 and the definitions used therein
will be clarified next. Here, it is worth remarking that our study does not
cover the case of an electron sheet. We nonetheless expect our result to be
a first step forward in this direction since the number N of particles is here
arbitrary for a given covariance function Q(x, y). Indeed, the assumption
that we shall impose on Q (x, y) guarantees that any N -tuple, with arbitrary
N , of different points (z1, . . . , zN) in the (x, v)-space feels the original noise
as random impulses that are not too coordinated one with each other. Such a
propagation may be seen as a sort of mild spatial chaos produced by the noise.
The negative example discussed above does not enjoy a similar property since
the noise (εWt)t≥0 plugged therein produces the same impulse at every space
point, thus acting as a random Galilean transformation.
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1.2 Non-Markovian continuation after a singularity

As mentioned above, the random perturbation introduced in Eq. (3) may
provide some indications about the natural continuation of the solutions after
the coalescence of two point charges. (More difficult or generic cases are not
clear at this stage of our understanding of the problem.) Consider the simple
example in which F (x) = sign (x) and

f0 (x, v) =
1

2
δ (z − z1) +

1

2
δ (z − z2) , z1 = (−1, v0) , z2 = (1,−v0)

with v0 > 0. As we shall discuss below, the Lagrangian dynamics corre-
sponding to (1) consists of the system

dxi
dt

(t) = vi(t),
dvi
dt

(t) = F (xi(t)− xı̄(t)) , t ≥ 0, (4)

for i = 1, 2 and ı̄ = 2 if i = 1 and vice versa, with (xi (0) , vi (0)) = (εi,−εiv0)
as initial condition, with εi = 1 if i = 2 and εi = −1 if i = 1. The functions

v∗i (t) = εi (t− v0) , x∗i (t) = εi

(
1− v0t+

t2

2

)
(5)

solve the system for t ∈ [0, v0), and the limits of x∗1 (t) and x∗2 (t) as t ↑ v0

coincide when v2
0 = 2. This means that, with the choice v0 =

√
2, the

solutions (x∗i (t) , v∗i (t)), i = 1, 2, converge to the same point (0, 0) as t ↑ v0,
so that the origin (0, 0) is a singular point of the Lagrangian dynamics.

On the contrary, Theorem 1 states that, for any positive level of noise ε in
the noisy formulation (3), the random solutions ((xεi (t), v

ε
i (t))t≥0)i=1,2 never

meet, with probability one. It is then natural to investigate the behavior of
the stochastic solution as ε→ 0. In Section 2, we shall prove, under general
conditions on the covariance function Q:

Theorem 2 Assume that v0 =
√

2. Then, as ε → 0, the pair process
((zεi (t))t≥0)i=1,2 converges in distribution on the space C([0,∞),R2 × R2) to-
ward

1

2
δ
(
(z∗1(t), z∗2(t))t≥0

)
+

1

2
δ
(
(z∗∗1 (t), z∗∗2 (t))t≥0

)
, (6)

where (z∗i (t) = (x∗i (t), v
∗
i (t)), for t ≥ 0 and i = 1, 2, and (z∗∗1 (t), z∗∗2 (t))

matches (z∗1(t), z∗2(t)) for t ≤
√

2 and (z∗2(t), z∗1(t)) for t >
√

2.
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Theorem 2 must be seen as a rule for the continuation of the solutions to
the deterministic system (1) after singularity. When the particles meet, they
split instantaneously, but they can do it in two different ways: (i) with prob-
ability 1/2, the trajectories meet at coalescence time and then split without
crossing each other, namely each of the two trajectories keeps of constant
sign before and after coalescence; (ii) with probability 1/2, the trajectories
meet, cross each other and then split for ever, namely the sign of each of them
changes at coalescence time exactly. This stands for a mathematical descrip-
tion of the repulsive effect of the interaction force F : there is no way for the
particles to merge and then form a single particle with a double charge.

This situation sounds as a physical loss of the Markov property: just after
coalescence, splitting occurs because the system keeps memory of what its
state was before. Precisely, if we model the dynamics of a static single particle
with a double charge by a pair (z00

1 (t), z00
2 (t))t≥0 in phase space, subject to

z00
1 (t) = z00

2 (t) and v̇00
1 (t) = v̇00

2 (t) = 0, for t ≥ 0, we get a non-Markovian
family of solutions to (4). When the trajectories z0

1 and z0
2 meet, they do not

restart with the same dynamics as z00
1 and z00

2 do. We refer the reader to [9]
for other mathematical examples of non-Markovian continuations.

1.3 Vlasov–Poisson type system of N particles in Rd

The problem described in Section 1.1 will be treated as a particular case of
the following generalization in Rd:[

dtf + (v · ∇xf + E(t, x) · ∇vf) dt+
∞∑
k=1

σk(x) · ∇vf ◦ dW k
t

]
(t, x, v) = 0,

subject to similar constraints as in (1), where σk : Rd → Rd are Lipschitz-
continuous fields subject to additional assumptions, which will be specified
later (see (A.2–3) in Section 3), and ((W k

t )t≥0)k∈N\{0} are independent one-
dimensional Brownian motions. Below, F will be assumed to be bounded and
locally Lipschitz continuous on any compact subset of Rd \{0}, the Lipschitz
constant on any ring of the form {x ∈ Rd : r ≤ |x| ≤ 1} growing at most as
1/r as r tends to 0. In particular, F may be discontinuous at 0. A relevant
case is when F = ∇U where U is a potential with a Lipschitz point at zero,
namely U is Lipschitz continuous on Rd and smooth on Rd\ {0}.

This framework includes the example F (x) = x/|x|, x ∈ Rd, and, as
a particular case, the one-dimensional model discussed above, i.e. F (x) =
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sign(x), x ∈ R. On the contrary, the d-dimensional Poisson case, where

F (x) = ±x |x|−d , x ∈ Rd, d ≥ 2, (7)

does not satisfy the aforementioned assumptions, and therefore falls outside
this study. The signs “+” and “-” describe repulsive and attractive interac-
tions respectively; corresponding models are referred to as electrostatic and
gravitational respectively. For the electrostatic potential, our analysis turns
out to be irrelevant in dimension d ≥ 2 since the deterministic system itself
is free of coalescence.

The Lagrangian motion associated with the SPDE is

dX i
t

dt
= V i

t , dV i
t =

∑
j 6=i

ajF
(
X i
t −X

j
t

)
dt+

∞∑
k=1

σk
(
X i
t

)
◦ dW k

t , (8)

for t ≥ 0 and 1 ≤ i ≤ N . The measure valued process

f (t, x, v) =
N∑
i=1

aiδ
(
x−X i

t

)
δ
(
v − V i

t

)
(9)

solves the SPDE in weak form, from Itô’s formula in Stratonovich form ap-
plied to (

∑
1≤i≤N aiϕ(X i

t , V
i
t ))t≥0, for a test function ϕ : Rd × Rd → R. This

paper is devoted to the analysis of system (8). Taking this system as a
starting point, the problem would be much easier to handle if each particle
were to be forced with its own Brownian motion, independently of the other
ones. This choice of the noise, however, would break the relation between
the Lagrangian dynamics and the SPDE introduced above.

The paper is organized as follows. In Section 2, we start with the proof
of Theorem 2, as we feel it to have a striking interpretation from the physical
point of view. The vanishing noise method for selecting solutions to singular
differential equations goes back to the earlier paper by [3], but the examples
investigated therein are one-dimensional only. (See also [12], together with
[15] and [2].) Here Theorem 2 applies to a four-dimensional system. In [3],
the vanishing noise behavior of the stochastic differential equation at hand
is mainly of analytical essence. Below, the proof of Theorem 2 relies on a
new approach: pathwise, the asymptotic dynamics of (zεi )i=1,2 are expanded
with respect to the parameter ε till coalescence occurs; the possible limit
regimes then read on the (random) coefficients of the expansion. The result
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is obtained under general conditions on the covariance matrix Q: specific
examples are given in Section 3.

The remainder of the paper is devoted to the proof of Theorem 1. We
first discuss the structure of the noise that will prevent coalescence from
emerging. It should be emphasized that the effect of the noise on the 2N -
system (8) is highly non-trivial. Indeed, although it is doubly singular, the
noise makes the system fluctuate enough to avoid pathological phenomena
such as those observed in the deterministic case. The first singularity is due
to the fact that the same Brownian motions act on all the particles. If the
(σk)k∈N\{0} were constant, the particles would feel the same impulses and the
noise would not have any real effect; basically, it would just act as a random
translation of the system, as in (2). Thus the point is to design a noise
allowing displacements of different particles in different directions. To reach
the desired effect, we require the covariance matrix (Q(xi, xj))1≤i,j≤N to be
strictly positive for any vector (x1, . . . , xN) ∈ (Rd)N with pairwise different
entries. We give examples in Section 3. These examples are inspired from the
Kraichnan noise used in the theory of random transport of passive scalars.
(See for example [11], [22] and [29].) However, the model considered here
does not have the same interpretation as the Kraichnan model, since the
noise here acts onto the velocities. A possible way to relate Eq. (8) to
turbulence theory would consist in penalizing the drift of the velocity of the
ith particle by −V i

t . This model would describe the motion of interacting
heavy particles in a fluid whose velocity is a random field, see [4].

The second singularity of the model is inherited from the kinetic structure
of the deterministic counterpart: the noise acts as an additional random force
only, namely it is plugged into the equation of the velocity only. In other
words, the coupled system for (X i

t , V
i
t )1≤i≤N is degenerate. We shall show in

Subsection 3.3 that the ellipticity properties of the noise in RNd actually lift
up to hypoellipticity properties in R2Nd.

Once the set-up for the noise is defined, we are ready to tackle the prob-
lem of no-coalescence. We first establish that the Lagrangian dynamics are
well posed for Lebesgue a.e. initial configuration of different particles. This
does not require any special features of the noise. Specifying the form of the
noise according to the requirements discussed in Section 3, we then prove
well-posedness and no-collapse for all initial conditions of the particle sys-
tem with pairwise different entries by taking advantage of the hypoellipticity
property of the whole system, see Subsection 4.3. The main lines of Section
4 are connected with the strategy already developed by [13] in order to prove
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that noise may prevent N point vertices, when driven by 2D Euler equations,
from collapsing. However, both the framework and the results are here quite
different. In [13], the noise is finite dimensional, the dimension depending
upon the number of particles; it is given implicitly only, from a generic ex-
istence result; moreover, the dynamics of the particles are non-degenerate.
Here, the structure of the noise is explicit and is independent of the number
of particles; morever, the dynamics of the particles are degenerate.

1.4 Assumption

For simplicity, we choose ai = 1/N for 1 ≤ i ≤ N . We also assume that

(A.1) F is bounded everywhere on Rd and locally Lipschitz-continuous
on any compact subset of Rd \ {0}. Moreover,

sup
0<r≤1

sup
r≤|x|,|y|≤1,x 6=y

[
r
|F (x)− F (y)|
|x− y|

]
< +∞.

The examples we have in mind are: for d = 1, F (x) = sgn(x), x ∈ R \ {0};
for d ≥ 2, F (x) = x/|x|, x ∈ Rd \ {0}.

(A.2) For each k ∈ N\{0}, σk : Rd → Rd is Lipschitz-continuous, and the
series

∑∞
k=1 σ

α
k (x̃)σβk (ỹ) converges uniformly w.r.t. (x̃, ỹ) in compact subset

of Rd × Rd, for each α, β = 1, . . . , d. We define

Q (x̃, ỹ) =
∞∑
k=1

σk (x̃)⊗ σk (ỹ) ∈ Rd×d, (10)

as the covariance function of the random field Rd 3 x̃ 7→
∑∞

k=1 σk (x̃)W k
1 .

It is of positive type, that is
∑n

i,j=1〈Q(x̃j, x̃i)ṽi, ṽj〉Rd ≥ 0, for any n ≥ 1,

x̃1, . . . , x̃n, ṽ1, . . . , ṽn ∈ Rd.

(A.3) Q(x̃, ỹ) is bounded on the diagonal, that is supx̃∈Rd |Q(x̃, x̃)| <
+∞. Moreover, it satisfies the Lipschitz type regularity property

sup
x̃,ỹ∈Rdx̃ 6=ỹ

∣∣Q (x̃, x̃) +Q (ỹ, ỹ)−Q (x̃, ỹ)−Q (ỹ, x̃)
∣∣

|x̃− ỹ|2
< +∞. (11)

(A.4) Q (x̃, ỹ) is strictly positive on Γx,N = {(x1, . . . , xN) ∈ RNd :
xi 6= xj whenever i 6= j}, that is, for all

(
x1, . . . , xN

)
∈ Γx,N and v =(

v1, . . . , vN
)
∈ RNd\ {0},

∑N
i,j=1 〈Q (xj, xi) vi, vj〉Rd > 0.
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The regularity assumptions on σk and Q in (A.2) and (A.3) respectively
are strongly related one with each other. Specifically, the Lipschitz condition
(11) implies a strong Lipschitz property of the fields (σk)k∈N\{0}:

∞∑
k=1

(
σαk (x̃)− σαk (ỹ)

)(
σβk (x̃)− σβk (ỹ)

)
= Qαβ (x̃, x̃)−Qαβ (x̃, ỹ)−Qαβ (ỹ, x̃) +Qαβ (ỹ, ỹ) ≤ C |x̃− ỹ|2 .

(12)

Conversely, Eq. (11) holds if the Lipschitz constants of the (σk)k∈N\{0} are
square summable.

In practice, the covariance function Q is given first. Precisely, given
a function Q : R2d 3 (x̃, ỹ) 7→ Q(x̃, ỹ) with values in the set of symmetric
matrices of size d×d, satisfying (A.3) and of positive type, it may be expressed
as a covariance function as in (10), for some fields (σk)k∈N\{0} satisfying (A.2).
We refer to Theorem 4.2.5 in [20]. In this framework, a sufficient condition
to guarantee (11) is: Q is of class C2 with bounded mixed derivatives, that
is sup(x̃,ỹ)∈Rd×Rd |∂2

x̃,ỹQ(x̃, ỹ)| < +∞. Indeed, Lipschitz property (11) then
follows from a straightforward Taylor expansion.

By (A.2), Stratonovich integrals in SDE (8) are (formally) equal to Itô
integrals, so that (8) will be interpreted in the usual Itô form

dX i
t

dt
= V i

t , dV i
t =

1

N

∑
j 6=i

F
(
X i
t −X

j
t

)
dt+

∞∑
k=1

σk
(
X i
t

)
dW k

t , (13)

t ≥ 0, i ∈ {1, . . . , N}. Indeed, the local martingale part of (σk(X
i
t))t≥0 is zero,

since (σk(X
i
t))t≥0 is of bounded variation. We shall not treat more rigorously

this equivalence, and, from now, we shall adopt the Itô formulation.

1.5 Useful notation

In the whole paper, the number N of particles is fixed, so that the dependence
of constants upon N is not investigated. For any n ∈ N \ {0}, z ∈ Rn and
r > 0, Bn(z, r) is the closed ball of dimension n, center z and radius r; Lebn
is the Lebesgue measure on Rn. The volume of Bn(z, r) is denoted by Vn(r).
The configurations of the N -particle system in the phase space are generally
denoted by z or Z. Positions are denoted by x or X and velocities by v or
V . Similarly, the typical notation for a single particle in the phase space
is z̃ = (x̃, ṽ), x̃ standing for its position and ṽ for its velocity. The set of
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pairs of different indices in the particle system is denoted by ∆N = {(i, j) ∈
{1, . . . , N}2 : i 6= j}. Moreover, we set ΓN = {(z1, . . . , zN) ∈ R2Nd : ∀(i, j) ∈
∆N , zi 6= zj} and Γx,N = {(x1, . . . , xN) ∈ RNd : ∀(i, j) ∈ ∆N , xi 6= xj}. We
also define the projection mappings:

Πx : R2Nd 3 z = (zj)1≤j≤N =
(
(xj, vj)

)
1≤j≤N 7→ Πx(z) = (xj)1≤j≤N ∈ RNd,

π̃x : R2d 3 z̃ = (x̃, ṽ) 7→ x̃ ∈ Rd,

πi,x : R2Nd 3 z = (zj)1≤j≤N =
(
(xj, vj)

)
1≤j≤N 7→ πi,x(z) = xi ∈ Rd,

with a similar definition for Πv, π̃v and πi,v. We then put πi = (πi,x, πi,v).
Below, Eq. (13) will be also written in the compact form

dZt = F (Zt) dt+
∞∑
k=1

Ak (Zt) dW
k
t , t ≥ 0, (14)

where Zt = (Xt, Vt), with Xt = (X1
t , . . . , X

N
t ) and Vt = (V 1

t , . . . , V
N
t ), and

F : RNd × RNd 3
(
x = (x1, . . . , xN), v

)
7→
(
v,

(
1

N

∑
j 6=i

F (xi − xj)
)

1≤i≤N

)
∈ RNd × RNd,

Ak : RNd × RNd 3 (x, v) 7→ (0, Ak (x)) ∈ RNd × RNd,

Ak :
(
Rd
)N 3 (x1, . . . , xN

)
7→
(
σk(x

1), . . . , σk(x
N)
)
∈
(
Rd
)N
.

(15)

For any t ≥ 0, the 2d-coordinates of Zt will be denoted by Zi
t = πi(Zt) =

(X i
t , V

i
t ), i ∈ {1, . . . , N}. Similarly, we shall denote by (Fi ≡ πi(F))1≤i≤N

and (Ai
k ≡ πi(Ak))1≤i≤N the 2d-components of F and Ak, for k ∈ N \ {0}.

2 Continuation: Proof of Theorem 2

Here, we identify general conditions on the structure of the noise in (3)
under which Theorem 2 holds. Typical examples are given in Proposition 19
in Section 3. In the whole section, we thus consider the 4D system:

dX i,ε
t = V i,ε

t dt , dV i,ε
t = sign

(
X i,ε
t −X

ı̄,ε
t

)
+ ε

∞∑
k=1

σk(X
i,ε
t )dW k

t , (16)

for t ≥ 0, i = 1, 2 and ı̄ = 2 if i = 1 and vice versa. Below, we assume that
(X i,ε

0 , V i,ε
0 ) = (εi,−εi

√
2), with εi = 1 if i = 2 and εi = −1 if i = 1. As a first

general condition (again, we refer to Proposition 19 for examples), we set:
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Condition 3 For any ε > 0, Theorem 1 applies and thus (16) has a unique
strong solution, which satisfies P{∀t ≥ 0, (X1,ε

t , V 1,ε
t ) 6= (X2,ε

t , V 2,ε
t )} = 1.

We will set Zi,ε
t = (X i,ε

t , V
i,ε
t ), ε > 0, i = 1, 2. When ε = 0, the curves

X i,0
t = εi

(
1− t√

2

)2
, V i,0

t = εi
(
−
√

2 + t
)
, t ≥ 0,

solve the system (16), but merge at time t0 =
√

2. Again, we will set Zi,0
t =

(X i,0
t , V i,0

t ), i = 1, 2. Note that Z2,0
t = −Z1,0

t for all t ≥ 0.
We are to prove that (Z1,ε

t , Z2,ε
t )t≥0 converges in distribution on the space

C([0,+∞),R4) toward (1/2)δ(Z1,+
t ,Z2,+

t )t≥0
+ (1/2)δ(Z1,−

t ,Z2,−
t )t≥0

, where

(Z1,+
t , Z2,+

t ) = (Z1,0
t , Z2,0

t ), t ≥ 0; (Z1,−
t , Z2,−

t ) =

{
(Z1,0

t , Z2,0
t ), t ∈ [0, t0],

(Z2,0
t , Z1,0

t ), t > t0.

The whole point is to investigate the differences:

Xε
t =

X2,ε
t −X

1,ε
t

2
, Vε

t =
V 2,ε
t − V

1,ε
t

2
, t ≥ 0, ε > 0. (17)

We will use the second condition (see as an example Proposition 19):

Condition 4 Assume that (Z1,ε
t , Z2,ε

t )t≥0 satisfies (16), but with an arbi-
trary random initial condition (Z1,ε

0 , Z2,ε
0 ) ∈ Γ2, independent of the noise

((W k
t )t≥0)k≥1. Denote by (Ft)t≥0 the augmented filtration generated by the

initial condition (Z1,ε
0 , Z2,ε

0 ) and by the noise ((W k
t )t≥0)k≥1. Then, there ex-

ists an (Ft)t≥0-Brownian motion (Bε
t )t≥0 such that, for all t ≥ 0,

dXε
t = Vε

tdt , dVε
t = sign(Xε

t)dt+ εσ(Xε
t)dB

ε
t , (18)

where σ is C2 function from R to R, depending on the (σk)k≥1 only (in par-
ticular, σ is independent of the initial condition (Z1,ε

0 , Z2,ε
0 ) and of ε), with

bounded derivatives of order 1 and 2, such that σ(0) = 0 and σ(1) > 0.

Setting Zεt = (Xε
t ,Vε

t), for any t ≥ 0, we first investigate the solutions of
(18) when ε = 0. We have the obvious

Lemma 5 For ε = 0, all the solutions of (18) with ε = 0 and (X0
0,V0

0) =
(1,−

√
2), have the form

Z0
t = (X0

t ,V0
t ) =

(
(t0 − t)2

2
, t− t0

)
for 0 ≤ t ≤ t0 =

√
2. (19)

11



We emphasize that uniqueness fails after coalescence time t0. Indeed, any
(Z0

t )t≥0, with (Z0
t )0≤t≤t0 as in (19), Z0

t = (0, 0) for t0 ≤ t ≤ t1 and Z0
t =

±((t − t1)2/2, t − t1), for t ≥ t1, where t1 ≥ t0 may be real or infinite, is a
solution to (18) when ε = 0 therein. We claim

Proposition 6 Given τ ε = inf{t ≥ 0 : Xε
t ≤ 0}, for any δ > 0 and M > t0,

lim
ε→0

P{τ ε ∈ (t0 − δ, t0 + δ)} =
1

2
, lim

ε→0
P{τ ε ≥M} =

1

2
. (20)

Moreover, defining τ ε2 = inf{t > τ ε : Xε
t ≥ 0}, we have, for any M > 0,

lim
ε→0

P{τ ε2 ≥M} = 1. (21)

Proposition 6 suggests that, in the limit regime ε→ 0, the trajectories of the
two particles cross with probability 1/2 exactly, and, if so, they just cross
once, at coalescence time. This is one step forward in the proof of Theorem
2. Precisely, we prove below that Proposition 6 implies Theorem 2.

Proof. (Proposition 6 ⇒ Theorem 2.) The family ((Z1,ε
t , Z2,ε

t )t≥0)0<ε≤1 is
tight by (A.3). We denote by µ a weak limit, on the space of continuous func-
tions C([0,+∞),R4), of the family of measures (P(Z1,ε

· ,Z2,ε
· ))0<ε≤1 as ε → 0,

the canonical process on C([0,+∞),R4) being denoted by (ξ1
· = (χ1

· , ν
1
· ), ξ

2
· =

(χ2
· , ν

2
· )). We will also denote χt = (χ2

t − χ1
t )/2 and νt = (ν2

t − ν1
t )/2, t ≥ 0.

Under the measure µ, ξi· = (χi· , ν
i
· ), i = 1, 2, satisfies χ̇it = νit , |ν̇it | ≤ 1,

t ≥ 0, i = 1, 2. We now make use of Proposition 6. Given M > 0, we have,
on the set {τ ε ≥M},

V i,ε
t = V i,ε

0 + εit+ ε
∑
k≥1

∫ t

0

σk(X
i,ε
s )dW k

s , 0 ≤ t ≤M,

where εi matches 1 if i = 2 and −1 if i = 1, so that, for any η > 0,

lim inf
ε→0

P
{

sup
0≤t≤M

|V i,ε
t − V

i,ε
0 − εit| ≤ η, i = 1, 2

}
≥ lim

ε→0
P{τ ε ≥M}.

By porte-manteau Theorem, we deduce that

µ

{
νit = νi0 + εit, 0 ≤ t ≤M, i = 1, 2

}{
= 1 if M < t0,
≥ 1/2 if M > t0.

(22)
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Therefore, under µ, (ξ1
t )0≤t≤t0 coincides with (Z1,0

t )0≤t≤t0 and (ξ2
t )0≤t≤t0 coin-

cides with (Z2,0
t )0≤t≤t0 . In particular, under µ, ξ1

t0
= ξ2

t0
= (0, 0). Similarly,

we also deduce from (22) that, with probability greater than 1/2 under µ,
(ξ1
t , ξ

2
t ) = (Z1,+

t , Z2,+
t ) for any t ≥ 0.

By the same argument, for δ > 0 small and M > t0 + δ, we deduce from
Proposition 6 that,

µ
{
νit = νit0+δ − εi[t− (t0 + δ)], t0 + δ ≤ t ≤M, i = 1, 2

}
≥ lim

ε→0
P{τ ε ≤ t0 + δ, τ ε2 ≥M} =

1

2
.

Letting δ tend toward 0 and M toward +∞, we deduce that, with probability
greater than 1/2 under µ, (ξ1

t , ξ
2
t ) = (Z1,−

t , Z2,−
t ) for any t ≥ 0. �

2.1 Key Lemmas by Integration by Parts

The proof of Proposition 6 relies on two key lemmas, each of them being
proven by integration by parts. The first one is

Lemma 7 Set N+ = [0,+∞)2 \ {(0, 0)} and, similarly, N− = (−∞, 0]2 \
{(0, 0)}. Consider also the sets of initial conditions for (16): Γ± = {(z1 =
(x1, v1), z2 = (x2, v2)) : (x2−x1, v2−v1) ∈ N±}. Then, there exists a constant
c > 0 such that, for any M > 0 and any compact subset K ⊂ R4,

lim
ε→0

inf
(z1,z2)∈K∩Γ±

P{∀t ∈ [0,M ], ±Xε
t ≥ ct2|(Z1,ε

0 , Z2,ε
0 ) = (z1, z2)} = 1.

Proof. In the whole proof, the initial condition (z1, z2) ∈ K ∩ Γ+ is given,
i.e. (Z1,ε

0 , Z2,ε
0 ) = (z1, z2) ∈ K ∩ Γ+. Writing zi = (xi, vi), i = 1, 2, we set

x = (x2−x1)/2 and v = (v2−v1)/2. W.l.o.g., we assume that x > 0. Indeed,
when x = 0, v must be positive, so that, in very short time, both Xε and Vε

are positive. By Markov property (which holds for the 4D system because
of strong uniqueness), we are then led back to the case when x and v are
positive. By Condition 4, we can write

dVε
t = sign(Xε

t)dt+ εσ(Xε
t)dB

ε
t , t ≥ 0,

where (Bε
t )t≥0 is a 1D Browian motion. Taking advantage of the smoothness

of σ, we perform the following integration by parts:

d
(
Vε
t − εσ(Xε

t)B
ε
t

)
=
(
sign(Xε

t)− εσ′(Xε
t)Vε

tB
ε
t

)
dt.

13



Keeping in mind that τ ε = inf{t ≥ 0 : Xε
t ≤ 0}, we have

Vε
t − εσ(Xε

t)B
ε
t ≥ t− ε

∫ t

0

σ′(Xε
s)Vε

sB
ε
sds, 0 ≤ t ≤ τ ε.

On the event Aε1 =
{

sup
0≤t≤M

∣∣σ′(Xε
t)Vε

tB
ε
t

∣∣ ≤ 1

2ε

}
, we have

dXε
t ≥

( t
2

+ εσ(Xε
t)B

ε
t

)
dt ≥

( t
2
− CεXε

t |Bε
t |
)
dt, 0 ≤ t ≤ τ ε ∧M,

where C here stands for the Lipschitz constant of σ. We deduce

dX̄ε
t ≥

t

2
exp

(
Cε

∫ t

0

|Bε
s |ds

)
dt, with X̄ε

t = Xε
t exp

(
Cε

∫ t

0

|Bε
s |ds

)
,

for 0 ≤ t ≤ τ ε∧M . Therefore, on Aε1, τ ε must be greater than M, so that the
above expression holds up to time M (at least). We deduce dX̄ε

t ≥ (t/2)dt,
for 0 ≤ t ≤M , so that X̄ε

t ≥ t2/4, for 0 ≤ t ≤M .

Intersect now Aε1 with Aε2 =
{

sup
0≤t≤M

|Bε
t | ≤

1

εM

}
. Then, on Aε1 ∩ Aε2,

Xε
t ≥

t2

4
exp(−C), 0 ≤ t ≤M.

To complete the proof, it remains to notice (from a standard tightness argu-
ment) that P(Aε1 ∩ Aε2)→ 1 as ε→ 0, uniformly in (z1, z2) ∈ K. (The proof
when (z1, z2) is in Γ− is similar.) �

We now come back to the case when the initial condition of the 4D system
is ((1,−

√
2), (−1,

√
2)). The second key lemma consists in expanding the

difference process (Xε,Vε) w.r.t. ε, up to τ ε = inf{t ≥ 0 : Xε
t ≤ 0}.

Lemma 8 There exist a family of 1D Brownian motions ((Bε
t )t≥0)ε>0 and a

family of random continuous processes (gε : R+ → R)ε>0, such that

∀T > 0, lim
R→+∞

sup
0<ε≤1

P
{

sup
0≤t≤T

|gεt | > R
}

= 0, (23)

and the processes

dV(0)
t = dt, dX(0)

t = V(0)
t dt, (X(0)

0 ,V(0)
0 ) = (1,−

√
2),

dV(1,ε)
t = σ(X(0)

t )dBε
t , dX(1,ε)

t = V(1,ε)
t dt, (X(1,ε)

0 ,V(1,ε)
0 ) = (0, 0),

satisfy

|Xε
t − (X(0)

t + εX(1,ε)
t )|+ |Vε

t − (V(0)
t + εV(1,ε)

t )| ≤ ε2|gεt |, 0 ≤ t ≤ τ ε. (24)
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Proof. By Condition 4, we can write

dVε
t = dt+ εσ(Xε

t)dB
ε
t , 0 ≤ t ≤ τ ε,

for some 1D Brownian motion (Bε
t )t≥0, so that

d
[
δXε

t

]
= δVε

tdt , d
[
δVε

t

]
= ε
[
σ(Xε

t)− σ(X(0)
t )
]
dBε

t , 0 ≤ t ≤ τ ε,

with δXε
t = Xε

t − (X(0)
t + εX(1,ε)

t ), δVε
t = Vε

t − (V(0)
t + εV(1,ε)

t ). We perform
the same integration by parts as above, with

δV̄ε
t = δVε

t − ε
(
σ(Xε

t)− σ(X(0)
t )
)
Bε
t .

Then, we can find a family of random continuous functions ((v0,ε
t )t≥0)ε>0,

satisfying (23), such that

d
[
δV̄ε

t

]
= −ε

(
σ′(Xε

t)Vε
t − σ′(X

(0)
t )V(0)

t

)
Bε
t dt

= −ε
(
σ′(Xε

t)Vε
t − σ′(X

(0)
t + εX(1,ε)

t )(V(0)
t + εV(1,ε)

t )
)
Bε
t dt+ ε2v0,ε

t dt

= −εσ′(Xε
t)B

ε
t δVε

tdt

− ε
(
σ′(Xε

t)− σ′(X
(0)
t + εX(1,ε)

t )
)
(V(0)

t + εV(1,ε)
t )Bε

t dt+ ε2v0,ε
t dt.

Since σ′ is Lipschitz-continuous, we can find two families of random functions
((v1,ε

t )t≥0)ε>0 and ((v2,ε
t )t≥0)ε>0, satisfying (23), such that

d
[
δV̄ε

t

]
= εv1,ε

t δXε
tdt+ εv2,ε

t δV̄ε
tdt+ ε2v0,ε

t dt. (25)

In a similar way, we can find two families of random functions ((x0,ε
t )t≥0)ε>0

and ((x1,ε
t )t≥0)ε>0, satisfying (23), such that

d
[
δXε

t

]
= εx1,ε

t δXε
tdt+ δV̄ε

tdt+ ε2x0,ε
t dt. (26)

Bounding the resolvent of the linear system (25–26) in terms of the bounds
for x1,ε, v1,ε and v2,ε, the result easily follows. �

2.2 Proof of Proposition 6

We emphasize that V(0)
t = −

√
2 + t and X(0)

t = (1− t/
√

2)2 and that

V(1,ε)
t =

∫ t

0

σ(X(0)
s )dBε

s =

∫ t

0

σ
[(

1− s√
2

)2]
dBε

s ,

X(1,ε)
t =

∫ t

0

∫ s

0

σ
[(

1− r√
2

)2]
dBε

r =

∫ t

0

(t− r)σ
[(

1− r√
2

)2]
dBε

r .

(27)

Choosing t0 =
√

2 and keeping in mind that σ(1) 6= 0, we deduce
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Lemma 9 The r.v.’s (X(1,ε)
t0 )ε>0 have the same Gaussian law with zero mean

and non-zero variance. In particular, P{X(1,ε)
t0 > 0} = P{X(1,ε)

t0 ≥ 0} = 1/2.

We claim

Lemma 10 For any real M > t0 =
√

2 and any δ > 0,

(i) lim
ε→0

P
(
{τ ε ≤M} ∩ {X(1,ε)

t0 > δ}
)

= 0,

(ii) lim
ε→0

P
(
{τ ε > M} ∩ {X(1,ε)

t0 < −δ}
)

= 0,

(iii) lim
ε→0

P
(
{τ ε ≤M} ∩ {τ ε 6∈ (t0 − δ, t0 + δ)}

)
= 0.

Proof. Given M >
√

2, we set Eε
M = {τ ε ≤M}. We know from Lemma

8, that there exists a tight family of random variables (ζεM)0<ε≤1 such that

|Xε
t − (X(0)

t + εX(1,ε)
t )| ≤ ε2ζεM , 0 ≤ t ≤ τ ε ∧M. (28)

Therefore, on Eε
M , we can choose t = τ ε above. We deduce that∣∣(1− τ ε√

2

)2
+ εX(1,ε)

τε

∣∣ ≤ ε2ζεM . (29)

Up to a modification of ζεM , we deduce (which is (iii))∣∣τ ε −√2
∣∣2 ≤ εζεM . (30)

We now prove (i). From (29), we deduce that X(1,ε)
τε ≤ εζεM on Eε

M . Since
X(1,ε) is Lipschitz continuous on the interval [0,M ], we deduce from (30) that
there exists a tight family of random variables (Cε

M)0<ε≤1 such that

X(1,ε)
t0 = X(1,ε)

τε + X(1,ε)
t0 − X(1,ε)

τε ≤ εζεM + Cε
M

∣∣τ ε − t0∣∣ ≤ εζεM + Cε
Mε

1/2(ζεM)1/2.

That is, for every δ > 0, lim
ε→0

P
(
Eε
M ∩ {X

(1,ε)
t0 > δ}

)
= 0.

We finally prove (ii). From (28), we know that εX(1,ε)
t0 ≥ Xε

t0
− ε2ζεt0 .

Therefore, on (Eε
M){, εX(1,ε)

t0 ≥ −ε2ζεt0 . This proves that, for every δ > 0,

lim
ε→0

P
(
(Eε

M){ ∩ {X(1,ε)
t0 < −δ}

)
= 0. �
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Lemma 11 It holds

(i) ∀M >
√

2, lim
ε→0

P{τ ε > M} = 1/2,

(ii) ∀δ > 0, lim
ε→0

P{τ ε ∈ (t0 − δ, t0 + δ)} = 1/2.

In particular, τ ε converges in law towards
1

2
δt0 +

1

2
δ+∞.

Proof. From Lemmas 9 and 10, for any M >
√

2 and any δ > 0,

lim sup
ε→0

P{τ ε > M} ≤ lim sup
ε→0

P{X(1,ε)
t0 ≥ −δ} = P{X(1,1)

t0 ≥ −δ}.

Letting δ tend toward 0, we obtain lim supε→0 P{τ ε > M} ≤ 1/2. Similarly,

lim sup
ε→0

P{τ ε ≤M} ≤ P{X(1,1)
t0 ≤ 0} =

1

2
.

We deduce (i). Then, (ii) follows from (iii) in Lemma 10. �

We finally claim

Lemma 12 Set σε = inf{t ≥ 0 : Vε
t ≥ 0}. Then, for all M > 0,

lim
ε→0

P{τ ε ≤M,σε < τ ε} = 0, (31)

lim
ε→0

P{τ ε2 ≥M} = 1. (32)

Proof. By Lemma 11, we can assume M >
√

2. We then start with the
proof of (31). By Markov property, we notice that

P{τ ε ≤M,σε < τ ε}

≤
∫

Γ2

1{π̃x(z2−z1)>0,π̃v(z2−z1)=0}P{τ ε ≤M |(Z1,ε
0 , Z2,ε

0 ) = (z1, z2)}dηε(z1, z2),

where ηε is the conditional law of (Z1,ε
ρε , Z

2,ε
ρε ) given ρε ≤ M , with ρε =

inf(σε, τ ε), under the initial condition ((1,−
√

2), (−1,
√

2)). Using (i) in
Lemma 11, it is plain to see that the distributions (ηε)0<ε≤1 are tight. By
Lemma 7, this shows (31). Similarly, we have

P{τ ε2 ≤M, τ ε < σε}

≤
∫

Γ2

1{π̃x(z2−z1)=0,π̃v(z2−z1)<0}P{τ ε ≤M |(Z1,ε
0 , Z2,ε

0 ) = (z1, z2)}dηε(z1, z2),

which tends to 0 by the same argument as above. Since limε→0 P{τ ε2 ≤
M,σε < τ ε} ≤ limε→0 P{τ ε ≤ M,σε < τ ε} = 0, we deduce (32). (Keep in
mind that P{τ ε = σε} = 0.) �
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3 Structure of the noise

In this section, we investigate the meaning of Assumption (A.4). First, we
translate it into an ellipticity property of the noise. Second, we discuss some
general examples inspired from turbulence theory. Finally, we prove that
ellipticity of the noise lifts up to hypoellipticity of any mollified version of
Eq. (13). In the whole section, we shall make use of the notations in (14).

3.1 Ellipticity of the noise

When F = 0 and x ∈ Γ{x,N , Span {Ak (x)}k∈N\{0} ( RNd so that the velocity
component in (13) moves along a restricted number of directions only. On
the contrary, when x ∈ Γx,N , the noise generated at x is non-degenerate
because of the strict positivity of Q (x̃, ỹ) on Γx,N in (A.4):

Lemma 13 Q satisfies (A.4) if and only if

Span {Ak (x)}k∈N\{0} = RNd, ∀x =
(
x1, . . . , xN

)
∈ Γx,N . (33)

Proof. For any v =
(
v1, . . . , vN

)
∈ RNd\ {0}, we have

∑∞
k=1 〈Ak (x) , v〉2RNd =∑∞

k=1(
∑N

i=1〈σk(xi), vi〉Rd)2 =
∑N

i,j=1〈Q(xj, xi)vi, vj〉Rd > 0. �

Below, we exhibit interesting examples of strictly positive covariance
functions Q(x̃, ỹ) that are space-homogeneous. Precisely, we shall assume
that there is a symmetric d × d matrix-valued function Q(x̃), such that
Q(x̃, ỹ) = Q(x̃− ỹ) = Q(ỹ − x̃), with the following spectral representation:

Q (x̃) =

∫
Rd
eik·x̃Q (k) dk, x̃ ∈ Rd, (34)

where the spectral density Q takes values in the space of non-negative real
symmetric d×d matrices, with coordinates in L1(Rd), and satisfies Q (−k) =
Q (k), k ∈ Rd. (Above, k · x̃ is a shorten notation for 〈k, x̃〉Rd .) In this
framework, we have the general criterion:

Lemma 14 Assume that Q has the following property: for any Rd-valued
trigonometric polynomial v(k) of the form v(k) =

∑N
j=1 v

jeik·x
j
, for some

(x1, . . . , xN), (v1, . . . , vN) ∈ RNd and for i2 = −1, the a.e. equality

〈Q (k) v (k) , v (k)〉Cd = 0 for a.e. k ∈ Rd
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implies v (k) = 0 for any k ∈ Rd, where 〈·, ·〉Cd denotes the Hermitian product
in Cd. Then Q (x̃, ỹ) is strictly positive on Γx,N . (Keep in mind that, for any

u, u′ ∈ Cd, 〈u, u′〉Cd =
∑d

j=1 ū
j(u′)j, ū denoting the conjugate of u. We will

also write 〈u, u′〉Cd = 〈ū, u′〉Rd with an abuse of notation.)

Proof. The proof follows from the identity:

N∑
j,`=1

〈
Q
(
xj, x`

)
v`, vj

〉
Rd =

∫
Rd
〈Q (k) v (k), v (k)〉Cd dk, (35)

where v (k) =
∑N

j=1 v
jeik·x

j
. Indeed, v (k) = 0 for any k ∈ Rd implies

(v1, . . . , vN) = 0 since v (k) is a (vector valued) trigonometric polynomial
driven by pairwise different vectors x1, . . . , xN . (See Remark 15 below.) �

Remark 15 Let f : Rd → C be of the form

f (k) =
N∑
j=1

(
aj +

〈
k, vj

〉
Cd
)
eix

j ·k, k ∈ Rd,

where aj ∈ C, vj ∈ Cd and (x1, . . . , xN) ∈ Γx,N . If there is a Borel set
A ⊂ Rd of positive Lebesgue measure such that f = 0 on A, then aj = 0 and
vj = 0 for any j = 1, . . . , N . Indeed, by a standard extension of the principle
of analytic continuation, f(k) = 0 for any k ∈ Rd. Given a smooth function
ϕ : Rd → C with compact support, we denote by ϕ̂ its Fourier transform.
We have

∫
Rd f(k)ϕ̂(k)dk = 0 and thus

∑N
j=1[ajϕ(xj)− i〈vj,∇ϕ (xj)〉Rd ] = 0.

Since the points xi are all different, we may construct a function ϕ such that
ϕ(xj) = āj and ∇ϕ(xj) = iv̄j.

By Lemma 14 and Remark 15, we get as a first example:

Proposition 16 If Q (k) is strictly positive definite on a Borel subset of Rd

of positive Lebesgue measure, then Q (x̃, ỹ) is strictly positive on Γx,N .

3.2 Isotropic random fields

Proposition 16 does not cover important examples, as the following one,
which appears in the literature about diffusion of passive scalars:
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Example 17 We say that Q is isotropic if Q(Ux̃) = UQ(x̃)U>, for any
x̃ ∈ Rd and U ∈ O(Rd), where O(Rd) is the set of orthogonal matrices of
dimension d (U> denotes the transpose of U). This is the case when Q(k)
in (34) has the form

Q(k) = πkf (|k|) , that is Q (x) =

∫
Rd
eik·xπkf (|k|) dk,

where πk = 1, if d = 1, and πk = (1− p) Id + |k|−2 (pd− 1) k ⊗ k for some
p ∈ [0, 1], if d ≥ 2, and f : [0,+∞)→ R is in L1([0,+∞)) and satisfies

f (r) ≥ 0 for a.e. r > 0. (36)

The matrix Q (k) is symmetric, it satisfies Q (−k) = Q (k), and it is almost-
everywhere non-negative because (we restrict the proof to d ≥ 2)

|k|2 〈πkw,w〉Cd = (1− p) |k|2 |w|2 + (pd− 1) |〈k, w〉Cd|
2

≥ (1− p) |〈k, w〉Cd |
2 + (pd− 1) |〈k, w〉Cd |

2

= p (d− 1) |〈k, w〉Cd |
2 ≥ 0,

(37)

(Inequality is here given in Cd but only the Rd part is useful to prove non-
negativity of Q(k). The full inequality in Cd will be used next.)

We refer to [22], [29] and [33] for references where this form (for particular
choices of f) is used or investigated. This class of covariances is related to
the Batchelor regime of the Kraichnan model, where f(r) = (r2

0 +r2)−(d+$)/2

with $ = 2, see [11]. In the limit r0 → 0, the covariance of the increments of
the noise is scale invariant with scaling exponent equal to 2. The “turbulent
regime” of the Kraichnan model (0 ≤ $ < 2) is in contrast not included in
our main final result because of the regularity properties we require on Q.

Proposition 18 If there exists a Borel set A ⊂ [0,∞) such that Leb1(A) > 0
and f (r) > 0 for r ∈ A, then Q(x̃, ỹ) is strictly positive on Γx,N .

Proof. Step 1. From Lemma 14 it is sufficient to prove that the condition

f (|k|) 〈πkv (k), v (k)〉Cd = 0 for a.e. k ∈ Rd

implies v (k) = 0 for any k ∈ Rd, when v (k) has the form v (k) =
∑N

j=1 v
jeik·x

j

for some (v1, . . . , vN) ∈ RNd and (x1, . . . , xN) ∈ Γx,N . Since f 6= 0 on A, it
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holds 〈πkv (k), v (k)〉Cd = 0 for k in a Borel subset A∗ ⊂ Rd of positive
measure. We now prove that this implies v (k) ≡ 0.

We focus on the condition 〈πkw,w〉Cd = 0 for some w ∈ Cd. When
d = 1, it implies w = 0. For p ∈ (0, 1], d > 1, inequality (37) implies
p (d− 1) 〈k, w〉2Cd = 0, and thus 〈k, w〉2Cd = 0. Finally, in the case p = 0,
d > 1, for all w ∈ Cd we have

|k|2 〈πkw,w〉Cd = (|k| |w| − 〈k, w〉Cd)
2

and thus 〈πkw,w〉Cd = 0 implies that w = λk, for some λ ∈ R, if k 6= 0.
Going back to the main line of the proof, we have 〈πkv (k), v (k)〉Cd = 0

for all k ∈ A∗. Depending on the values of p and d, this implies at least one
of the three following conditions: v(k) = 0 for all k ∈ A∗, or 〈k, v (k)〉Cd = 0
for all k ∈ A∗, or v (k) ‖ k for all k ∈ A∗ (except maybe at k = 0). By
Remark 15, vj = 0, for j = 1, . . . , N , in the two first cases. In the third case,
we notice that v(k) ‖ k may be written as

∑N
j=1〈v

j
`e`′ − v

j
`′e`, k〉Cdeix

j ·k = 0,

for 1 ≤ `, `′ ≤ d, where (e`)1≤`≤d is the canonical basis of Cd. By Remark 15
again, this also implies vj = 0, for j = 1, . . . , N . (See also [17, Theorem 4.7]
and [10].) �

We are now able to give examples for which Theorem 2 applies:

Proposition 19 In the case when d = 1, consider Q as in Example 17, with
f ∈ L1(R+,R+) satisfying the assumption of Proposition 18 together with∫ +∞

0
k4f(k)dk < +∞, then Conditions 3 and 4 in Section 2 are satisfied

with σ(x) = sign(x)
√

(Q(0)−Q(x))/2, for x ∈ R.

Proof. Go back to the framework of Section 2 and recall (16) and (17).
Existence and uniqueness in Condition 3 follow from Theorem 22 below.
In order to prove (18), we consider an arbitrary random initial condition
(Z1,ε

0 , Z2,ε
0 ) ∈ Γ2, independent of the noise ((W k

t )t≥0)k≥1. For any t ≥ 0,

dXε
t = sign(Xε

t)dt+ ε
∑
k≥1

σk(X
2,ε
t )− σk(X1,ε

t )

2
dW k

t

= sign(Xε
t)
(
dt+ ε

√
ρεtdB

ε
t

)
,

with ρεt = Q(0)−Q(Xε
t) ≥ 0 and

dBε
t =

(
1{Xεt≥0} − 1{Xεt<0}

)
×
(∑
k≥1

1{ρεt>0}
σk(X

2,ε
t )− σk(X1,ε

t )√
2ρεt

dW k
t + 1{ρεt=0}dW

1
t

)
.
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It is well-checked that d〈Bε〉t = dt. By Lévy’s Theorem, (Bε
t )t≥0 is a Brown-

ian motion w.r.t. the augmented filtration generated by the initial condition
(Z1,ε

0 , Z2,ε
0 ) and by the noise ((W k

t )t≥0)k≥1.
We now investigate the properties of σ. Clearly, σ(0) = 0. Below, we

prove that σ is C2 with bounded derivatives and that σ(1) > 0. We have

Q(0)−Q(x) = x2

∫
R

1− cos(kx)

x2
f(|k|)dk = x2

∫
R
k2ϕ(kx)f(|k|)dk,

with ϕ(u) = u−2(1 − cos(u)). Clearly, ϕ is infinitely differentiable with
bounded derivatives. Therefore, the function Φ : R 3 x 7→

∫
R k

2ϕ(kx)f(|k|)dk
is twice continuously differentiable with bounded derivatives. At x = 0,
Φ(0) > 0, so that

√
Φ is twice continuously differentiable in the neighborhood

of 0. Then, the function σ, which reads σ(x) = x
√

Φ(x), for x ∈ R, is twice
continuously differentiable in the neighborhood of 0. Away from 0, the func-
tion R 3 x 7→ Q(0)−Q(x) has positive values so that its square root is also
twice continuously differentiable and σ is twice continuously differentiable as
well. The derivatives of order one and two of σ are bounded since the deriva-
tives of order one and two of Q are bounded and Q(0) − Q(x) → Q(0) > 0
as |x| → +∞. Moreover, σ(1) is clearly positive. �

3.3 Hypoellipticity of the N-point motion

Ellipticity of the noise turns into hypoellipticity of the system, in the follow-
ing sense (the proof is standard and is thus left to the reader):

Proposition 20 Assume that, F and σk, for any k ∈ N \ {0}, are of class
C1 on Rd and that, for every x = (x1, . . . , xN) ∈ Γx,N , Span {Ak(x)}k∈N\{0} =

RNd. Then, for every z ∈ R2Nd of the form z = (x, v) with x = (x1, . . . , xN) ∈
Γx,N , v ∈ RNd, we have Span{Ak(z), [Ak,F](z)}k∈N\{0} = R2Nd. (Here, [·, ·]
stands for the Lie bracket of vector fields.)

Here is the precise formulation of hypoellipticity in our framework:

Proposition 21 In addition to (A.1–4), assume that F is Lipschitz contin-
uous on the whole Rd. Then, for every initial condition Z0 = z ∈ R2Nd, Eq.
(13) admits a unique strong solution. Moreover, the mappings ϕt : R2Nd 3
z 7→ Zt subject to Z0 = z, t ≥ 0, form a stochastic flow of homeomorphisms
on R2Nd. Finally, for any t > 0, the marginal law of the 2Nd-dimensional
vector Zt is absolutely continuous with respect to the Lebesgue measure when
z = (x, v) satisfies x ∈ Γx,N .
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Proof. Unique strong solvability and homeomorphism property of the flow
may be found in [30] and [20, Chapter 4, Section 5]. When the coefficients
(σk)k∈N\{0} are smooth, with derivatives of any order in `2(N \ {0}), and
F is smooth as well, absolute continuity then follows from Proposition 20
and a suitable version of Hörmander’s Theorem for systems driven by an
infinite-dimensional noise. See for example [30, Theorem 4.3].

Here the coefficients are not smooth. Anyhow, absolute continuity follows
from the Bouleau and Hirsch criterion directly. By Proposition 2.2 in [30],
(Zt)t≥0 is differentiable in the sense of Malliavin with

∑+∞
k=1 E

∫ t
0
|Dk

sZt|2ds <
+∞, for any t ≥ 0. We also know that

Dk
rZt = Yt (Yr)

−1 Ak (Zr) , 0 ≤ r ≤ t, (38)

the equality holding true in R2Nd, where (Yt)t≥0 is an R2Nd×2Nd-valued pro-
cess, solution a linear SDE of the form

Yt = I2Nd +
+∞∑
k=1

∫ t

0

αk(s)YsdW
k
s +

∫ t

0

α0(s)Ysds, t ≥ 0, (39)

the processes (αk(s))s≥0, k ∈ N, being bounded and progressively-measurable
and the infinite-dimensional process ((|αk(s)|)s≥0)k∈N\{0} being bounded in
`2(N \ {0}). When the coefficients F and Ak, k ∈ N \ {0}, in the compact
formulation (14) are smooth, it holds α0(s) = ∇F(Zs) and αk(s) = ∇Ak(Zs),
k ∈ N\{0}. We then use the following notation: given a square matrix M of
size 2Nd× 2Nd, we denote by [M ]x,x, [M ]x,v, [M ]v,x and [M ]v,v the blocks of
size Nd×Nd corresponding to the decomposition of a vector z ∈ R2Nd into
coordinates x = Πx(z) and v = Πv(z) in RNd. With this notation, [αk(s)]x,v
and [αk(s)]v,v are zero since Ak is independent of v. Similarly, [αk(s)]x,x is
zero since Πx(Ak) ≡ 0 and [α0(s)]x,x = [α0(s)]v,v = 0 since Πx(F) ≡ v and
Πv(F) is independent of x. Moreover, [α0(s)]x,v = INd. These relationships
keep true in the Lipschitz setting by a mollification argument. Finally, as in
the finite-dimensional framework, we can check that, a.s., for any t > 0, Yt
is invertible, the inverse being of finite polynomial moments of any order.

For r small, Yr = I2Nd+or(1), or(1) standing for the Landau notation and
almost-surely converging to 0 with r. Therefore, by the equalities [α0(s)]x,x =
[αk(s)]x,x = [αk(s)]x,v = [α0(s)]v,v = [αk(s)]v,v = 0 and [α0(s)]x,v = INd, we
deduce that [Yr]x,v = INd + ror(1) and [Yr]v,v = INd + or(1) and that [Yr]x,v
may expanded as

[Yr]x,v = rINd + ror(1).
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Setting Zr = (Yr)
−1Ak(Zr) ∈ R2Nd and writing Zr under the form Zr =

((X i
r ,V ir))1≤i≤N , we have YrZr = Ak(Zr), so that

[Yr]x,xXr + [Yr]x,v Vr = 0, [Yr]v,xXr + [Yr]v,v Vr = Ak(Xr),

that is Xr + rVr = ror(1), and or(1)Xr + Vr = Ak(Xr) + or(1). We deduce
Vr = Ak(Xr) + or(1) and Xr = rAk(Xr) + ror(1), so that, by (38),

(Yt)
−1Dk

rZt = (rAk(x) + ror(1), Ak(x) + or(1)) . (40)

(The above equality holds almost-surely, or(1) being random itself.) For a
given ω ∈ Ω for which (40) holds true, consider ζ = ((χi, νi))1≤i≤N ∈ R2Nd

such that 〈Dk
rZt, ζ〉Rd = 0 for any 0 ≤ r ≤ t and k ∈ N \ {0}. Changing ζ

into ((Yt)
−1)>ζ, we deduce from (40) that

r
N∑
i=1

〈σk
(
xi
)
, χi〉Rd +

N∑
i=1

〈σk
(
xi
)
, νi〉Rd = ror(1)|χ|+ or(1)|ν|,

Letting r → 0, we get ν ⊥ Ak(x) for any k ∈ N \ {0}. By (A.4), ν = 0.
Dividing the above equality by r and letting r → 0, χ = 0. We complete the
proof by Bouleau and Hirsch criterion, see [31, Theorem 2.1.2]. �

4 No coalescence of the stochastic dynamics

We now prove the main result of the paper:

Theorem 22 Under (A.1–4), for any z ∈ ΓN , there exists a unique solution
(Zt(z))t≥0 to (13) with z as initial condition. It satisfies P{∀t ≥ 0, Zt(z) ∈
ΓN} = 1 and P{Leb1{t ≥ 0 : Πx(Zt(z)) ∈ Γ{x,N} = 0} = 1.

The proof is split into three parts: we first establish a priori estimates
for a regularized version of (13); using a compactness argument, we deduce
that strong unique solvability holds for Lebesgue almost-every starting point;
taking advantage of the absolute continuity of the marginal laws of the reg-
ularized system, we establish strong unique solvability for any z ∈ ΓN .
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4.1 Smoothed system of equations

For every ε > 0, let Fε : Rd → Rd be equal to F outside Bd (0, ε), but be
smooth inside Bd (0, ε), with supx∈Rd |Fε(x)| ≤ supx∈Rd |F (x)|+1. Given such
an Fε, we consider Eq. (13), but with Fε instead of F therein (or, equivalently,
the compact writing (14) when driven by Fε, with an appropriate definition
of Fε in (15)). By Proposition 21, the smoothed system is uniquely solvable
for every initial condition in R2Nd, the solution being generically denoted by
(Zε

t = (Xε
t , V

ε
t ))t≥0, with Xε

t = (X i,ε
t )1≤i≤N and V ε

t = (V i,ε
t )1≤i≤N , and the

associated flow by ϕεt : R2Nd 3 z 7→ Zε
t with Zε

0 = z, t ≥ 0.
By the a.e. equality div(x,v) Fε = 0 and div(x,v) Ak = 0 for all k ∈ N (the

divergence being here computed in the phase space), we get directly:

Lemma 23 For any t ≥ 0, ϕεt (·) preserves the Lebesgue measure, that is,
for all measurable and non negative g, E

∫
R2Nd g (ϕεt (z)) dz =

∫
R2Nd g (z′) dz′.

Proposition 24 Let log+ : (0,+∞) 3 r 7→ log+(r) be the function equal to
0 for r ≥ 1 and to − log r for r ∈ (0, 1). For every R ≥ 1, set

hR (z) = 1{|z|≤R}
∑

(i,j)∈∆N

log+
∣∣zi − zj∣∣ , z ∈ R2Nd.

Then, for any R0, R, T > 0 there exists a constant C such that, for any ε > 0,∫
B2Nd(0,R0)

E
[

sup
t∈[0,T ]

hR (ϕεt (z))

]
dz ≤ C. (41)

Proof. Step 1. For a smooth function φ : R→ [0, 1], with support included

in (0, 1) and with
∫ 1

0
φ(r)dr ≤ 2, let log+

φ : R+ → R+ be the smooth function:

log+
φ (r) =

∫ 1

r

φ (s)

s
ds for r ≥ 0, so that

∣∣∣∣ ddr log+
φ (r)

∣∣∣∣ ≤ 1

r
for r > 0.

As φ increases towards the indicator function of the interval (0, 1), log+
φ (r)

increases towards log+(r). Given the function R2d 3 z̃ 7→ log+
φ (|z̃|), we have∣∣∇ [log+

φ (|z̃|)
]∣∣ ≤ C

1{|z̃|≤1}

|z̃|
, (42)∣∣∇2

[
log+

φ

(
|z̃|
)]∣∣ ≤ C

|z̃|2
(
1 + |φ′| (|z̃|)

)
· 1{|z̃|≤1} (43)
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for a constant C that is independent of the details of φ.
Given R > 0, let θR : R2Nd → [0, 1] be a smooth function equal to 1 on

B2Nd (0, R), equal to 0 outside B2Nd (0, R + 2), with values in [0, 1] and with
supz∈R2Nd |∇θR(z)| ≤ 1 and supz∈R2Nd |∇2θR(z)| ≤ 1. Define

hθRφ (z) = θR (z)
∑

(i,j)∈∆N

log+
φ

(∣∣zi − zj∣∣) , z ∈ R2Nd.

Below, we prove that, given R0, R > 0, there exists a constant C, independent
of ε and the details of φ and θR in B2Nd (0, R + 2) \B2Nd (0, R), such that

E
∫
B(0,R0)

sup
t∈[0,T ]

hθRφ
(
ϕεt (z)

)
dz ≤ C. (44)

Letting φ increase towards 1(0,1), (41) follows by monotonous convergence.
Step 2. We now prove (44). In the whole argument, we use the compact

formulation (14). With the notation g (z̃) = log+
φ (|z̃|) and for a generic

solution (Zε
t )t≥0 to the smoothed system, we have:

d
(
θR (Zε

t ) g
(
Zi,ε
t − Z

j,ε
t

))
= dI1

t +dI2
t +dI3

t ,

{
dI1

t = dI11
t + dI12

t

dI2
t = dI21

t + dI22
t

(45)

where

dI11
t = θR (Zε

t )
〈
∇g
(
Zi,ε
t − Z

j,ε
t

)
, d
(
Zi,ε
t − Z

j,ε
t

)〉
R2d ,

dI12
t =

θR (Zε
t )

2

2d∑
α,β=1

∂2g

∂z̃α∂z̃β

(
Zi,ε
t − Z

j,ε
t

)
d
[(
Zi,ε
t − Z

j,ε
t

)
α
,
(
Zi,ε
t − Z

j,ε
t

)
β

]
t
,

dI21
t = g

(
Zi,ε
t − Z

j,ε
t

)
〈∇θR (Zε

t ) , dZ
ε
t 〉R2Nd ,

dI22
t =

g
(
Zi,ε
t − Z

j,ε
t

)
2

N∑
i′,j′=1

2d∑
α,β=1

∂2θR
∂(zi′)α∂(zj′)β

(Zε
t ) d

[
(Zi′,ε)α, (Z

j′,ε)β

]
t
,

dI3
t =

∞∑
k=1

〈
∇g
(
Zi,ε
t − Z

j,ε
t

)
,
[
Ai
k − Aj

k

]
(Zε

t )
〉
R2d 〈∇θR (Zε

t ) ,Ak (Zε
t )〉R2Nd dt.

We first tackle the mutual variations. By the identity [Ai
k − Aj

k](Z
ε
t ) =

σk(X
i,ε
t )− σk(Xj,ε

t ) and by (42), (12) and (A.3),∣∣dI3
t

∣∣ ≤ C |∇θR (Zε
t )| dt. (46)
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In order to deal with the term I12
t we need to analyze the mutual variation

[(Zi,ε − Zj,ε)α, (Z
i,ε − Zj,ε)β]t. Obviously, it holds [(X i,ε − Xj,ε)p, (Z

i,ε −
Zj,ε)β]t = 0 for all p = 1, . . . , d and β = 1, . . . , 2d, since X i,ε − Xj,ε is of
bounded variation. Moreover, by (12), we have, for p, q = 1, . . . , d,∣∣d[(V i,ε

t − V
j,ε
t

)
p
,
(
V i,ε
t − V

j,ε
t

)
q

]
t

∣∣ ≤ C
∣∣X i,ε

t −X
j,ε
t

∣∣2 dt.
By inequality (43), we get (renaming the constant C)∣∣dI12

t

∣∣ ≤ CθR (Zε
t )
(
1 + |φ′|

(∣∣Zi,ε
t − Z

j,ε
t

∣∣))∣∣Zi,ε
t − Z

j,ε
t

∣∣2 ∣∣X i,ε
t −X

j,ε
t

∣∣2 dt
≤ CθR (Zε

t )
(
1 + |φ′|

(∣∣Zi,ε
t − Z

j,ε
t

∣∣)) dt. (47)

Finally, let us deal with I22
t . As above, the only terms to be non-zero

in the variation d[(Zi′,ε)α, (Z
j′,ε)β]t are the terms d[(V i′,ε

t )p, (V
j′,ε
t )q]t. By

boundedness of |Q(x̃, x̃)|, we claim |d[(V i′,ε
t )p, (V

j′,ε
t )q]t| ≤ Cdt and thus∣∣dI22

t

∣∣ ≤ Cg
(
Zi,ε
t − Z

j,ε
t

) ∣∣∇2θR (Zε
t )
∣∣ dt. (48)

Step 3. Split now dI11
t and dI21

t into dI111
t + dI112

t and dI211
t + dI212

t ,
where

dI111
t = θR (Zε

t )
〈
∇g
(
Zi,ε
t − Z

j,ε
t

)
,Fiε (Zε

t )− Fjε (Zε
t )
〉
R2d dt,

dI112
t = θR (Zε

t )
∞∑
k=1

〈
∇g
(
Zi,ε
t − Z

j,ε
t

)
,Ai

k (Zε
t )− Aj

k (Zε
t )
〉
R2d dW

k
t ,

dI211
t = g

(
Zi,ε
t − Z

j,ε
t

)
〈∇θR (Zε

t ) ,Fε (Zε
t )〉R2Nd dt,

dI212
t = g

(
Zi,ε
t − Z

j,ε
t

) ∞∑
k=1

〈∇θR (Zε
t ) ,Ak (Zε

t )〉R2Nd dW
k
t .

By (42) and by boundedness of Fε on B2Nd(0, R), we have

dI111
t ≤ C

θR (Zε
t )∣∣Zi,ε

t − Z
j,ε
t

∣∣dt, dI211
t ≤ Cg

(
Zi,ε
t − Z

j,ε
t

)
|∇θR (Zε

t )| dt. (49)

Step 4. We now deal with the martingale terms I112 and I212. By (42),
(12), by boundedness of |Q(x̃, x̃)| and Doob’s inequality,

E
[

sup
t∈[0,T ]

∣∣I112
T

∣∣2] ≤ CE
[∫ T

0

θ2
R (Zε

s) ds

]
,

E
[

sup
t∈[0,T ]

∣∣I212
T

∣∣2] ≤ CE
[∫ T

0

g2
(
Zi,ε
s − Zj,ε

s

)
|∇θR (Zε

s)|
2 ds

]
.
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From the above bounds, together with (45), (46), (47), (48) and (49), and
making use of the following estimates

max
(
θR (z) , |∇Rθ (z)| ,

∣∣∇2
Rθ (z)

∣∣) ≤ 1{|z|≤R+2}, z ∈ R2Nd,

max
(
g (z̃) , g2 (z̃)

)
≤ C

|z̃|
, z̃ ∈ R2d.

we deduce (with Zε
0 = z)

E

[
sup
t∈[0,T ]

(
θR (Zε

t ) log+
φ

(∣∣Zi,ε
t − Z

j,ε
t

∣∣))] ≤ θR (z) log+
φ

(∣∣zi − zj∣∣)
+ C

(
1 + E

∫ T

0

1{|Zεs |≤R+2}

(
1∣∣Zi,ε

s − Zj,ε
s

∣∣ + |φ′|
(∣∣Zi,ε

s − Zj,ε
s

∣∣)) ds) .
Step 5. We now integrate on a ball B2Nd (0, R0) of R2Nd with respect to

the initial conditions. Applying Lemma 23, we get∫
B2Nd(0,R0)

E

[
sup
t∈[0,T ]

(
θR (ϕεt (z)) log+

φ

(∣∣ϕi,εt (z)− ϕj,εt (z)
∣∣))] dz

≤
∫
B2Nd(0,R0)

θR (z) log+
φ

(∣∣zi − zj∣∣) dz
+ C

[
R2Nd

0 + E
∫ T

0

∫
{|z|≤R+2}

(
1

|zi − zj|
+ |φ′|

(∣∣zi − zj∣∣)) dzds] .
By a spherical change of variable, the integral of |φ′|(|zi−zj|) by C

∫ 1

0
|φ′(r)|dr,

which is less than 2C. This completes the proof. �

Lemma 25 Given R0, T > 0, define m as the normalized product measure
V−1

2Nd(R0) · Leb2Nd ⊗ P on O = B2Nd (0, R0)× Ω. Then,

lim
ε→0

sup
ε>0

m

{
inf

t∈[0,T ]
inf

(i,j)∈∆N

∣∣ϕi,εt (z, ω)− ϕj,εt (z, ω)
∣∣ ≤ ε

}
= 0.

(For a measurable function φ : O→ R w.r.t. the product σ-field on O and a
Borel set A ⊂ R, m{φ(z, ω) ∈ A} stands for m{(z, ω) ∈ O : φ(z, ω) ∈ A}.)

Proof. By boundedness of Fε and Q(x̃, x̃) and by Markov inequality, it is
well-seen that, for any R0 > 0, there exists a constant C, only depending on
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R0 and T , such that, for any R > 0, m
{

supt∈[0,T ] |ϕεt (z, ω)| > R
}
≤ CR0/R.

Moreover, by Proposition 24,

m

{
sup
t∈[0,T ]

[
1{|ϕεt (z,ω)|≤R}

∑
(i,j)∈∆N

log+
∣∣ϕi,εt (z, ω)− ϕj,εt (z, ω)

∣∣] > K

}
≤ C

K
,

C possibly depending upon R as well. The proof is easily completed. �

Lemma 26 Given R0, T > 0, keep the same definition for m as above. Then,

lim
(ε,A)→(0,+∞)

sup
ε>0

sup
0<δ0<1

m

{
(z, ω) ∈ O :

Leb1

(
t ∈ [0, T ] : inf

(i,j)∈∆N

∣∣π̃x [ϕi,εt (z, ω)− ϕj,εt (z, ω)
]∣∣ ≤ δ0ε

A

)
> Aδ0

}
= 0.

Proof. The proof follows from Lemma 25 and Proposition 27 below. Indeed,
by boundedness of Fε and Q(x̃, x̃), the probability that the v-coordinate of
(ϕεt(z))0≤t≤T is 1/4-Hölder continuous with A as Hölder constant converges
towards 1 as A tends to +∞, uniformly in ε > 0 and in z ∈ B2Nd(0, R0). �

Proposition 27 Given A,R0, T > 0, let (ζt = (χt, νt))0≤t≤T be a continuous
path with values in R2Nd such that ζ0 = z ∈ B2Nd(0, R0), (νit)t≥0 is a 1/4-
Hölder continuous Rd-valued path with A as Hölder constant, for 1 ≤ i ≤ N ,
and [dχit/dt] = νit , for t ∈ [0, T ] and i ∈ {1, . . . , N}. Then, there exists
a constant C, depending on d, A, N , R0 and T only, such that, for any
ε, δ0 ∈ (0, 1), inft∈[0,T ] inf(i,j)∈∆N

∣∣ζ it − ζjt ∣∣ ≥ ε implies

Leb1

(
t ∈ [0, T ] : inf

(i,j)∈∆N

|χit − χ
j
t | ≤ δ0

ε5

C

)
≤ Cδ0.

Proof. Assume that there exist δ ∈ (0, ε), t0 ∈ [0, T ) and (i, j) ∈ ∆N

such that
∣∣χit0 − χjt0∣∣ ≤ δ. Since inft∈[0,T ] inf(i,j)∈∆N

∣∣ζ it − ζjt ∣∣ ≥ ε, we deduce

|νit0−ν
j
t0 | ≥

√
ε2 − δ2. By Hölder property of (νt)0≤t≤T , there exists a constant

C, independent of ε, t0 and δ, such that∣∣νit − νjt ∣∣ ≥ √ε2 − δ2 − C(t− t0)1/4, t0 ≤ t ≤ T.

Therefore, there exists one coordinate ` ∈ {1, . . . , d} such that∣∣(νit − νjt )`∣∣ ≥
√
ε2 − δ2 − C(t− t0)1/4

√
d

, t0 ≤ t ≤ T.
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For C(t − t0)1/4 <
√
ε2 − δ2, the right-hand side is always positive so that

(νit − ν
j
t )` cannot vanish. By continuity, it is of constant sign. Therefore,

∣∣χit − χjt ∣∣ ≥ ∣∣(χit − χjt)`∣∣ ≥ (t− t0)

√
ε2 − δ2 − C(t− t0)1/4

√
d

− δ,

for C(t − t0)1/4 ≤
√
ε2 − δ2. For δ ≤ ε/2, we deduce |χit − χjt | ≥ ε(t −

t0)/(4
√
d)−δ, for C(t−t0)1/4 ≤ ε/4. Finally, for 8

√
dδ/ε ≤ t−t0 ≤ ε4/(4C)4,∣∣χit − χjt ∣∣ ≥ δ. Modifying C if necessary, we deduce that∣∣χit − χjt ∣∣ ≥ δ, (50)

for Cδ/ε ≤ t− t0 ≤ ε4/C and δ ≤ ε/2. Assume now w.l.o.g. that C ≥ 2 and
choose δ of the form δ0ε

5/C2 with δ0 ≤ 1. Define the set

Ix(δ0, ε) =
{
t ∈ [0, T ] :

∣∣χit − χjt ∣∣ ≤ δ0ε
5/C2

}
.

By (50), t0 ∈ Ix(δ0, ε)⇒ [t0 + δ0ε
4/C, t0 + ε4/C] ∩ Ix(δ0, ε) = ∅. Therefore,

Leb1 (Ix(δ0, ε)) ≤ δ0ε
4/CdTC/ε4e ≤ δ0(T + 1). �

4.2 No coalescence for a.e. initial configuration

As a consequence of the previous estimates, we prove (the result below might
be compared with [8] and [1] about a.e. solvability of ODEs, but therein
uniqueness is investigated through uniqueness of a regular Lagrangian flow):

Theorem 28 Under Assumptions (A.1–3), for Lebesgue almost every z,
equation (13) has one and only one global strong solution.

Proof. Step 1. We here consider Ξ = C([0,+∞),R2Nd)⊗C([0,+∞),R)⊗N\{0}

endowed with the product σ-field X of the Borel σ-fields. For R0 > 0 and
ε > 0 and with the same notations as in Lemma 25, we endow the pair (Ξ,X )
with the probability Qε defined on the cylinders as

Qε (A0 × A1 × · · · × Ak × C([0,+∞),R)× · · · )
= m

{
(ϕεt(z))t≥0 ∈ A0,

(
W 1
t , . . . ,W

k
t

)
∈ A1 × · · · × Ak

}
,

where A0 is a Borel subset of C([0,+∞),R2Nd) and A1, . . . , AN are Borel
subsets of C([0,+∞),R). The σ-field X coincides with the Borel σ-field gen-
erated by the standard product metric on the product space Ξ. In particular,
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the notion of tightness is relevant for probability measures on the pair (Ξ,X ):
it is well-checked that the family (Qε)ε>0 is tight.

Denoting by Q the limit of some convergent sequence (Qεn)n∈N for a de-
creasing sequence of positive reals (εn)n∈N converging towards 0, we investi-
gate the properties of the canonical process under Q, denoted by ξt =

(
ξkt
)
k∈N,

(ξ0
t )t≥0 being R2Nd-valued and the (ξkt )t≥0, k ≥ 1, being R-valued. Clearly,

the family ((ξkt )t≥0)k∈N\{0} is a family of independent Brownian motions un-
der Q. Moreover, the marginal law of Ξ 3 ξ 7→ ξ0

0 is the uniform distribution
on the ball B2Nd(0, R0).

For any ε > 0, the set {ξ ∈ Ξ : inft∈[0,T ] inf(i,j)∈∆N
|πi(ξ0

t )− πj(ξ0
t )| < ε} is

open in Ξ. Using the porte-manteau Theorem to pass to the limit in Lemma
25 and letting ε tend to 0, we deduce that, for any T > 0,

Q
{
ξ ∈ Ξ : inf

(i,j)∈∆N

inf
t∈[0,T ]

∣∣πi (ξ0
t

)
− πj

(
ξ0
t

)∣∣ = 0

}
= 0. (51)

Similarly, the set {ξ ∈ Ξ : Leb1(t ∈ [0, T ] : inf(i,j)∈∆N
|πi,x(ξ0

t ) − πj,x(ξ0
t )| <

δ0ε/A) > Aδ0} is open in Ξ. Using the porte-manteau Theorem to pass to the
limit in Lemma 26 and letting δ0 tend to 0 first and then (ε, A) to (0,+∞),
we obtain

Q
{
ξ ∈ Ξ : Leb1

(
t ∈ [0, T ] : inf

(i,j)∈∆N

∣∣πi,x (ξ0
t

)
− πj,x

(
ξ0
t

)∣∣ = 0

)
> 0

}
= 0.

(52)

Set now ξ0
t = (χ0

t , ν
0
t ), with χ0

t = Πx (ξ0
t ) and ν0

t = Πv (ξ0
t ), t ≥ 0. Set also

ν̃0
t = ν0

t −
∫ t

0

Πv

(
F(χ0

s)
)
ds, t ≥ 0. (53)

We claim that (ν̃0
t )t≥0 is a square-integrable continuous martingale under Q

w.r.t. the filtration
(
G0
t = σ(ξks , s ≤ t, k ∈ N)

)
t≥0

with the mutual variations[(
ν̃0
)i
,
(
ν̃0
)j]

t
=

∫ t

0

Q
(
(χ0

s)
i, (χ0

s)
j
)
ds, i, j ∈ {1, . . . , d}, (54)[(

ν̃0
)i
, ξk
]
t

=

∫ t

0

σk
(
(χ0

s)
i
)
ds, i ∈ {1, . . . , d}, k ∈ N \ {0}. (55)

The proof is quite standard and consists in passing to the limit in the mar-
tingale properties characterizing the dynamics of (Zε

t )t≥0. The only difficulty
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is to pass to the limit along the mollified drifts. For T > 0, we thus prove
that (∫ t

0

Fε(ξ0
s )ds

)
0≤t≤T

·Qε ⇒
ε→0

(∫ t

0

F(ξ0
s )ds

)
0≤t≤T

·Q, (56)

where the left- and the right-hand sides indicate the distributions of the
indicated processes under the indicated measures on C([0, T ],R2Nd) and ⇒
stands for the convergence in distribution. By boundedness of Fε, we em-
phasize that there exists a constant C > 0, independent of ε such that, for
any a > 0 and any ε′ > ε,

Qε

(
sup

0≤t≤T

∣∣∣∣∫ t

0

Fε(ξ0
s )ds−

∫ t

0

F(ξ0
s )ds

∣∣∣∣ > a

)
≤ Qε

(
CLeb1

(
t ∈ [0, T ] : inf

(i,j)∈∆N

|πi,x(ξ0
t )− πj,x(ξ0

t )| ≤ ε′
)
≥ a

)
.

The event in the right-hand side is closed in Ξ, so that

lim sup
ε→0

Qε

(
sup

0≤t≤T

∣∣∣∣∫ t

0

Fε(ξ0
s )ds−

∫ t

0

F(ξ0
s )ds

∣∣∣∣ > a

)
≤ Q

(
CLeb1

(
t ∈ [0, T ] : inf

(i,j)∈∆N

|πi,x(ξ0
t )− πj,x(ξ0

t )| ≤ ε′
)
≥ a

)
.

(57)

Letting ε′ tend to 0 in (57), we deduce from (52) that the left-hand side is 0.
Therefore, to prove (56), it is sufficient to prove(∫ t

0

F(ξs)ds

)
0≤t≤T

·Qε ⇒
ε→0

(∫ t

0

F(ξs)ds

)
0≤t≤T

·Q.

By dominated convergence Theorem, the map C([0, T ],R2Nd) 3 (ξt)0≤t≤T 7→
(
∫ t

0
F(ξs)ds)0≤t≤T ∈ C([0, T ],R2Nd) is continuous at any path ξ for which

Leb1

(
t ∈ [0, T ] : inf(i,j)∈∆N

|πi,x(ξt)− πj,x(ξt)| = 0
)

= 0. By (52) again, this
is true a.s. under Q: by continuous mapping Theorem, we complete the proof
of (56). Thus, (ν̃0)t≥0 in (53) satisfies the announced martingale propery.

Step 2. Denote by (Gt)t≥0 the right-continuous version of (Gt)t≥0 aug-
mented with Q-null sets. Clearly, (ν̃0

t )t≥0 is a square-integrable continuous
martingale under Q w.r.t. (Gt)t≥0 and both (54) and (55) remain true. In
particular, we can compute[

ν̃0 −
∑

k∈N\{0}

∫ ·
0

Ak
(
χ0
s

)
dξks

]
t

= 0, t ≥ 0,
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so that, Q-a.s.,

ξ0
t = ξ0

0 +

∫ t

0

F
(
ξ0
s

)
ds+

∑
k∈N\{0}

∫ t

0

Ak

(
χ0
s

)
dξks , t ≥ 0. (58)

We denote by (Q(·, z))z∈B2Nd(0,R0) a family of regular conditional probabilities
of Q given the random variable Ξ 3 ξ 7→ ξ0

0 . It is plain to see that, for a.e.
z ∈ B2Nd(0, R0), ((ξkt )t≥0)k∈N\{0} are independent Brownian motions under
Q(·, z), (ν̃0

t )t≥0 is a square-integrable continuous martingale under Q(·, z)
w.r.t. (Gt)t≥0 and both (54) and (55) remain true under Q(·, z). We deduce
that, for a.e. z ∈ B2Nd(0, R0), (58) holds true Q(·, z)-a.s. with ξ0

0 = z
therein. (Notice that, a.e. on B2Nd(0, R0), the version of the stochastic
integral may be chosen independently of z. Of course, its distribution under
Q(·, z) depends on z.) From (51) and (52), we deduce that, for a.e. z ∈
B2Nd(0, R0), there is no coalesence in the phase space with probability 1 under
Q(·, z) and that the set of instants where coalescence occurs in the space of
positions is of zero Lebesgue measure with probability 1 under Q(·, z).

Step 3 We now prove that pathwise uniqueness holds for solutions that
remain in ΓN almost-surely. We are thus given two solutions (ζt)t≥0 and
(ζ ′t)t≥0 to (13) with ζ0 = ζ ′0 = z ∈ ΓN , (ζt)t≥0 being almost-surely free of
coalescence in the phase space. (Processes (ζt)t≥0 and (ζ ′t)t≥0 are R2Nd-valued
and play the same role as (Zt)t≥0.) Denoting by τ = inf{t ≥ 0 : ζt 6= ζ ′t}, the
point is thus to prove that P{τ = +∞} = 1.

On the set {τ < +∞} (if not empty), we have ζτ = ζ ′τ ∈ ΓN since (ζt)t≥0

is free of coalescence in the phase space. Put it differently, we have, P-a.s.,
ζτ∧n = ζ ′τ∧n ∈ ΓN for all n ∈ N. Pathwise uniqueness follows from:

Lemma 29 Let Z0 be a random variable with values in ΓN and let (ζt)t≥0

and (ζ ′t)t≥0 stand for two solutions to (13) with Z0 as initial condition, (ζt)t≥0

being free of coalescence in the phase space. Then, there exists a stopping time
ρ, P{ρ > 0} = 1, such that (ζt)t≥0 and (ζ ′t)t≥0 match almost-surely on [0, ρ].

Applying Lemma 29 with Z0 = ζτ∧n as initial conditions, we deduce that
P{τ ≥ n} = 1 for any n ∈ N, that is P{τ = +∞} = 1, as announced.

We turn to the proof of Lemma 29. We write Z0 = (X0, V0), with X0 =
Πx(Z0) and V0 = Πv(Z0), and ζt = (χt, νt), with χt = Πx(ζt) and νt = Πv(ζt),
for t ≥ 0. On the same model, we write ζ ′t = (χ′t, ν

′
t) for t ≥ 0. Setting

ρ1,i,j = inf(ρ1,i,j
ζ , ρ1,i,j

ζ′ ), with

ρ1,i,j
ζ = inf

{
t ≥ 0 : |χit − χ

j
t | ≤ |X i

0 −X
j
0 |/2

}
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(with a similar definition for ρ1,i,j
ζ′ ) and ρ2,i,j = inf(ρ2,i,j

ζ , ρ2,i,j
ζ′ ), with

ρ2,i,j
ζ = inf

{
t > 0 : |χit − χ

j
t | ≤ t|V i

0 − V
j

0 |/2
}

(with the convention that ρ2,i,j
ζ = 0 if V i

0−V
j

0 =0, and with a similar definition

for ρ2,i,j
ζ′ ), we put ρi,j = max(ρ1,i,j, ρ2,i,j).

We first prove that ρi,j is a.s. positive. If ρ1,i,j(ω) is zero for a given
ω ∈ Ω, it holds ρ1,i,j

ζ (ω) = 0 or ρ1,i,j
ζ′ (ω) = 0, so that |X i

0(ω) − Xj
0(ω)| = 0.

Since Z0 has values in ΓN , we have |V i
0 (ω)− V j

0 (ω)| > 0. Since the paths of
(ζt)t≥0 and (ζ ′t)t≥0 are (a.s.) 1/4-Hölder continuous, we also have:∣∣νit(ω)− νjt (ω)−

(
V i

0 (ω)− V j
0 (ω)

)∣∣ ≤ C(ω)t1/4, t ∈ [0, 1], (59)

for a finite constant C(ω) depending on ω. We deduce that, for any t ∈ (0, 1],∣∣χit(ω)− χjt(ω)− t
(
V i

0 (ω)− V j
0 (ω)

)∣∣ ≤ C(ω)t5/4.

Therefore, ∣∣χit(ω)− χjt(ω)
∣∣ ≥ t

2

∣∣V i
0 (ω)− V j

0 (ω)
∣∣ , (60)

for C(ω)t1/4 ≤ (1/2)|V i
0 (ω) − V j

0 (ω)|. Therefore, ρ2,i,j
ζ (ω) > 0. Similarly,

ρ2,i,j
ζ′ (ω) > 0.

On [0, ρ], the drift F (ζ it − ζ
j
t ) in (13) satisfies∣∣F (χit − χ

j
t)− F ((χ′t)

i − (χ′t)
j)
∣∣ ≤ Ct−1 |χt − χ′t| ≤ C sup

0≤s≤t
|νs − ν ′s| , (61)

the constant C depending upon the randomness through Z0 only. Indeed, if
ρ1,i,j > 0, |X i

0 −X
j
0 | must be (strictly) positive so that F is locally Lipschitz

continuous; if ρ2,i,j > 0, the bound follows from (60) and (A.1). Therefore,
on [0, ρ], the drift F (ζ it−ζ

j
t ) coincides with some functional G((νis−νjs)0≤s≤t)

of the whole path (νis − νjs)0≤s≤t, G being bounded and locally Lipschitz
continuous w.r.t. the L∞-norm. We then write

dνit =
1

N

∑
j 6=i

G
(
(νis − νjs)0≤s≤t

)
dt+

+∞∑
k=1

σk
(
χit
)
dW k

t , i ∈ {1, . . . , d}, (62)

for t ∈ [0, ρ], with ρ = infi 6=j ρ
i,j. (Obviously, (62) is also satisfied by ζ ′.) Eq.

(62) reads as a functional equation driven by bounded and locally Lipschitz-
continuous coefficients, the Lipschitz constants of the coefficients on any balls
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being finite random variables depending upon ω through the initial condition
Z0 only. Lemma 29 follows from P{sup0≤s≤ρ |νs − ν ′s| = 0|Z0} = 1.

Step 4. We have proven weak existence and strong uniqueness for a.e.
initial condition z ∈ ΓN . Following the proof by Yamada and Watanabe in
the finite-dimensional case, we deduce that both strong existence and strong
uniqueness hold for a.e. initial condition z ∈ ΓN . �

4.3 No coalescence for any initial condition in ΓN

We now establish the main result of the paper. To do so, we first prove

Lemma 30 For any z ∈ ΓN , there exists a unique solution (ϕt(z))0≤t≤τz to
(13), with z as initial condition, on the interval [0, τz], where τz = inf{t ≥
0 : ϕt(z) ∈ Γ{N}. Moreover, the mapping ΓN 3 z 7→ (ϕt∧τz(z))t≥0 ∈
C([0,+∞),R2Nd) is measurable.

Proof. The whole difficulty is to handle the possible coalescence of the
particles in the space of positions. By induction, we build a non-decreasing
sequence of stopping times (τnz )n∈N such that τnz → τz a.s. as n tends to
+∞ and (13) has a unique solution (ϕt(z))0≤t≤τnz on each [0, τnz ] with z as
initial solution for any n ∈ N. The stopping time τ0 is set equal to 0.
Given (ϕt(z) = (χt(z), νt(z)))0≤t≤τnz , for some n ∈ N, we can follow the
proof of Lemma 29 and build a (unique) solution (ϕt(z))τnz ≤t≤τn+1

z
to (13)

on [τnz , τ
n+1
z ], where τn+1

z = τz ∧ τ ′,n+1
z , where τ ′,n+1

z = infi 6=j ρ
i,j,n+1, with

ρi,j,n+1 = max(ρ1,i,j,n+1, ρ2,i,j,n+1),

ρ1,i,j,n+1 = inf
{
t ≥ τnz :

∣∣χit(z)− χjt(z)
∣∣ ≤ ∣∣χiτnz (z)− χjτnz (z)

∣∣ /2} ,
ρ2,i,j,n+1 = inf

{
t > τnz :

∣∣χit(z)− χjt(z)
∣∣ ≤ (t− τnz )

∣∣νiτnz (z)− νjτnz (z)
∣∣ /2} .

Clearly, the sequence (τnz )n∈N is non-decreasing.
On each step, existence and uniqueness hold since Eq. (13) can be writ-

ten as a functional SDE on the interval [τnz , τ
n+1
z ] with bounded and locally

Lipschitz-continuous coefficients. (As already emphasized in the proof of
Lemma 29, the Lipschitz constants of the coefficients on bounded sets de-
pend on the initial position ϕτnz (z). Anyhow, this has no consequences.)

Almost-surely, the sequence (τnz )n∈N cannot have an accumulation point
before ϕ(z) hits Γ{N , as otherwise there would be a blow-up for the modulus
of continuity of ϕ(z). Again, the precise argument goes back to the proof of
Lemma 29: the length τn+1

z − τnz depends on the modulus of continuity of
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the path (ϕt(z))τnz ≤t≤τn+1
z

–the length of the interval is controlled from below

when the modulus is controlled from above–, on the distance dist(ϕτnz (z),Γ{N)
–the length of the interval is controlled from below when the distance is away
from zero– and on the norm |ϕτnz (z)| –the length of the interval is controlled
from below when the norm is away from +∞–. The modulus of continuity is
controlled in terms of the bounds of the coefficients by Kolmogorov’s crite-
rion, the norm of ϕ(z) is controlled in terms of the bounds of the coefficients
as well, and the distance from ϕ(z) to Γ{N is bounded from below on any
[0, τ̃ εz ], with τ̃ εz = inf{t ≥ 0 : dist(ϕt(z),Γ{N) ≤ ε}, for ε > 0. This proves
that, a.s., supn≥1 τ

n
z ≥ τ̃ εz for any ε > 0, that is supn≥1 τ

n
z ≥ τ̃ εz = τz. �

Proof. (Theorem 22.) We now complete the proof. We add a point ∆ to
R2Nd and set ϕt(z) = ∆ for t ≥ τz, z ∈ ΓN , when τz < ∞. The resulting
family of processes (ϕt(z))t≥0, z ∈ ΓN , has ΓN ∪ ∆ as state space. It is a
homogeneous Markov process. By Theorem 28, P{τz = +∞} = 1 for a.e.
z ∈ R2Nd. In particular, we can write, for any 0 < ε < T ,

P
{
ϕ[ε,T ](z) ∈ ΓN

}
=

∫
ΓN∪{∆}

P
{
ϕ[0,T−ε](z

′) ∈ ΓN
}
µϕε(z)(dz

′)

where {ϕ[ε,T ](z) ∈ ΓN} = {ω ∈ Ω : ϕt(z)(ω) ∈ ΓN , for any t ∈ [ε, T ]}
and µϕε(z) is the law of ϕε(z). By Theorem 28, we can find a Borel subset
N ⊂ R2Nd of zero Lebesgue measure such that P

{
ϕ[0,T−ε](z) ∈ ΓN

}
= 1 for

all z ∈ N {. Then

P
{
ϕ[ε,T ](z) ∈ ΓN

}
≥
∫
N {

P
{
ϕ[0,T−ε](z

′) ∈ ΓN
}
µϕε(z)(dz

′)

= 1− µϕε(z)(N ).

(63)

Now, assume that z = (x, v) is such that x ∈ Γx,N (so that z ∈ ΓN). Then,
there exists ε∗ > 0 such that infi 6=j |xi − xj| > ε∗. Defining τ ∗z = inf{t ≥ 0 :
infi 6=j |πi,x(ϕt(z))− πj,x(ϕt(z))| ≤ ε∗}, we have

µϕε(z)(N ) ≤ P {ϕ∗ε(z) ∈ N , τ ∗z > ε}+ P {τ ∗z ≤ ε}
≤ P {ϕ∗ε(z) ∈ N}+ P {τ ∗z ≤ ε} ,

(64)

where (ϕ∗t (z))t≥0 stands for the solution to (13) when driven by a Lipschitz
drift that coincides with the original one on {(x1, . . . , xN) ∈ R2Nd : infi 6=j |xi−
xj| > ε∗}. Since N is Lebesgue-negligible and the law of ϕ∗ε(z) on R2Nd is
absolutely continuous w.r.t. Lebesgue measure when x ∈ Γx,N , we deduce
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that P{ϕ∗ε(z) ∈ N} = 0. (See Proposition 21.) Letting ε tend to zero, we
deduce that P{ϕ[0,T ] ∈ ΓN} = 1. Indeed, ∩ε>0{ϕ[ε,T ](z) ∈ ΓN} = {ϕ(0,T ](z) ∈
ΓN} = {ϕ[0,T ](z) ∈ ΓN} since ϕ0(z) ∈ Γ{N implies ϕt(z) = ∆ for any t > 0.

Assume now that z ∈ ΓN but x 6∈ Γx,N . Following the proof of Lemma
29, we know that, P almost-surely, there exists a non-empty interval (0, ρ(ω))
such that ϕt(z) ∈ Γx,N , ρ standing for a stopping-time. (When xi = xj,
|πi,x(ϕt(z))−πj,x(ϕt(z))| ≥ (t/2)|vi− vj| for t > 0 small and is thus non-zero
for t > 0 small.) In particular, τz(ω) ≥ ρ(ω). For any δ ∈ (0, ε), we have

µϕε(z)(N ) ≤ P {ϕε(z) ∈ N , δ < ρ}+ P {ρ ≤ δ}
≤ P {ϕε(z) ∈ N ,Πx (ϕδ(z)) ∈ Γx,N}+ P {ρ ≤ δ} .

(65)

By Markov property, we then claim

P {ϕε(z) ∈ N ,Πx (ϕδ(z)) ∈ Γx,N}

=

∫
R2Nd

P {ϕε−δ(z′) ∈ N}1{Πx(z′)∈Γx,N}µϕδ(z)(dz
′).

(66)

Going back to (63), we write ε as ε = ε1+ε2, with ε1, ε2 > 0. Choosing δ = ε1

in (65), we have ε − δ = ε2 in (66). By (64) and by Lebesgue’s dominated
convergence Theorem, we know that the right-hand side in (66) tends to 0
as ε2 = ε− δ tends to 0. Passing to the limit in (63) and using (65), this says
that P{ϕ[ε1,T ](z) ∈ ΓN} ≥ 1− P{ρ ≤ ε1}, for any ε1 > 0. Letting ε1 tend to
zero, we obtain P{ϕ[0,T ](z) ∈ ΓN} = 1. �
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